| Skip to content | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#start-of-content |
|
| https://patch-diff.githubusercontent.com/ |
|
Sign in
| https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2Fxcfcode%2FSummarization-Papers |
| GitHub CopilotWrite better code with AI | https://github.com/features/copilot |
| GitHub SparkBuild and deploy intelligent apps | https://github.com/features/spark |
| GitHub ModelsManage and compare prompts | https://github.com/features/models |
| MCP RegistryNewIntegrate external tools | https://github.com/mcp |
| ActionsAutomate any workflow | https://github.com/features/actions |
| CodespacesInstant dev environments | https://github.com/features/codespaces |
| IssuesPlan and track work | https://github.com/features/issues |
| Code ReviewManage code changes | https://github.com/features/code-review |
| GitHub Advanced SecurityFind and fix vulnerabilities | https://github.com/security/advanced-security |
| Code securitySecure your code as you build | https://github.com/security/advanced-security/code-security |
| Secret protectionStop leaks before they start | https://github.com/security/advanced-security/secret-protection |
| Why GitHub | https://github.com/why-github |
| Documentation | https://docs.github.com |
| Blog | https://github.blog |
| Changelog | https://github.blog/changelog |
| Marketplace | https://github.com/marketplace |
| View all features | https://github.com/features |
| Enterprises | https://github.com/enterprise |
| Small and medium teams | https://github.com/team |
| Startups | https://github.com/enterprise/startups |
| Nonprofits | https://github.com/solutions/industry/nonprofits |
| App Modernization | https://github.com/solutions/use-case/app-modernization |
| DevSecOps | https://github.com/solutions/use-case/devsecops |
| DevOps | https://github.com/solutions/use-case/devops |
| CI/CD | https://github.com/solutions/use-case/ci-cd |
| View all use cases | https://github.com/solutions/use-case |
| Healthcare | https://github.com/solutions/industry/healthcare |
| Financial services | https://github.com/solutions/industry/financial-services |
| Manufacturing | https://github.com/solutions/industry/manufacturing |
| Government | https://github.com/solutions/industry/government |
| View all industries | https://github.com/solutions/industry |
| View all solutions | https://github.com/solutions |
| AI | https://github.com/resources/articles?topic=ai |
| Software Development | https://github.com/resources/articles?topic=software-development |
| DevOps | https://github.com/resources/articles?topic=devops |
| Security | https://github.com/resources/articles?topic=security |
| View all topics | https://github.com/resources/articles |
| Customer stories | https://github.com/customer-stories |
| Events & webinars | https://github.com/resources/events |
| Ebooks & reports | https://github.com/resources/whitepapers |
| Business insights | https://github.com/solutions/executive-insights |
| GitHub Skills | https://skills.github.com |
| Documentation | https://docs.github.com |
| Customer support | https://support.github.com |
| Community forum | https://github.com/orgs/community/discussions |
| Trust center | https://github.com/trust-center |
| Partners | https://github.com/partners |
| GitHub SponsorsFund open source developers | https://github.com/sponsors |
| Security Lab | https://securitylab.github.com |
| Maintainer Community | https://maintainers.github.com |
| Accelerator | https://github.com/accelerator |
| Archive Program | https://archiveprogram.github.com |
| Topics | https://github.com/topics |
| Trending | https://github.com/trending |
| Collections | https://github.com/collections |
| Enterprise platformAI-powered developer platform | https://github.com/enterprise |
| GitHub Advanced SecurityEnterprise-grade security features | https://github.com/security/advanced-security |
| Copilot for BusinessEnterprise-grade AI features | https://github.com/features/copilot/copilot-business |
| Premium SupportEnterprise-grade 24/7 support | https://github.com/premium-support |
| Pricing | https://github.com/pricing |
| Search syntax tips | https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax |
| documentation | https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax |
|
Sign in
| https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2Fxcfcode%2FSummarization-Papers |
|
Sign up
| https://patch-diff.githubusercontent.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=xcfcode%2FSummarization-Papers |
| Reload | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers |
| Reload | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers |
| Reload | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers |
|
xcfcode
| https://patch-diff.githubusercontent.com/xcfcode |
| Summarization-Papers | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers |
|
Notifications
| https://patch-diff.githubusercontent.com/login?return_to=%2Fxcfcode%2FSummarization-Papers |
|
Fork
147
| https://patch-diff.githubusercontent.com/login?return_to=%2Fxcfcode%2FSummarization-Papers |
|
Star
1k
| https://patch-diff.githubusercontent.com/login?return_to=%2Fxcfcode%2FSummarization-Papers |
|
1k
stars
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/stargazers |
|
147
forks
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/forks |
|
Branches
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/branches |
|
Tags
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/tags |
|
Activity
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/activity |
|
Star
| https://patch-diff.githubusercontent.com/login?return_to=%2Fxcfcode%2FSummarization-Papers |
|
Notifications
| https://patch-diff.githubusercontent.com/login?return_to=%2Fxcfcode%2FSummarization-Papers |
|
Code
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers |
|
Issues
0
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/issues |
|
Pull requests
0
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/pulls |
|
Discussions
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/discussions |
|
Actions
