René's URL Explorer Experiment


Title: 9 Ways to Share a Numpy Array Between Processes - Super Fast Python

Open Graph Title: 9 Ways to Share a Numpy Array Between Processes - Super Fast Python

Open Graph Description: You can share numpy arrays between processes in Python. There are many ways to share a numpy array between processes, such as as a function argument, as an inherited global variable, via a queue or a pipe, as a ctype Array and RawArray, memory-mapped file, SharedMemory backed array, or via a Manager. In this tutorial, […]

Opengraph URL: https://superfastpython.com/numpy-share-array-processes/

X: @SuperFastPython

Generator: WP Rocket 3.20.0.1

direct link

Domain: superfastpython.com


Hey, it has json ld scripts:
{"@context":"https://schema.org","@graph":[{"@type":"Article","@id":"https://superfastpython.com/numpy-share-array-processes/#article","isPartOf":{"@id":"https://superfastpython.com/numpy-share-array-processes/"},"author":{"name":"Jason Brownlee","@id":"https://superfastpython.com/#/schema/person/523949f55f9f0c61cfd9c9d29be5ee27"},"headline":"9 Ways to Share a Numpy Array Between Processes","datePublished":"2023-06-15T19:00:00+00:00","dateModified":"2023-09-29T01:29:25+00:00","mainEntityOfPage":{"@id":"https://superfastpython.com/numpy-share-array-processes/"},"wordCount":8277,"commentCount":6,"publisher":{"@id":"https://superfastpython.com/#organization"},"image":{"@id":"https://superfastpython.com/numpy-share-array-processes/#primaryimage"},"thumbnailUrl":"https://superfastpython.com/wp-content/uploads/2023/03/Share-a-Numpy-Array-Between-Processes-scaled.jpg","articleSection":["Concurrent NumPy"],"inLanguage":"en-US","potentialAction":[{"@type":"CommentAction","name":"Comment","target":["https://superfastpython.com/numpy-share-array-processes/#respond"]}]},{"@type":"WebPage","@id":"https://superfastpython.com/numpy-share-array-processes/","url":"https://superfastpython.com/numpy-share-array-processes/","name":"9 Ways to Share a Numpy Array Between Processes - Super Fast Python","isPartOf":{"@id":"https://superfastpython.com/#website"},"primaryImageOfPage":{"@id":"https://superfastpython.com/numpy-share-array-processes/#primaryimage"},"image":{"@id":"https://superfastpython.com/numpy-share-array-processes/#primaryimage"},"thumbnailUrl":"https://superfastpython.com/wp-content/uploads/2023/03/Share-a-Numpy-Array-Between-Processes-scaled.jpg","datePublished":"2023-06-15T19:00:00+00:00","dateModified":"2023-09-29T01:29:25+00:00","breadcrumb":{"@id":"https://superfastpython.com/numpy-share-array-processes/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https://superfastpython.com/numpy-share-array-processes/"]}]},{"@type":"ImageObject","inLanguage":"en-US","@id":"https://superfastpython.com/numpy-share-array-processes/#primaryimage","url":"https://superfastpython.com/wp-content/uploads/2023/03/Share-a-Numpy-Array-Between-Processes-scaled.jpg","contentUrl":"https://superfastpython.com/wp-content/uploads/2023/03/Share-a-Numpy-Array-Between-Processes-scaled.jpg","width":2560,"height":1710,"caption":"Share a Numpy Array Between Processes"},{"@type":"BreadcrumbList","@id":"https://superfastpython.com/numpy-share-array-processes/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https://superfastpython.com/"},{"@type":"ListItem","position":2,"name":"Tutorials","item":"https://superfastpython.com/tutorials/"},{"@type":"ListItem","position":3,"name":"9 Ways to Share a Numpy Array Between Processes"}]},{"@type":"WebSite","@id":"https://superfastpython.com/#website","url":"https://superfastpython.com/","name":"Super Fast Python","description":"making you awesome at concurrency","publisher":{"@id":"https://superfastpython.com/#organization"},"alternateName":"SFP","potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https://superfastpython.com/?s={search_term_string}"},"query-input":{"@type":"PropertyValueSpecification","valueRequired":true,"valueName":"search_term_string"}}],"inLanguage":"en-US"},{"@type":"Organization","@id":"https://superfastpython.com/#organization","name":"Super Fast Python","alternateName":"SFP","url":"https://superfastpython.com/","logo":{"@type":"ImageObject","inLanguage":"en-US","@id":"https://superfastpython.com/#/schema/logo/image/","url":"https://superfastpython.com/wp-content/uploads/2021/11/cropped-SuperFastPython-Site-Icon4.png","contentUrl":"https://superfastpython.com/wp-content/uploads/2021/11/cropped-SuperFastPython-Site-Icon4.png","width":512,"height":512,"caption":"Super Fast Python"},"image":{"@id":"https://superfastpython.com/#/schema/logo/image/"},"sameAs":["https://www.facebook.com/SuperFastPython","https://x.com/SuperFastPython","https://www.linkedin.com/company/super-fast-python/"]},{"@type":"Person","@id":"https://superfastpython.com/#/schema/person/523949f55f9f0c61cfd9c9d29be5ee27","name":"Jason Brownlee","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https://superfastpython.com/#/schema/person/image/","url":"https://secure.gravatar.com/avatar/1f057fb06ad1254aa5385df87a0549d1e2b25f825c04d0d36a0b74e054bacc7b?s=96&d=mm&r=g","contentUrl":"https://secure.gravatar.com/avatar/1f057fb06ad1254aa5385df87a0549d1e2b25f825c04d0d36a0b74e054bacc7b?s=96&d=mm&r=g","caption":"Jason Brownlee"},"description":"Hi, my name is Jason Brownlee, Ph.D. and I’m the guy behind this website. I am obsessed with Python Concurrency. I help python developers learn concurrency, super fast. Learn more.","sameAs":["https://SuperFastPython.com"],"url":"https://superfastpython.com/author/fastpython/"}]}

