Title: Use TorchAudio to Prepare Audio Data for Deep Learning – Real Python
Open Graph Title: Use TorchAudio to Prepare Audio Data for Deep Learning – Real Python
Description: Learn to prepare audio data for deep learning in Python using TorchAudio. Explore how to load, process, and convert speech to spectrograms with PyTorch tools.
Open Graph Description: Learn to prepare audio data for deep learning in Python using TorchAudio. Explore how to load, process, and convert speech to spectrograms with PyTorch tools.
Mail addresses
?subject=Python article for you&body=Use TorchAudio to Prepare Audio Data for Deep Learning on Real Python
https://realpython.com/python-torchaudio/
Opengraph URL: https://realpython.com/python-torchaudio/
X: @realpython
Domain: realpython.com
{
"@context": "http://schema.org",
"@type": "Article",
"headline": "Use TorchAudio to Prepare Audio Data for Deep Learning",
"image": {
"@type": "ImageObject",
"url": "https://files.realpython.com/media/Use-TorchAudio-to-Prepare-Audio-Data-for-Deep-Learning_Watermarked.97a0be2f5172.jpg",
"width": 1920,
"height": 1080
},
"mainEntityOfPage": {
"@type": "WebPage",
"@id": "https://realpython.com/python-torchaudio/",
"lastReviewed": "2024-08-16",
"author": {
"@type": "Person",
"name": "Negar Vahid",
"image": "https://realpython.com/cdn-cgi/image/width=756,height=756,fit=crop,gravity=auto,format=auto/https://files.realpython.com/media/negar-pic.114658386780.5b2dd45547b0.jpg",
"url": "https://realpython.com/team/nvahid/",
"affiliation": {
"@type": "Organization",
"@id": "https://realpython.com/#organization",
"name": "Real Python",
"url": "https://realpython.com",
"logo": "https://realpython.com/static/real-python-logo-square-512.157ae6bf64ed.png"
}
},
"reviewedBy": [
{
"@type": "Person",
"name": "Aldren Santos",
"image": "https://realpython.com/cdn-cgi/image/width=500,height=500,fit=crop,gravity=auto,format=auto/https://files.realpython.com/media/Aldren_Santos_Real_Python.6b0861d8b841.png",
"url": "https://realpython.com/team/asantos/",
"affiliation": {
"@type": "Organization",
"@id": "https://realpython.com/#organization",
"name": "Real Python",
"url": "https://realpython.com",
"logo": "https://realpython.com/static/real-python-logo-square-512.157ae6bf64ed.png"
}
},
{
"@type": "Person",
"name": "Brenda Weleschuk",
"image": "https://realpython.com/cdn-cgi/image/width=320,height=320,fit=crop,gravity=auto,format=auto/https://files.realpython.com/media/IMG_3324_1.50b309355fc1.jpg",
"url": "https://realpython.com/team/bweleschuk/",
"affiliation": {
"@type": "Organization",
"@id": "https://realpython.com/#organization",
"name": "Real Python",
"url": "https://realpython.com",
"logo": "https://realpython.com/static/real-python-logo-square-512.157ae6bf64ed.png"
}
},
{
"@type": "Person",
"name": "Bartosz Zaczy\u0144ski",
"image": "https://realpython.com/cdn-cgi/image/width=1694,height=1694,fit=crop,gravity=auto,format=auto/https://files.realpython.com/media/coders_lab_2109368.259b1599fbee.jpg",
"url": "https://realpython.com/team/bzaczynski/",
"affiliation": {
"@type": "Organization",
"@id": "https://realpython.com/#organization",
"name": "Real Python",
"url": "https://realpython.com",
"logo": "https://realpython.com/static/real-python-logo-square-512.157ae6bf64ed.png"
}
},
{
"@type": "Person",
"name": "Geir Arne Hjelle",
"image": "https://realpython.com/cdn-cgi/image/width=800,height=800,fit=crop,gravity=auto,format=auto/https://files.realpython.com/media/gahjelle.470149ee709e.jpg",
"url": "https://realpython.com/team/gahjelle/",
"affiliation": {
"@type": "Organization",
"@id": "https://realpython.com/#organization",
"name": "Real Python",
"url": "https://realpython.com",
"logo": "https://realpython.com/static/real-python-logo-square-512.157ae6bf64ed.png"
}
}
]
},
"datePublished": "2025-06-30T14:00:00+00:00",