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/actions |
|
Projects
0
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/projects |
|
Security
0
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/security |
|
Insights
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/pulse |
|
Code
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers |
|
Issues
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/issues |
|
Pull requests
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/pulls |
|
Discussions
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/discussions |
|
Actions
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/actions |
|
Projects
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/projects |
|
Security
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/security |
|
Insights
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/pulse |
| Branches | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/branches |
| Tags | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/tags |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/branches |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/tags |
| 457 Commits | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/commits/main/ |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/commits/main/ |
| paper_statistics | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/tree/main/paper_statistics |
| paper_statistics | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/tree/main/paper_statistics |
| pic | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/tree/main/pic |
| pic | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/tree/main/pic |
| slides | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/tree/main/slides |
| slides | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/tree/main/slides |
| .gitattributes | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/.gitattributes |
| .gitattributes | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/.gitattributes |
| README.md | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/README.md |
| README.md | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/README.md |
| summarization.bib | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/summarization.bib |
| summarization.bib | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/summarization.bib |
| README | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/pic/summary.png |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#-summarization-papers |
| Full List | https://github.com/xcfcode/Summarization-Papers/blob/main/README.md |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#-full-list |
| Xiachong Feng | http://xcfeng.net/ |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#contributor |
| Yichong Huang | https://github.com/OrangeInSouth |
| Haozheng Yang | https://github.com/hzyang95 |
| Jiaan Wang | https://github.com/krystalan |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#summarization-learning-route |
| Summarization Learning Route (with link) | http://xcfeng.net/res/summarization-route.pdf |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/pic/route.png |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#trending |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/pic/trending.png |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#presentations--notes |
| Dialogue Summarization (2022.1) | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/slides/presentation/Dialogue_Summarization_DAMO.pdf |
| https://camo.githubusercontent.com/be7e0fc804df5b6a5c6530738568610d07b3e0b06018f416d4aa081151300e96/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d70726573656e746174696f6e732d627269676874677265656e |
| Cross-lingual Summarization | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/slides/presentation/Cross-lingual_Summarization.pdf |
| https://camo.githubusercontent.com/be7e0fc804df5b6a5c6530738568610d07b3e0b06018f416d4aa081151300e96/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d70726573656e746174696f6e732d627269676874677265656e |
| 如何把DialoGPT用到对话摘要任务?@ ACL 2021 | https://mp.weixin.qq.com/s/GQQRRS3F7p4Zv6wSuDh0ng |
| https://camo.githubusercontent.com/ee91f5f389d9edf660d1c539a30bf7a5640faa07137cb1bc2f1b5878c7ab2e68/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d626c6f672d726564 |
| 对话摘要最新进展简述 | https://mp.weixin.qq.com/s/628OAOW1_-Yc_vQbeuY_uA |
| https://camo.githubusercontent.com/ee91f5f389d9edf660d1c539a30bf7a5640faa07137cb1bc2f1b5878c7ab2e68/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d626c6f672d726564 |
| Dialogue Summarization (2021.5) | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/slides/presentation/Dialogue_Summarization.pdf |
| https://camo.githubusercontent.com/be7e0fc804df5b6a5c6530738568610d07b3e0b06018f416d4aa081151300e96/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d70726573656e746174696f6e732d627269676874677265656e |
| 融入常识知识的生成式对话摘要 | https://mp.weixin.qq.com/s/x3zqGc4pqh4x3q_uorNKcg |
| https://camo.githubusercontent.com/ee91f5f389d9edf660d1c539a30bf7a5640faa07137cb1bc2f1b5878c7ab2e68/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d626c6f672d726564 |
| 会议摘要有难度?快来引入对话篇章结构信息 | https://mp.weixin.qq.com/s/Be7AYUPdux8NvAO4wo6_fg |
| https://camo.githubusercontent.com/ee91f5f389d9edf660d1c539a30bf7a5640faa07137cb1bc2f1b5878c7ab2e68/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d626c6f672d726564 |
| 文本摘要论文列表(Chinese) | https://mp.weixin.qq.com/s/tLdLGSFl229selxeogQk-w |
| https://camo.githubusercontent.com/ee91f5f389d9edf660d1c539a30bf7a5640faa07137cb1bc2f1b5878c7ab2e68/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d626c6f672d726564 |
| 事实感知的生成式文本摘要(Chinese) | https://mp.weixin.qq.com/s/Aye9FBwG-v2JO2MLoEjo0g |
| https://camo.githubusercontent.com/ee91f5f389d9edf660d1c539a30bf7a5640faa07137cb1bc2f1b5878c7ab2e68/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d626c6f672d726564 |
| 多模态摘要简述(Chinese) | https://mp.weixin.qq.com/s/Ce6jtp-gTtqeh9lgi-kHtQ |
| https://camo.githubusercontent.com/ee91f5f389d9edf660d1c539a30bf7a5640faa07137cb1bc2f1b5878c7ab2e68/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d626c6f672d726564 |