og:localeen_US
og:typearticle
og:site_nameSuper Fast Python
article:publisherhttps://www.facebook.com/SuperFastPython
article:published_time2023-06-15T19:00:00+00:00
article:modified_time2023-09-29T01:29:25+00:00
og:imagehttps://superfastpython.com/wp-content/uploads/2023/03/Share-a-Numpy-Array-Between-Processes-scaled.jpg
og:image:width2560
og:image:height1710
og:image:typeimage/jpeg
authorJason Brownlee
twitter:cardsummary_large_image
twitter:creator@SuperFastPython
twitter:label1Written by
twitter:data1Jason Brownlee
twitter:label2Est. reading time
twitter:data257 minutes
google-site-verification80yBZbEj1ygTUtdsha52Qs5VBbQfY8byAaQBXRP7qdA
msapplication-TileImagehttps://superfastpython.com/wp-content/uploads/2021/11/cropped-SuperFastPython-Site-Icon4-270x270.png
Nonehttps://superfastpython.com/?s={s}

Links:

Skip to main contenthttps://superfastpython.com/numpy-share-array-processes/#genesis-content
Skip to primary sidebarhttps://superfastpython.com/numpy-share-array-processes/#genesis-sidebar-primary
Skip to footerhttps://superfastpython.com/numpy-share-array-processes/#footer
https://superfastpython.com/
Abouthttps://superfastpython.com/about/
Abouthttps://superfastpython.com/about/
Contacthttps://superfastpython.com/contact/
Start Herehttps://superfastpython.com/learning-paths/
Topicshttps://superfastpython.com/tutorials/
Threadshttps://superfastpython.com/category/threading/
Multiprocessinghttps://superfastpython.com/category/multiprocessing/
Asynciohttps://superfastpython.com/category/asyncio/
More…https://superfastpython.com/python-concurrent-topics/
Guideshttps://superfastpython.com/python-concurrency-guides/
Threading Guidehttps://superfastpython.com/threading-in-python/
Multiprocessing Guidehttps://superfastpython.com/multiprocessing-in-python/
Asyncio Guidehttps://superfastpython.com/python-asyncio/
More…https://superfastpython.com/python-concurrency-guides/
Productshttps://superfastpython.com/products/
Free Bookhttps://superfastpython.com/plip-menu
Jason Brownleehttps://superfastpython.com/about
Concurrent NumPyhttps://superfastpython.com/category/numpy/
Togglehttps://superfastpython.com/numpy-share-array-processes/
Need to Share Numpy Array Between Processeshttps://superfastpython.com/numpy-share-array-processes/#Need_to_Share_Numpy_Array_Between_Processes
How to Share a Numpy Array Between Processeshttps://superfastpython.com/numpy-share-array-processes/#How_to_Share_a_Numpy_Array_Between_Processes
Method 01: Share a NumPy Array Via Function Argumenthttps://superfastpython.com/numpy-share-array-processes/#Method_01_Share_a_NumPy_Array_Via_Function_Argument
Method 02: Share a NumPy Array Via Inheritancehttps://superfastpython.com/numpy-share-array-processes/#Method_02_Share_a_NumPy_Array_Via_Inheritance
Method 03: Share a NumPy Array Via a Queuehttps://superfastpython.com/numpy-share-array-processes/#Method_03_Share_a_NumPy_Array_Via_a_Queue
Method 04: Share a NumPy Array Via a Pipehttps://superfastpython.com/numpy-share-array-processes/#Method_04_Share_a_NumPy_Array_Via_a_Pipe
Method 05: Share a NumPy Array Via a ctype Arrayhttps://superfastpython.com/numpy-share-array-processes/#Method_05_Share_a_NumPy_Array_Via_a_ctype_Array
Method 06: Share a NumPy Array Via a ctype RawArrayhttps://superfastpython.com/numpy-share-array-processes/#Method_06_Share_a_NumPy_Array_Via_a_ctype_RawArray
Method 07: Share a NumPy Array Via SharedMemoryhttps://superfastpython.com/numpy-share-array-processes/#Method_07_Share_a_NumPy_Array_Via_SharedMemory
Method 08: Share a NumPy Array Via Memory-Mapped Filehttps://superfastpython.com/numpy-share-array-processes/#Method_08_Share_a_NumPy_Array_Via_Memory-Mapped_File