"dateModified": "2024-08-16T23:18:40.365446+00:00",
"publisher": {
"@type": "Organization",
"@id": "https://realpython.com/#organization",
"name": "Real Python",
"url": "https://realpython.com",
"logo": {
"@type": "ImageObject",
"url": "https://realpython.com/static/real-python-logo-square-512.157ae6bf64ed.png",
"width": 512,
"height": 512
},
"description": "Real Python is a leading provider of online Python education and one of the largest language-specific online communities for software developers. It publishes high-quality learning resources, such as tutorials, books, and courses to an audience of millions of developers, data scientists, and machine learning engineers each month.",
"slogan": "Become a Python Expert",
"email": "info@realpython.com",
"sameAs": [
"https://github.com/realpython",
"https://www.youtube.com/realpython",
"https://twitter.com/realpython",
"https://x.com/realpython",
"https://www.linkedin.com/company/realpython-com/",
"https://www.facebook.com/learnrealpython",
"https://www.instagram.com/realpython",
"https://www.tiktok.com/@realpython.com"
]
},
"author": {
"@type": "Person",
"name": "Negar Vahid",
"image": "https://realpython.com/cdn-cgi/image/width=756,height=756,fit=crop,gravity=auto,format=auto/https://files.realpython.com/media/negar-pic.114658386780.5b2dd45547b0.jpg",
"url": "https://realpython.com/team/nvahid/",
"affiliation": {
"@type": "Organization",
"@id": "https://realpython.com/#organization",
"name": "Real Python",
"url": "https://realpython.com",
"logo": "https://realpython.com/static/real-python-logo-square-512.157ae6bf64ed.png"
}
},
"description": "Learn to prepare audio data for deep learning in Python using TorchAudio. Explore how to load, process, and convert speech to spectrograms with PyTorch tools.",
"hasPart": {
"@type": "FAQPage",
"mainEntity": [
{
"@type": "Question",
"name": "What is TorchAudio used for?",
"acceptedAnswer": {
"@type": "Answer",
"text": "You use TorchAudio to process audio data for deep learning applications, such as loading datasets, transforming waveforms into spectrograms, and augmenting data with noise.
"
}
},
{
"@type": "Question",
"name": "How do I load audio data in TorchAudio?",
"acceptedAnswer": {
"@type": "Answer",
"text": "You load audio data in TorchAudio using the torchaudio.load() function, which reads the audio file and returns a waveform tensor and the sample rate.
"
}
},
{
"@type": "Question",
"name": "How do I normalize audio in TorchAudio?",
"acceptedAnswer": {
"@type": "Answer",
"text": "TorchAudio normalizes audio by default when you load it using torchaudio.load(), which scales the waveform’s amplitude to fall within the range of -1.0 to 1.0.
"
}
},
{
"@type": "Question",
"name": "What is a spectrogram used for in audio processing?",
"acceptedAnswer": {
"@type": "Answer",
"text": "You use a spectrogram to visually represent the spectrum of frequencies in an audio signal over time, helping you analyze and understand the frequency components of the sound.
"
}
},
{
"@type": "Question",
"name": "How do I pad and trim audio in TorchAudio?",
"acceptedAnswer": {
"@type": "Answer",
"text": "In TorchAudio, you pad audio using PyTorch’s torch.nn.functional.pad(), and trim it using Python’s sequence slicing to ensure that all samples have a uniform length.
"
}
}
]
}
}
| author | Real Python |
| twitter:card | summary_large_image |
| twitter:image | https://files.realpython.com/media/Use-TorchAudio-to-Prepare-Audio-Data-for-Deep-Learning_Watermarked.97a0be2f5172.jpg |
| og:image | https://files.realpython.com/media/Use-TorchAudio-to-Prepare-Audio-Data-for-Deep-Learning_Watermarked.97a0be2f5172.jpg |
| twitter:creator | @realpython |
| og:type | article |
Links:
Viewport: width=device-width, initial-scale=1, shrink-to-fit=no, viewport-fit=cover
Robots: max-image-preview:large