| 文本摘要简述 | https://mp.weixin.qq.com/s/NGpDrYilAeuH6pQji0ujaA |
| https://camo.githubusercontent.com/ee91f5f389d9edf660d1c539a30bf7a5640faa07137cb1bc2f1b5878c7ab2e68/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d626c6f672d726564 |
| Multi-modal Summarization | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/slides/presentation/Multi-modal-Summarization.pdf |
| https://camo.githubusercontent.com/be7e0fc804df5b6a5c6530738568610d07b3e0b06018f416d4aa081151300e96/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d70726573656e746174696f6e732d627269676874677265656e |
| ACL20 Summarization | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/slides/presentation/acl2020-summarization.pdf |
| https://camo.githubusercontent.com/be7e0fc804df5b6a5c6530738568610d07b3e0b06018f416d4aa081151300e96/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d70726573656e746174696f6e732d627269676874677265656e |
| 文本摘要简述 (Chinese) | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/slides/presentation/%E6%96%87%E6%9C%AC%E6%91%98%E8%A6%81%E7%AE%80%E8%BF%B0.pdf |
| https://camo.githubusercontent.com/be7e0fc804df5b6a5c6530738568610d07b3e0b06018f416d4aa081151300e96/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d70726573656e746174696f6e732d627269676874677265656e |
| ACL19 Summarization | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/slides/presentation/ACL19%20Summarization.pdf |
| https://camo.githubusercontent.com/be7e0fc804df5b6a5c6530738568610d07b3e0b06018f416d4aa081151300e96/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d70726573656e746174696f6e732d627269676874677265656e |
| Brief intro to summarization (Chinese) | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/slides/notes/Brief-intro-to-summarization.pdf |
| https://camo.githubusercontent.com/30f138e75bbceb56792027f8fe8a3b0061aefa071202c58091527ef55badc327/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6e6f7465732d6f72616e6765 |
| EMNLP19 Summarization (Chinese) | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/slides/notes/EMNLP19_Summarization.pdf |
| https://camo.githubusercontent.com/30f138e75bbceb56792027f8fe8a3b0061aefa071202c58091527ef55badc327/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6e6f7465732d6f72616e6765 |
| ACL19-A Simple Theoretical Model of Importance for Summarization | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/slides/paper-slides/A%20Simple%20Theoretical%20Model%20of%20Importance%20for%20Summarization.pdf |
| https://camo.githubusercontent.com/777f2de50cd212bcf64bde227515242ed09924a254375ace3f825bcce75fe53d/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d7061706572732d626c7565 |
| ACL19-Multimodal Abstractive Summarization for How2 Videos | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main/slides/paper-slides/Multimodal%20Abstractive%20Summarization%20for%20How2%20Videos.pdf |
| https://camo.githubusercontent.com/777f2de50cd212bcf64bde227515242ed09924a254375ace3f825bcce75fe53d/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d7061706572732d626c7565 |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#big-model-era |
| [pdf] | https://arxiv.org/abs/2305.01951 |
| [data] | https://github.com/AndyCheang/TempoSum |
| [pdf] | https://arxiv.org/abs/2305.01146 |
| [pdf] | https://arxiv.org/abs/2304.08448 |
| [pdf] | https://arxiv.org/abs/2304.04193 |
| [pdf] | https://arxiv.org/abs/2304.02554 |
| [pdf] | https://arxiv.org/abs/2302.14229 |
| [pdf] | https://arxiv.org/abs/2302.08081 |
| [pdf] | https://arxiv.org/abs/2209.12356 |
| [code] | https://tagoyal.github.io/zeroshot-news-annotations.html |
| [pdf] | https://arxiv.org/abs/2301.13848 |
| [pdf] | https://arxiv.org/abs/2302.06476 |
| [pdf] | https://arxiv.org/abs/2302.04023 |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#decomposed |
| [pdf] | https://arxiv.org/abs/2209.10492 |
| [code] | https://github.com/swarnaHub/SummarizationPrograms |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#benchmark |
| [pdf] | https://arxiv.org/abs/2301.13848 |
| [pdf] | https://arxiv.org/abs/2202.07362 |
| [data] | https://github.com/ghomasHudson/muld |
| [pdf] | http://explainaboard.nlpedia.ai/ExplainaBoard.pdf |
| [ExplainaBoard] | http://explainaboard.nlpedia.ai/leaderboard/task-summ/index.php |
| [pdf] | https://arxiv.org/abs/2011.11928 |
| [benchmark] | https://github.com/microsoft/glge |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#survey |
| [pdf] | https://arxiv.org/abs/2304.08763 |
| [code] | https://github.com/zhehengluoK/Biomedical-Text-Summarization-Survey/tree/master |
| [pdf] | https://arxiv.org/abs/2212.01669 |
| [pdf] | https://arxiv.org/abs/2210.09894 |
| [pdf] | https://aclanthology.org/2022.coling-1.536/ |
| [pdf] | https://arxiv.org/abs/2203.12515 |
| [pdf] | https://arxiv.org/abs/2207.00939 |
| [pdf] | https://dl.acm.org/doi/10.1145/3529754 |
| [pdf] | https://arxiv.org/abs/2204.11190 |
| [pdf] | https://arxiv.org/abs/2107.03175 |
| [pdf] | https://arxiv.org/abs/2204.01849 |
| [pdf] | https://arxiv.org/abs/2203.05227 |
| [pdf] | https://arxiv.org/abs/2203.03047 |
| [pdf] | https://arxiv.org/abs/2202.03629 |
| [pdf] | https://arxiv.org/abs/2202.01110 |
| [pdf] | https://arxiv.org/abs/2201.05337 |
| [pdf] | https://arxiv.org/abs/2201.05273 |
| [pdf] | https://arxiv.org/abs/2109.10118 |
| [pdf] | https://arxiv.org/abs/2109.05199 |
| [pdf] | https://arxiv.org/abs/2107.13586 |
| [pdf] | https://arxiv.org/abs/2105.10311 |
| [pdf] | https://arxiv.org/abs/2105.00824 |
| [pdf] | https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9328413 |
| [pdf] | https://www.sciencedirect.com/science/article/pii/S1319157820303554 |
| [pdf] | https://arxiv.org/abs/2011.04843 |
| [pdf] | https://www.semanticscholar.org/paper/Deep-Learning-Based-Abstractive-Text-Summarization%3A-Suleiman-Awajan/b7da726c244287748575ef404009609afde45bea |
| [pdf] | https://arxiv.org/abs/2010.04389 |
| [pdf] | https://arxiv.org/abs/2005.04684 |
| [pdf] | https://arxiv.org/abs/1812.02303 |
| [pdf] | https://arxiv.org/abs/1804.04589 |
| [pdf] | https://arxiv.org/abs/1706.08162 |
| [pdf] | https://arxiv.org/abs/1704.03242 |
