René's URL Explorer Experiment


Title: Performance — python201 0.0.1 documentation

Generator: Docutils 0.17.1: http://docutils.sourceforge.net/

direct link

Domain: python-tutorial.dev

docsearch:languageNone

Links:

https://python-tutorial.dev/201/index.html
Setup https://python-tutorial.dev/201/setup.html
Tutorial https://python-tutorial.dev/201/tutorial/index.html
References https://python-tutorial.dev/201/references.html
License https://python-tutorial.dev/201/license.html
GitHub https://github.com/glentner/python201
Packaging https://python-tutorial.dev/201/tutorial/packaging.html
Testing https://python-tutorial.dev/201/tutorial/testing.html
Documentation https://python-tutorial.dev/201/tutorial/documentation.html
Command-line Interfaces https://python-tutorial.dev/201/tutorial/commandline.html
Logging https://python-tutorial.dev/201/tutorial/logging.html
Performance https://python-tutorial.dev/201/tutorial/performance.html
Benchmarking https://python-tutorial.dev/201/tutorial/performance.html#benchmarking
Timing Your Code https://python-tutorial.dev/201/tutorial/performance.html#timing-your-code
Interactive Benchmarking with IPython https://python-tutorial.dev/201/tutorial/performance.html#interactive-benchmarking-with-ipython
Performance Profiling https://python-tutorial.dev/201/tutorial/performance.html#performance-profiling
Line Profiler https://python-tutorial.dev/201/tutorial/performance.html#line-profiler
Memory Profiler https://python-tutorial.dev/201/tutorial/performance.html#memory-profiler
Do Not Reinvent the Wheel https://python-tutorial.dev/201/tutorial/performance.html#do-not-reinvent-the-wheel
Use Existing Libraries https://python-tutorial.dev/201/tutorial/performance.html#use-existing-libraries
Use Better Algorithms https://python-tutorial.dev/201/tutorial/performance.html#use-better-algorithms
Use Better Data Formats https://python-tutorial.dev/201/tutorial/performance.html#use-better-data-formats
Coding Practices and Memory Efficiency https://python-tutorial.dev/201/tutorial/performance.html#coding-practices-and-memory-efficiency
Benchmark, benchmark, benchmark! https://python-tutorial.dev/201/tutorial/performance.html#benchmark-benchmark-benchmark
Avoid explicit loops https://python-tutorial.dev/201/tutorial/performance.html#avoid-explicit-loops
Avoid repeatedly allocating, copying and rearranging data https://python-tutorial.dev/201/tutorial/performance.html#avoid-repeatedly-allocating-copying-and-rearranging-data
Access data from memory efficiently https://python-tutorial.dev/201/tutorial/performance.html#access-data-from-memory-efficiently
Compiled Code https://python-tutorial.dev/201/tutorial/performance.html#compiled-code
Just-in-Time Compilation https://python-tutorial.dev/201/tutorial/performance.html#just-in-time-compilation
C-Extensions https://python-tutorial.dev/201/tutorial/performance.html#c-extensions
Extras https://python-tutorial.dev/201/tutorial/performance.html#extras
Parallel and Distributed Computing https://python-tutorial.dev/201/tutorial/performance.html#parallel-and-distributed-computing
Shared-memory Programming https://python-tutorial.dev/201/tutorial/performance.html#shared-memory-programming
https://python-tutorial.dev/201/tutorial/performance.html#performance
numbahttps://numba.pydata.org
https://python-tutorial.dev/201/tutorial/performance.html#benchmarking
https://python-tutorial.dev/201/tutorial/performance.html#timing-your-code
timehttps://docs.python.org/3/library/time.html#time.time
decorator syntaxhttp://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators
https://python-tutorial.dev/201/tutorial/performance.html#interactive-benchmarking-with-ipython
magic statementshttps://ipython.readthedocs.io/en/stable/interactive/magics.html
https://python-tutorial.dev/201/tutorial/performance.html#performance-profiling
https://python-tutorial.dev/201/tutorial/performance.html#line-profiler
line_profilerhttps://github.com/rkern/line_profiler
https://python-tutorial.dev/201/tutorial/performance.html#memory-profiler
memory_profilerhttps://github.com/pythonprofilers/memory_profiler
https://python-tutorial.dev/201/tutorial/performance.html#id5
https://python-tutorial.dev/201/tutorial/performance.html#do-not-reinvent-the-wheel
https://python-tutorial.dev/201/tutorial/performance.html#use-existing-libraries
numpyhttps://numpy.org
numpy.cumprodhttps://numpy.org/doc/stable/reference/generated/numpy.cumprod.html
https://python-tutorial.dev/201/tutorial/performance.html#use-better-algorithms
sparsehttps://en.wikipedia.org/wiki/Sparse_matrix
https://python-tutorial.dev/201/tutorial/performance.html#use-better-data-formats
this pagehttps://pandas.pydata.org/pandas-docs/stable/io.html
herehttps://pandas.pydata.org/pandas-docs/stable/io.html#performance-considerations
https://python-tutorial.dev/201/tutorial/performance.html#coding-practices-and-memory-efficiency
feet.csvhttps://python-tutorial.dev/201/_downloads/1859710a17e348bdb23cd49c43b2bbdc/feet.csv
https://python-tutorial.dev/201/tutorial/performance.html#benchmark-benchmark-benchmark
https://python-tutorial.dev/201/tutorial/performance.html#avoid-explicit-loops
https://python-tutorial.dev/201/tutorial/performance.html#avoid-repeatedly-allocating-copying-and-rearranging-data
numexprhttps://github.com/pydata/numexpr
This articlehttps://nedbatchelder.com/text/names.html
https://python-tutorial.dev/201/tutorial/performance.html#access-data-from-memory-efficiently
https://python-tutorial.dev/201/tutorial/performance.html#compiled-code
https://python-tutorial.dev/201/tutorial/performance.html#just-in-time-compilation
Numbahttps://numba.pydata.org/
Cythonhttp://cython.org/
https://python-tutorial.dev/201/tutorial/performance.html#c-extensions
documentationhttps://docs.python.org/3.8/extending/extending.html
tutorialshttp://madrury.github.io/jekyll/update/programming/2016/06/20/python-extension-modules.html
https://python-tutorial.dev/201/tutorial/performance.html#extras
https://python-tutorial.dev/201/tutorial/performance.html#parallel-and-distributed-computing
GNU Parallelhttps://www.gnu.org/software/parallel/
hyper-shellhttps://hyper-shell.readthedocs.io
IPython Parallelhttps://ipyparallel.readthedocs.io/en/latest/
Daskhttps://dask.pydata.org/en/latest/
Parslhttp://parsl-project.org
Tensorflowhttps://www.tensorflow.org/
multiprocessinghttps://docs.python.org/3/library/multiprocessing.html
joblibhttps://pythonhosted.org/joblib/
https://python-tutorial.dev/201/tutorial/performance.html#shared-memory-programming
Apache Arrowhttps://arrow.apache.org
Plasma In-Memory Object Storehttps://arrow.apache.org/docs/python/plasma.html
herehttps://python-tutorial.dev/201/_downloads/de5c242a07b93d1e6a51102d4d52be93/htc_with_plasma.pdf
previous Logging https://python-tutorial.dev/201/tutorial/logging.html
next References https://python-tutorial.dev/201/references.html
Sphinxhttp://sphinx-doc.org/

Viewport: width=device-width, initial-scale=1


URLs of crawlers that visited me.