Method 09: Share a NumPy Array Via a Managerhttps://superfastpython.com/numpy-share-array-processes/#Method_09_Share_a_NumPy_Array_Via_a_Manager
What Method Should You Use?https://superfastpython.com/numpy-share-array-processes/#What_Method_Should_You_Use
Methods That Copy NumPy Arrayshttps://superfastpython.com/numpy-share-array-processes/#Methods_That_Copy_NumPy_Arrays
Methods That Use Shared Memoryhttps://superfastpython.com/numpy-share-array-processes/#Methods_That_Use_Shared_Memory
Choose Based On Performancehttps://superfastpython.com/numpy-share-array-processes/#Choose_Based_On_Performance
Further Readinghttps://superfastpython.com/numpy-share-array-processes/#Further_Reading
Takeawayshttps://superfastpython.com/numpy-share-array-processes/#Takeaways
multiprocessing modulehttps://superfastpython.com/multiprocessing-in-python/
Multiprocessing: The Complete Guidehttps://superfastpython.com/multiprocessing-in-python/
Threads are 4x Faster at Sharing Data Than Processes in Pythonhttps://superfastpython.com/threads-vs-processes-share-data/
download your FREE bookhttps://superfastpython.com/plip-incontent
Start Now: Free Concurrent NumPy Crash Coursehttps://marvelous-writer-6152.ck.page/7bb24e2c70
Run a Function in a Child Processhttps://superfastpython.com/run-function-in-new-process/
Share Numpy Array Between Processes Using Function Arguments and Return Valueshttps://superfastpython.com/numpy-multiprocessing-share-array-function
Learn morehttps://marvelous-writer-6152.ck.page/7bb24e2c70
Inheriting is 34x Faster Than Sending Data Between Processes in Pythonhttps://superfastpython.com/multiprocessing-inherit-vs-sending-data
Multiprocessing Inherit Global Variables in Pythonhttps://superfastpython.com/multiprocessing-inherit-global-variables-in-python/
multiprocessing.set_start_method() functionhttps://docs.python.org/3/library/multiprocessing.html#multiprocessing.set_start_method
Multiprocessing Start Methodshttps://superfastpython.com/multiprocessing-start-method/
Share Numpy Array Between Processes Using Global Variablehttps://superfastpython.com/numpy-multiprocessing-share-array-global-variable
Run a Function in a Child Processhttps://superfastpython.com/run-function-in-new-process/
Python Concurrency Mind Mapshttps://marvelous-writer-6152.ck.page/8f23adb076
multiprocessing.Queue classhttps://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
Multiprocessing Queue in Pythonhttps://superfastpython.com/multiprocessing-queue-in-python/
Share Numpy Array Between Processes Using a Queuehttps://superfastpython.com/numpy-multiprocessing-share-array-queue
https://superfastpython.com/pcn-incontent
Learn morehttps://superfastpython.com/pcn-incontent
multiprocessing.Pipe classhttps://docs.python.org/3/library/multiprocessing.html#multiprocessing.Pipe
Multiprocessing Pipe in Pythonhttps://superfastpython.com/multiprocessing-pipe-in-python/
Share Numpy Array Between Processes Using Function Arguments and Return Valueshttps://superfastpython.com/numpy-multiprocessing-share-array-function
ctypes modulehttps://docs.python.org/3/library/ctypes.html
Multiprocessing Shared ctypes in Pythonhttps://superfastpython.com/multiprocessing-shared-ctypes-in-python/
numpy.ctypeslib.as_ctypes() functionhttps://numpy.org/doc/stable/reference/routines.ctypeslib.html#numpy.ctypeslib.as_ctypes
flatten() methodhttps://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html
Share Numpy Array Between Processes With Shared ctypeshttps://superfastpython.com/numpy-shared-array-ctypes/
ctypes modulehttps://docs.python.org/3/library/ctypes.html
Multiprocessing Shared ctypes in Pythonhttps://superfastpython.com/multiprocessing-shared-ctypes-in-python/