| [pdf] | https://arxiv.org/abs/1707.02268 |
| [pdf] | https://link.springer.com/article/10.1007/s10462-016-9475-9 |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#toolkit |
| [pdf] | https://arxiv.org/abs/2210.09587 |
| [demo] | https://tldr.demo.webis.de/summarize |
| [pdf] | https://arxiv.org/abs/2109.11621 |
| [demo] | https://biu-nlp.github.io/iFACETSUM/WebApp/client/ |
| [pdf] | https://arxiv.org/abs/2108.12738 |
| [Demo] | https://github.com/Yale-LILY/SummerTime |
| [pdf] | https://arxiv.org/abs/2108.01879 |
| [web] | https://tldr.webis.de/ |
| [code] | https://github.com/fastnlp/fastSum |
| [code] | https://github.com/graph4ai/graph4nlp |
| [summarization] | https://github.com/graph4ai/graph4nlp/tree/master/examples/pytorch/summarization |
| [pdf] | https://arxiv.org/abs/2012.04281 |
| [code] | https://github.com/hyunwoongko/summarizers |
| [pdf] | https://www.aclweb.org/anthology/W18-1817.pdf |
| [code] | https://github.com/OpenNMT/OpenNMT-py |
| [code] | https://github.com/pytorch/fairseq |
| [pdf] | https://www.aclweb.org/anthology/N19-4012/ |
| [code] | https://github.com/tshi04/LeafNATS |
| [code] | https://github.com/HHousen/TransformerSum |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#analysis |
| https://camo.githubusercontent.com/b4b8d220c41cc3ac4cbb3ef85d7c4bbdb5a11886bd646085a3161b17c66ad1ad/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f416e616c797369732d616e616c797369732d726564 |
| https://camo.githubusercontent.com/bde0c9611477eb9f4b530c20da4cba30f4027361be4f551e38c7af1d6b9782d7/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4d6574612532304576616c756174696f6e2d6576616c756174696f6e2d627269676874677265656e |
| https://camo.githubusercontent.com/450d3781ac1a8db4a365b55dcdad629678b87cc066059792a353f39c79964993/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f426961732d626961732d6f72616e6765 |
| https://camo.githubusercontent.com/4bae9682af42aee662f0fe4ab554c5c45fc6dc9c531dd93e08aa6fc4cb57c11b/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f4172636869746563747572652d6172636869746563747572652d626c7565 |
| [pdf] | https://aclanthology.org/2022.emnlp-main.694/ |
| [code] | https://github.com/raymondzmc/Attention-Pattern-Exploitation |
| [pdf] | https://arxiv.org/abs/2210.14606 |
| [pdf] | https://arxiv.org/abs/2203.15721 |
| https://arxiv.org/abs/2110.08370 | https://arxiv.org/abs/2110.08370 |
| [pdf] | https://arxiv.org/abs/2109.08129 |
| [pdf] | https://arxiv.org/abs/2106.11388 |
| [code] | https://github.com/priyamtejaswin/howwelldoyouknow |
| [pdf] | https://aclanthology.org/2021.acl-long.539/ |
| [code] | https://github.com/jiacheng-xu/sum-interpret |
| [pdf] | https://arxiv.org/abs/2106.01581 |
| [code] | https://github.com/mwilbz/pointer-generator-analysis |
| [pdf] | https://arxiv.org/abs/2012.07619 |
| [pdf] | https://www.aclweb.org/anthology/2020.emnlp-main.649/ |
| https://camo.githubusercontent.com/87b60393e5b05b455218f8c2f7b89fbb204061853de0b4ffe0e045cab47d0064/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d616e616c797369732d726564 |
| [pdf] | https://arxiv.org/abs/2011.04096 |
| [code] | https://github.com/manikbhandari/RevisitSummEvalMetrics |
| https://camo.githubusercontent.com/87b60393e5b05b455218f8c2f7b89fbb204061853de0b4ffe0e045cab47d0064/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d616e616c797369732d726564 |
| [pdf] | https://arxiv.org/abs/2004.02664 |
| https://camo.githubusercontent.com/87b60393e5b05b455218f8c2f7b89fbb204061853de0b4ffe0e045cab47d0064/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d616e616c797369732d726564 |
| [pdf] | https://www.aclweb.org/anthology/2020.findings-emnlp.254/ |
| https://camo.githubusercontent.com/87b60393e5b05b455218f8c2f7b89fbb204061853de0b4ffe0e045cab47d0064/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d616e616c797369732d726564 |
| [pdf] | https://arxiv.org/abs/2010.12495 |
| [code] | https://github.com/CogComp/content-analysis-experiments |
| https://camo.githubusercontent.com/87b60393e5b05b455218f8c2f7b89fbb204061853de0b4ffe0e045cab47d0064/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d616e616c797369732d726564 |
| [pdf] | https://arxiv.org/abs/2010.07882 |
| [code] | https://github.com/jiacheng-xu/text-sum-uncertainty |
| https://camo.githubusercontent.com/87b60393e5b05b455218f8c2f7b89fbb204061853de0b4ffe0e045cab47d0064/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d616e616c797369732d726564 |
| [pdf] | https://arxiv.org/abs/2010.07100 |
| [code] | https://github.com/neulab/REALSumm |
| https://camo.githubusercontent.com/24cd0b763396c976c32ddb3c711fa1b724f09ff1174f5cd0ef8d9f4868e31cfe/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6576616c756174696f6e2d627269676874677265656e |
| [pdf] | https://arxiv.org/abs/2010.05139 |
| [code] | https://github.com/zide05/CDEvalSumm |
| https://camo.githubusercontent.com/24cd0b763396c976c32ddb3c711fa1b724f09ff1174f5cd0ef8d9f4868e31cfe/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6576616c756174696f6e2d627269676874677265656e |
| [pdf] | https://arxiv.org/abs/2010.04529 |
| https://camo.githubusercontent.com/87b60393e5b05b455218f8c2f7b89fbb204061853de0b4ffe0e045cab47d0064/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d616e616c797369732d726564 |
| [pdf] | https://arxiv.org/abs/2004.13983 |
| https://camo.githubusercontent.com/c77f9f4db06a35c0933ce7c0ac7c137545b324e7495a1aef0812b3738608b3a8/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d626961732d6f72616e6765 |
| [pdf] | https://arxiv.org/abs/2004.08795 |
| [code] | https://github.com/maszhongming/MatchSum |
| https://camo.githubusercontent.com/3ae519308d8e5033e78534d879a0848e7f2ca20019d6bd01f8072962b71179cb/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6172636869746563747572652d626c7565 |
| https://camo.githubusercontent.com/c77f9f4db06a35c0933ce7c0ac7c137545b324e7495a1aef0812b3738608b3a8/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d626961732d6f72616e6765 |
| [pdf] | https://www.aclweb.org/anthology/D19-1051/ |
| https://camo.githubusercontent.com/87b60393e5b05b455218f8c2f7b89fbb204061853de0b4ffe0e045cab47d0064/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d616e616c797369732d726564 |
| [pdf] | https://arxiv.org/abs/1908.11723 |
| [code] | https://github.com/dykang/biassum |
| https://camo.githubusercontent.com/c77f9f4db06a35c0933ce7c0ac7c137545b324e7495a1aef0812b3738608b3a8/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d626961732d6f72616e6765 |
| [pdf] | https://arxiv.org/abs/1909.13705 |
| https://camo.githubusercontent.com/c77f9f4db06a35c0933ce7c0ac7c137545b324e7495a1aef0812b3738608b3a8/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d626961732d6f72616e6765 |
| [pdf] | https://arxiv.org/abs/1909.04028 |
| https://camo.githubusercontent.com/c77f9f4db06a35c0933ce7c0ac7c137545b324e7495a1aef0812b3738608b3a8/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d626961732d6f72616e6765 |
| [pdf] | https://arxiv.org/abs/1907.03491 |
| [code] | https://github.com/maszhongming/Effective_Extractive_Summarization |
| https://camo.githubusercontent.com/3ae519308d8e5033e78534d879a0848e7f2ca20019d6bd01f8072962b71179cb/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6172636869746563747572652d626c7565 |
| [pdf] | https://www.aclweb.org/anthology/D18-1208/ |
| [code] | https://github.com/kedz/nnsum/tree/emnlp18-release |
| https://camo.githubusercontent.com/3ae519308d8e5033e78534d879a0848e7f2ca20019d6bd01f8072962b71179cb/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6172636869746563747572652d626c7565 |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#thesis |
| [pdf] | https://tuprints.ulb.tu-darmstadt.de/9012/ |
| [pdf] | http://lipiji.com/docs/thesis.pdf |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#theory |
| [pdf] | https://arxiv.org/abs/2110.04480 |
| [pdf] | https://arxiv.org/abs/2104.07210 |
| [code] | https://github.com/yixinL7/Refactoring-Summarization |
| [pdf] | https://tuprints.ulb.tu-darmstadt.de/9012/ |
| https://camo.githubusercontent.com/5199d3ed889691d2e966bff4a297386114af3e10aa8f7378b2ac84e08f13a10a/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d7468657369732d726564 |
| [pdf] | https://arxiv.org/abs/2010.06213 |
| [code] | https://github.com/epfl-dlab/KLearn |
| [pdf] | https://www.aclweb.org/anthology/P19-1101/ |
| [pdf] | https://arxiv.org/abs/1909.07405 |
| [code] | https://github.com/peterwestuw/BottleSum |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#dataset |
| CNN-DailyMail | https://github.com/harvardnlp/sent-summary |
| Abstractive Text Summarization using Sequence-to-sequence RNNs and Beyond | https://www.aclweb.org/anthology/K16-1028/ |
| New York Times | https://catalog.ldc.upenn.edu/LDC2008T19 |
| The New York Times Annotated Corpus | https://catalog.ldc.upenn.edu/LDC2008T19 |
| DUC | https://duc.nist.gov/data.html |
| The Effects Of Human Variation In DUC Summarization Evaluation | https://www.aclweb.org/anthology/W04-1003/ |
| Gigaword | https://github.com/harvardnlp/sent-summary |
| A Neural Attention Model For Abstractive Sentence Summarization | https://arxiv.org/abs/1509.00685 |
| Newsroom | http://lil.nlp.cornell.edu/newsroom/ |
| Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies | https://www.aclweb.org/anthology/N18-1065 |
| Xsum | https://github.com/EdinburghNLP/XSum |
| Don’t Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization | https://www.aclweb.org/anthology/D18-1206/ |
| Multi-News | https://github.com/Alex-Fabbri/Multi-News |
| Multi-News: a Large-Scale Multi-Document Summarization Dataset and Abstractive Hierarchical Model | https://arxiv.org/abs/1906.01749 |
| SAMSum | https://arxiv.org/abs/1911.12237 |
| SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization | https://arxiv.org/abs/1911.12237 |
| AMI | http://groups.inf.ed.ac.uk/ami/download/ |
| The AMI Meeting Corpus: A pre-announcement. | http://groups.inf.ed.ac.uk/ami/download/ |
| ICSI | http://groups.inf.ed.ac.uk/ami/icsi/download/ |
| The ICSI Meeting Corpus | http://groups.inf.ed.ac.uk/ami/icsi/ |
| MSMO | http://www.nlpr.ia.ac.cn/cip/jjzhang.htm |
| MSMO: Multimodal Summarization with Multimodal Output | https://www.aclweb.org/anthology/D18-1448/ |
| How2 | https://github.com/srvk/how2-dataset |
| How2: A Large-scale Dataset for Multimodal Language Understanding | https://arxiv.org/abs/1811.00347 |
| ScisummNet | https://cs.stanford.edu/~myasu/projects/scisumm_net/ |
| ScisummNet: A Large Annotated Corpus and Content-Impact Models for Scientific Paper Summarization with Citation Networks | https://arxiv.org/abs/1909.01716 |
| PubMed, ArXiv | https://github.com/armancohan/long-summarization |
| A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents | https://arxiv.org/abs/1804.05685 |
| TALKSUMM | https://github.com/levguy/talksumm |
| TALKSUMM: A Dataset and Scalable Annotation Method for Scientific Paper Summarization Based on Conference Talks | https://www.aclweb.org/anthology/P19-1204/ |
| BillSum | https://github.com/FiscalNote/BillSum |
| BillSum: A Corpus for Automatic Summarization of US Legislation | https://www.aclweb.org/anthology/D19-5406/ |
| LCSTS | http://icrc.hitsz.edu.cn/Article/show/139.html |
| https://camo.githubusercontent.com/b03277bfadaa193d7391a74767f590e8a5e66158b8b15a084e425b5cb32db4e3/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d4368696e6573652d6f72616e6765 |
| LCSTS: A Large Scale Chinese Short Text Summarization Dataset | https://www.aclweb.org/anthology/D15-1229/ |
| WikiHow | https://github.com/mahnazkoupaee/WikiHow-Dataset |
| WikiHow: A Large Scale Text Summarization Dataset | https://arxiv.org/abs/1810.09305 |
| Concept-map-based MDS Corpus | https://github.com/UKPLab/emnlp2017-cmapsum-corpus/ |
| Bringing Structure into Summaries : Crowdsourcing a Benchmark Corpus of Concept Maps | https://www.aclweb.org/anthology/D17-1320/ |
| WikiSum | https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/data_generators/wikisum |
| Generating Wikipedia By Summarizing Long Sequence | https://arxiv.org/abs/1801.10198 |
| GameWikiSum | https://github.com/Diego999/GameWikiSum |
| GameWikiSum : a Novel Large Multi-Document Summarization Dataset | https://arxiv.org/abs/2002.06851 |
| En2Zh CLS, Zh2En CLS | http://www.nlpr.ia.ac.cn/cip/dataset.htm |