multiprocessing.sharedctypes.RawArrayhttps://docs.python.org/3/library/multiprocessing.html#multiprocessing.sharedctypes.RawArray
numpy.ndarrayhttps://numpy.org/doc/stable/reference/generated/numpy.ndarray.html
numphttps://numpy.org/doc/stable/reference/generated/numpy.frombuffer.html
Share a Numpy Array Between Processes Backed By RawArrayhttps://superfastpython.com/numpy-array-shared-ctype-rawarray
multiprocessing.shared_memory modulehttps://docs.python.org/3/library/multiprocessing.shared_memory.html
What is Multiprocessing Shared Memoryhttps://superfastpython.com/what-is-multiprocessing-sharedmemory
How to Use SharedMemory in Pythonhttps://superfastpython.com/multiprocessing-sharedmemory
numpy.ndarray instancehttps://numpy.org/doc/stable/reference/generated/numpy.ndarray.html
How to Share Numpy Array Using SharedMemoryhttps://superfastpython.com/numpy-array-sharedmemory
Numpy Data typeshttps://numpy.org/doc/stable/user/basics.types.html
Run a Function in a Child Processhttps://superfastpython.com/run-function-in-new-process/
numpy.memmap() functionhttps://numpy.org/doc/stable/reference/generated/numpy.memmap.html
numpy.memmap APIhttps://numpy.org/doc/stable/reference/generated/numpy.memmap.html
Share NumPy Array Using Memory-Mapped Filehttps://superfastpython.com/numpy-array-memory-mapped-file/
What is a Multiprocessing Managerhttps://superfastpython.com/multiprocessing-manager/
numpy.ones() functionhttps://numpy.org/doc/stable/reference/generated/numpy.ones.html
Multiprocessing Manager With a Custom Classhttps://superfastpython.com/multiprocessing-manager-custom-class/
Share a Numpy Array Between Processes Using a Managerhttps://superfastpython.com/numpy-array-share-manager
Fastest Way To Share NumPy Array Between Processeshttps://superfastpython.com/numpy-array-share-fastest/
Concurrent NumPy in Pythonhttps://superfastpython.com/concurrent-numpy-in-python
Concurrent NumPy 7-Day Coursehttps://superfastpython.com/concurrent-numpy-7-day-course/
Which NumPy Functions Are Multithreadedhttps://superfastpython.com/multithreaded-numpy-functions/
Numpy Multithreaded Matrix Multiplication (up to 5x faster)https://superfastpython.com/numpy-multithreading-matrix-multiplication/
NumPy vs the Global Interpreter Lock (GIL)https://superfastpython.com/numpy-vs-gil/
ThreadPoolExecutor Fill NumPy Array (3x faster)https://superfastpython.com/threadpoolexecutor-fill-numpy-array/
Fastest Way To Share NumPy Array Between Processeshttps://superfastpython.com/numpy-array-share-fastest/
Parallel Programming with numpy and scipyhttps://scipy-cookbook.readthedocs.io/items/ParallelProgramming.html
Parallel Programming with numpy and scipyhttps://scipy.github.io/old-wiki/pages/ParallelProgramming
Parallel Random Number Generationhttps://numpy.org/doc/stable/reference/random/parallel.html
NumPy documentationhttps://numpy.org/doc/stable/
NumPy API Referencehttps://numpy.org/doc/stable/reference
Linear algebra (numpy.linalg) APIhttps://numpy.org/doc/stable/reference/routines.linalg.html
threading — Thread-based parallelismhttps://docs.python.org/3/library/threading.html
multiprocessing — Process-based parallelismhttps://docs.python.org/3/library/multiprocessing.html
concurrent.futures — Launching parallel taskshttps://docs.python.org/3/library/concurrent.futures.html
HackerNewshttps://news.ycombinator.com/item?id=37303695
Karsten Winegearthttps://unsplash.com/@karsten116?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
Unsplashhttps://unsplash.com/s/photos/fast-train?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
Tweethttps://twitter.com/share