| https://camo.githubusercontent.com/b03277bfadaa193d7391a74767f590e8a5e66158b8b15a084e425b5cb32db4e3/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d4368696e6573652d6f72616e6765 |
| NCLS: Neural Cross-Lingual Summarization | https://arxiv.org/abs/1909.00156 |
| Timeline Summarization Dataset | https://github.com/yingtaomj/Learning-towards-Abstractive-Timeline-Summarization |
| Learning towards Abstractive Timeline Summarization | https://www.ijcai.org/Proceedings/2019/686 |
| Reddit TIFU | https://github.com/ctr4si/MMN |
| Abstractive Summarization of Reddit Posts with Multi-level Memory Networks | https://arxiv.org/abs/1811.00783 |
| TripAtt | https://github.com/Junjieli0704/ASN |
| Attribute-aware Sequence Network for Review Summarization | https://www.aclweb.org/anthology/D19-1297/ |
| Reader Comments Summarization Corpus | https://drive.google.com/file/d/1_YH5cBtvNnUNJjGj7kiTMjuHydBqWYQT/view?usp=drive_open |
| Abstractive Text Summarization by Incorporating Reader Comments | https://arxiv.org/abs/1812.05407 |
| BIGPATENT | https://evasharma.github.io/bigpatent/ |
| BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization | https://arxiv.org/abs/1906.03741 |
| Curation Corpus | https://github.com/CurationCorp/curation-corpus |
| Curation Corpus for Abstractive Text Summarisation | https://github.com/CurationCorp/curation-corpus |
| MATINF | https://github.com/WHUIR/MATINF |
| https://camo.githubusercontent.com/b03277bfadaa193d7391a74767f590e8a5e66158b8b15a084e425b5cb32db4e3/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d4368696e6573652d6f72616e6765 |
| MATINF: A Jointly Labeled Large-Scale Dataset for Classification, Question Answering and Summarization | https://arxiv.org/abs/2004.12302 |
| MLSUM | https://github.com/recitalAI/MLSUM |
| MLSUM: The Multilingual Summarization Corpus | https://arxiv.org/abs/2004.14900 |
| Using Summarization to Discover Argument Facets in Online Idealogical Dialog | https://www.aclweb.org/anthology/N15-1046/ |
| WCEP | https://github.com/complementizer/wcep-mds-dataset |
| A Large-Scale Multi-Document Summarization Dataset from the Wikipedia Current Events Portal | https://arxiv.org/abs/2005.10070 |
| ArgKP | https://www.research.ibm.com/haifa/dept/vst/debating_data.shtml |
| From Arguments to Key Points: Towards Automatic Argument Summarization | https://arxiv.org/abs/2005.01619 |
| CRD3 | https://github.com/RevanthRameshkumar/CRD3 |
| Storytelling with Dialogue: A Critical Role Dungeons and Dragons Dataset | https://www.aclweb.org/anthology/2020.acl-main.459/ |
| Gazeta | https://github.com/IlyaGusev/gazeta |
| Dataset for Automatic Summarization of Russian News | https://arxiv.org/abs/2006.11063 |
| MIND | https://msnews.github.io/ |
| MIND: A Large-scale Dataset for News Recommendation | https://www.aclweb.org/anthology/2020.acl-main.331/ |
| public_meetings | https://github.com/pltrdy/autoalign |
| Align then Summarize: Automatic Alignment Methods for Summarization Corpus Creation | https://www.aclweb.org/anthology/2020.lrec-1.829 |
| Building a Dataset for Summarization and Keyword Extraction from Emails | https://www.aclweb.org/anthology/L14-1028/ |
| BC3 | https://www.cs.ubc.ca/cs-research/lci/research-groups/natural-language-processing/bc3.html |
| A publicly available annotated corpus for supervised email summarization | https://www.ufv.ca/media/assets/computer-information-systems/gabriel-murray/publications/aaai08.pdf |
| WikiLingua | https://github.com/esdurmus/Wikilingua |
| https://camo.githubusercontent.com/b03277bfadaa193d7391a74767f590e8a5e66158b8b15a084e425b5cb32db4e3/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d4368696e6573652d6f72616e6765 |
| WikiLingua- A New Benchmark Dataset for Cross-Lingual Abstractive Summarization | https://arxiv.org/abs/2010.03093 |
| LcsPIRT | http://eie.usts.edu.cn/prj/NLPoSUST/LcsPIRT.htm |
| https://camo.githubusercontent.com/b03277bfadaa193d7391a74767f590e8a5e66158b8b15a084e425b5cb32db4e3/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d4368696e6573652d6f72616e6765 |
| Global Encoding for Long Chinese Text Summarization | https://dl.acm.org/doi/10.1145/3407911 |
| CLTS | https://github.com/lxj5957/CLTS-Dataset |
| CLTS-plus | https://github.com/lxj5957/CLTS-plus-Dataset |
| https://camo.githubusercontent.com/b03277bfadaa193d7391a74767f590e8a5e66158b8b15a084e425b5cb32db4e3/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d4368696e6573652d6f72616e6765 |
| CLTS: A New Chinese Long Text Summarization Dataset | https://link.springer.com/chapter/10.1007/978-3-030-60450-9_42 |
| CLTS+: A New Chinese Long Text Summarization Dataset with Abstractive Summaries | https://arxiv.org/abs/2206.04253 |
| VMSMO | https://github.com/yingtaomj/VMSMO |
| VMSMO: Learning to Generate Multimodal Summary for Video-based News Articles | https://arxiv.org/abs/2010.05406 |
| Multi-XScience | https://github.com/yaolu/Multi-XScience |
| Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles | https://arxiv.org/abs/2010.14235 |
| SCITLDR | https://github.com/allenai/scitldr |
| TLDR: Extreme Summarization of Scientific Documents | https://arxiv.org/abs/2004.15011 |
| scisumm-corpus | https://github.com/WING-NUS/scisumm-corpus |
| QBSUM | https://www.dropbox.com/sh/t2cp7ml1kb8ako0/AADmS2RMfJvLbukyQbb08CGGa?dl=0 |
| https://camo.githubusercontent.com/b03277bfadaa193d7391a74767f590e8a5e66158b8b15a084e425b5cb32db4e3/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d4368696e6573652d6f72616e6765 |
| QBSUM: a Large-Scale Query-Based Document Summarization Dataset from Real-world Applications | https://arxiv.org/abs/2010.14108 |
| qMDS | https://github.com/google-research-datasets/aquamuse |
| AQuaMuSe: Automatically Generating Datasets for Query-Based Multi-Document Summarization | https://arxiv.org/abs/2010.12694 |
| Liputan6 | https://github.com/fajri91/sum_liputan6 |
| Liputan6: A Large-scale Indonesian Dataset for Text Summarization | https://arxiv.org/pdf/2011.00679.pdf |
| SportsSum | https://github.com/ej0cl6/SportsSum |
| https://camo.githubusercontent.com/b03277bfadaa193d7391a74767f590e8a5e66158b8b15a084e425b5cb32db4e3/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d4368696e6573652d6f72616e6765 |
| Generating Sports News from Live Commentary: A Chinese Dataset for Sports Game Summarization | https://khhuang.me/docs/aacl2020sportssum.pdf |
| WikiAsp | https://github.com/neulab/wikiasp |
| WikiAsp: A Dataset for Multi-domain Aspect-based Summarization | https://arxiv.org/abs/2011.07832 |
| DebateSum | https://github.com/Hellisotherpeople/DebateSum |
| https://camo.githubusercontent.com/4ab8b96f8390282b76d19bdc52fa3b0b9331ef3722eea5b7de251d0a06ace40f/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d5175657279253230466f63757365642d707572706c65 |
| DebateSum:A large-scale argument mining and summarization dataset | https://arxiv.org/abs/2011.07251 |
| Open4Business | https://github.com/amanpreet692/Open4Business |
| Open4Business (O4B): An Open Access Dataset for Summarizing Business Documents | https://arxiv.org/abs/2011.07636 |
| OrangeSum | https://github.com/moussaKam/OrangeSum |
| BARThez: a Skilled Pretrained French Sequence-to-Sequence Model | https://arxiv.org/abs/2010.12321 |
| Medical Conversation | https://github.com/cuhksz-nlp/HET-MC |
| https://camo.githubusercontent.com/b03277bfadaa193d7391a74767f590e8a5e66158b8b15a084e425b5cb32db4e3/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d4368696e6573652d6f72616e6765 |
| Summarizing Medical Conversations via Identifying Important Utterances | https://www.aclweb.org/anthology/2020.coling-main.63/ |
| SumTitles | https://github.com/huawei-noah/sumtitles |
| SumTitles: a Summarization Dataset with Low Extractiveness | https://www.aclweb.org/anthology/2020.coling-main.503/ |
| BANS | https://www.kaggle.com/datasets/prithwirajsust/bengali-news-summarization-dataset |
| Bengali Abstractive News Summarization (BANS): A Neural Attention Approach | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main |
| e-commerce | https://github.com/ypnlp/coling |
| https://camo.githubusercontent.com/b03277bfadaa193d7391a74767f590e8a5e66158b8b15a084e425b5cb32db4e3/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d4368696e6573652d6f72616e6765 |
| On the Faithfulness for E-commerce Product Summarization | https://www.aclweb.org/anthology/2020.coling-main.502/ |
| TWEETSUM | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main |
| TWEETSUM: Event-oriented Social Summarization Dataset | https://www.aclweb.org/anthology/2020.coling-main.504/ |
| SPACE | https://github.com/stangelid/qt |
| Extractive Opinion Summarization in Quantized Transformer Spaces | https://arxiv.org/abs/2012.04443 |
| pn-summary | https://github.com/hooshvare/pn-summary |
| Leveraging ParsBERT and Pretrained mT5 for Persian Abstractive Text Summarization | https://arxiv.org/abs/2012.11204 |
| E-commerce1 | https://github.com/RowitZou/topic-dialog-summ |
| Topic-Oriented Spoken Dialogue Summarization for Customer Service with Saliency-Aware Topic Modeling | https://arxiv.org/abs/2012.07311 |
| E-commerce2 | https://github.com/RowitZou/RankAE |
| Unsupervised Summarization for Chat Logs with Topic-Oriented Ranking and Context-Aware Auto-Encoders | https://arxiv.org/abs/2012.07300 |
| BengaliSummarization | https://github.com/tafseer-nayeem/BengaliSummarization |
| Unsupervised Abstractive Summarization of Bengali Text Documents | https://arxiv.org/abs/2102.04490 |
| MediaSum | https://github.com/zcgzcgzcg1/MediaSum |
| MediaSum: A Large-scale Media Interview Dataset for Dialogue Summarization | https://arxiv.org/abs/2103.06410 |
| Healthline and BreastCancer | https://github.com/darsh10/Nutribullets |
| Nutri-bullets: Summarizing Health Studies by Composing Segments | https://arxiv.org/abs/2103.11921 |
| GOVREPORT | https://gov-report-data.github.io/ |
| Efficient Attentions for Long Document Summarization | https://arxiv.org/abs/2104.02112 |
| SSN | https://github.com/ChenxinAn-fdu/CGSum |
| Enhancing Scientific Papers Summarization with Citation Graph | https://arxiv.org/abs/2104.03057 |
| MTSamples | https://github.com/babylonhealth/medical-note-summarisation |
| Towards objectively evaluating the quality of generated medical summaries | https://arxiv.org/abs/2104.04412 |
| QMSum | https://github.com/Yale-LILY/QMSum |
| QMSum: A New Benchmark for Query-based Multi-domain Meeting Summarization | https://arxiv.org/abs/2104.05938 |
| MS2 | https://github.com/allenai/ms2 |
| MS2: Multi-Document Summarization of Medical Studies | https://arxiv.org/abs/2104.06486 |
| SummScreen | https://github.com/mingdachen/SummScreen |
| SummScreen: A Dataset for Abstractive Screenplay Summarization | https://aclanthology.org/2022.acl-long.589/ |
| SciDuet | https://github.com/IBM/document2slides |
| D2S: Document-to-Slide Generation Via Query-Based Text Summarization | https://github.com/IBM/document2slides |
| MultiHumES | https://deephelp.zendesk.com/hc/en-us/sections/360011925552-MultiHumES |
| MultiHumES: Multilingual Humanitarian Dataset for Extractive Summarization | https://www.aclweb.org/anthology/2021.eacl-main.146/ |
| DialSumm | https://github.com/cylnlp/DialSumm |
| DialSumm: A Real-Life Scenario Dialogue Summarization Dataset | https://arxiv.org/abs/2105.06762 |
| BookSum | https://github.com/salesforce/booksum |
| BookSum: A Collection of Datasets for Long-form Narrative Summarization | https://arxiv.org/abs/2105.08209 |
| CLES | http://icrc.hitsz.edu.cn/xszy/yjzy.htm |
| https://camo.githubusercontent.com/b03277bfadaa193d7391a74767f590e8a5e66158b8b15a084e425b5cb32db4e3/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d4368696e6573652d6f72616e6765 |
| A Large-Scale Chinese Long-Text Extractive Summarization Corpus | https://ieeexplore.ieee.org/abstract/document/9414946 |
| FacetSum | https://github.com/hfthair/emerald_crawler |
| Bringing Structure into Summaries: a Faceted Summarization Dataset for Long Scientific Documents | https://aclanthology.org/2021.acl-short.137/ |
| ConvoSumm | https://github.com/Yale-LILY/ConvoSumm |
| ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive Summarization with Argument Mining | https://aclanthology.org/2021.acl-long.535/ |
| AgreeSum | https://github.com/google-research-datasets/AgreeSum |