Learn morehttps://superfastpython.com/about
free bookhttps://marvelous-writer-6152.ck.page/99ee689b9b
https://marvelous-writer-6152.ck.page/99ee689b9b
Download Your FREE Bookhttps://marvelous-writer-6152.ck.page/99ee689b9b
July 21, 2023 at 8:09 amhttps://superfastpython.com/numpy-share-array-processes/#comment-6560
Replyhttps://superfastpython.com/numpy-share-array-processes/#comment-6560
Jason Brownleehttps://SuperFastPython.com
July 21, 2023 at 8:20 amhttps://superfastpython.com/numpy-share-array-processes/#comment-6561
https://superfastpython.com/multiprocessing-inherit-vs-sending-data/https://superfastpython.com/multiprocessing-inherit-vs-sending-data/
https://superfastpython.com/numpy-array-shared-ctype-rawarray/https://superfastpython.com/numpy-array-shared-ctype-rawarray/
https://superfastpython.com/numpy-array-sharedmemory/https://superfastpython.com/numpy-array-sharedmemory/
https://superfastpython.com/numpy-vs-gil/https://superfastpython.com/numpy-vs-gil/
Replyhttps://superfastpython.com/numpy-share-array-processes/#comment-6561
July 30, 2023 at 2:01 amhttps://superfastpython.com/numpy-share-array-processes/#comment-6979
Replyhttps://superfastpython.com/numpy-share-array-processes/#comment-6979
Jason Brownleehttps://SuperFastPython.com
July 30, 2023 at 6:07 amhttps://superfastpython.com/numpy-share-array-processes/#comment-6989
Replyhttps://superfastpython.com/numpy-share-array-processes/#comment-6989
August 29, 2023 at 7:02 pmhttps://superfastpython.com/numpy-share-array-processes/#comment-8317
https://skiplist.readthedocs.io/en/latest/rolling_median.html#rolling-median-mp-shared-memory-labelhttps://skiplist.readthedocs.io/en/latest/rolling_median.html#rolling-median-mp-shared-memory-label
https://github.com/paulross/skiplist/https://github.com/paulross/skiplist/
https://pypi.org/project/orderedstructs/https://pypi.org/project/orderedstructs/
Replyhttps://superfastpython.com/numpy-share-array-processes/#comment-8317
Jason Brownleehttps://SuperFastPython.com
August 30, 2023 at 5:40 amhttps://superfastpython.com/numpy-share-array-processes/#comment-8333
Replyhttps://superfastpython.com/numpy-share-array-processes/#comment-8333
Cancel replyhttps://superfastpython.com/numpy-share-array-processes/#respond
https://superfastpython.com/about
Learn morehttps://superfastpython.com/about
Emailhttps://marvelous-writer-6152.ck.page/a53763fc25
Facebookhttps://www.facebook.com/SuperFastPython
GitHubhttps://github.com/SuperFastPython
LinkedInhttps://www.linkedin.com/company/super-fast-python/
Twitterhttps://twitter.com/SuperFastPython
Continuehttps://marvelous-writer-6152.ck.page/7bb24e2c70
Get The Book:https://superfastpython.com/pcn-sidebar
https://superfastpython.com/pcn-sidebar
Learn Morehttps://superfastpython.com/pcn-sidebar
Learn All Of Python Concurrencyhttps://superfastpython.com/pjbs-sidebar
https://superfastpython.com/pjbs-sidebar
Learn morehttps://superfastpython.com/pjbs-sidebar
https://superfastpython.com/pcn-footer
Concurrent NumPy in Pythonhttps://superfastpython.com/pcn-footer
Privacyhttps://superfastpython.com/privacy/
Disclaimerhttps://superfastpython.com/disclaimer/
Site Maphttps://superfastpython.com/site-map/
Abouthttps://superfastpython.com/about/
Contacthttps://superfastpython.com/contact/
Praisehttps://superfastpython.com/praise/
LinkedInhttps://www.linkedin.com/company/super-fast-python/
Twitterhttps://twitter.com/SuperFastPython
Facebookhttps://www.facebook.com/SuperFastPython
RSShttps://superfastpython.com/feed/

Viewport: width=device-width, initial-scale=1

Robots: index, follow, max-image-preview:large, max-snippet:-1, max-video-preview:-1


URLs of crawlers that visited me.