| AgreeSum: Agreement-Oriented Multi-Document Summarization | https://arxiv.org/abs/2106.02278 |
| En2De | https://github.com/ybai-nlp/MCLAS |
| Cross-Lingual Abstractive Summarization with Limited Parallel Resources | https://arxiv.org/abs/2105.13648 |
| VT-SSum | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main |
| VT-SSum: A Benchmark Dataset for Video Transcript Segmentation and Summarization | https://arxiv.org/abs/2106.05606 |
| AESLC | https://github.com/ryanzhumich/AESLC |
| This Email Could Save Your Life: Introducing the Task of Email Subject Line Generation | https://www.aclweb.org/anthology/P19-1043/ |
| XL-Sum | https://github.com/csebuetnlp/xl-sum |
| XL-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages | http://rifatshahriyar.github.io/files/XL-Sum.pdf |
| TES 2012-2016 | https://github.com/JoeBloggsIR/TSSuBERT |
| TSSuBERT: Tweet Stream Summarization Using BERT | https://arxiv.org/abs/2106.08770 |
| PENS | https://msnews.github.io/pens.html |
| PENS: A Dataset and Generic Framework for Personalized News Headline Generation | https://www.microsoft.com/en-us/research/uploads/prod/2021/06/ACL2021_PENS_Camera_Ready_1862_Paper.pdf |
| XSum Hallucination Annotations | https://github.com/google-research-datasets/xsum_hallucination_annotations |
| On Faithfulness and Factuality in Abstractive Summarization | https://arxiv.org/abs/2005.00661 |
| factuality-datasets | https://github.com/tagoyal/factuality-datasets#factuality-datasets |
| Annotating and Modeling Fine-grained Factuality in Summarization | https://arxiv.org/abs/2104.04302 |
| frank | https://github.com/artidoro/frank |
| Understanding Factuality in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics | https://arxiv.org/abs/2104.13346 |
| TRIPOD | https://github.com/ppapalampidi/GraphTP |
| Movie Summarization via Sparse Graph Construction | https://arxiv.org/abs/2012.07536 |
| AdaptSum | https://github.com/TysonYu/AdaptSum |
| AdaptSum: Towards Low-Resource Domain Adaptation for Abstractive Summarization | https://arxiv.org/abs/2103.11332 |
| PTS | https://github.com/FeiSun/ProductTitleSummarizationCorpus |
| Multi-Source Pointer Network for Product Title Summarization | https://arxiv.org/abs/1808.06885 |
| RAMDS | https://github.com/lipiji/vae-salience-ramds |
| Reader-Aware Multi-Document Summarization: An Enhanced Model and The First Dataset | https://arxiv.org/abs/1708.01065 |
| court judgment | https://github.com/gsh199449/proto-summ |
| How to Write Summaries with Patterns? Learning towards Abstractive Summarization through Prototype Editing | https://arxiv.org/abs/1909.08837 |
| ADEGBTS | https://github.com/MMLabTHUSZ/ADEGBTS |
| A Dataset for Exploring Gaze Behaviors in Text Summarization | https://dl.acm.org/doi/abs/10.1145/3339825.3394928 |
| MeQSum | https://github.com/abachaa/MeQSum |
| On the Summarization of Consumer Health Questions | https://www.aclweb.org/anthology/P19-1215/ |
| OpoSum | https://github.com/stangelid/oposum |
| Summarizing Opinions: Aspect Extraction Meets Sentiment Prediction and They Are Both Weakly Supervised | https://www.aclweb.org/anthology/D18-1403/ |
| MM-AVS | https://github.com/xiyan524/MM-AVS |
| Multi-modal Summarization for Video-containing Documents | https://arxiv.org/abs/2009.08018 |
| WikiCatSum | https://github.com/lauhaide/WikiCatSum |
| Generating Summaries with Topic Templates and Structured Convolutional Decoders | https://arxiv.org/abs/1906.04687 |
| SDF-TLS | https://github.com/MorenoLaQuatra/SDF-TLS |
| Summarize Dates First: A Paradigm Shift in Timeline Summarization | https://dl.acm.org/doi/10.1145/3404835.3462954 |
| RWS-Cit | https://github.com/jingqiangchen/RWS-Cit |
| *Automatic generation of related work through summarizing citations | https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.4261 |
| MTLS | https://yiyualt.github.io/mtlsdata/ |
| Multi-TimeLine Summarization (MTLS): Improving Timeline Summarization by Generating Multiple Summaries | https://aclanthology.org/2021.acl-long.32/ |
| EMAILSUM | https://github.com/ZhangShiyue/EmailSum |
| EmailSum: Abstractive Email Thread Summarization | https://aclanthology.org/2021.acl-long.537/ |
| WikiSum | https://registry.opendata.aws/wikisum/ |
| WikiSum: Coherent Summarization Dataset for Efficient Human-Evaluation | https://aclanthology.org/2021.acl-short.28/ |
| SumPubMed | https://github.com/vgupta123/sumpubmed |
| SumPubMed: Summarization Dataset of PubMed Scientific Articles | https://aclanthology.org/2021.acl-srw.30/ |
| MLGSum | https://github.com/brxx122/CALMS |
| Contrastive Aligned Joint Learning for Multilingual Summarization | https://aclanthology.org/2021.findings-acl.242/ |
| SMARTPHONE,COMPUTER | https://github.com/JD-AI-Research-NLP/CUSTOM |
| CUSTOM: Aspect-Oriented Product Summarization for E-Commerce | https://arxiv.org/abs/2108.08010 |
| CSDS | https://github.com/xiaolinAndy/CSDS |
| CSDS: A Fine-grained Chinese Dataset for Customer Service Dialogue Summarization | https://arxiv.org/abs/2108.13139 |
| persian-dataset | https://github.com/mohammadiahmad/persian-dataset |
| ARMAN: Pre-training with Semantically Selecting and Reordering of Sentences for Persian Abstractive Summarization | https://arxiv.org/abs/2109.04098 |
| StreamHover | https://github.com/ucfnlp/streamhover |
| StreamHover: Livestream Transcript Summarization and Annotation | https://arxiv.org/abs/2109.05160 |
| CNewSum | https://dqwang122.github.io/projects/CNewSum/ |
| https://camo.githubusercontent.com/b03277bfadaa193d7391a74767f590e8a5e66158b8b15a084e425b5cb32db4e3/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d4368696e6573652d6f72616e6765 |
| CNewSum: A Large-scale Chinese News Summarization Dataset with Human-annotated Adequacy and Deducibility Level | https://lileicc.github.io/pubs/wang2021cnewsum.pdf |
| MiRANews | https://github.com/XinnuoXu/MiRANews |
| MiRANews: Dataset and Benchmarks for Multi-Resource-Assisted News Summarization | https://arxiv.org/abs/2109.10650 |
| HowSumm | https://github.com/odelliab/HowSumm |
| HowSumm: A Multi-Document Summarization Dataset Derived from WikiHow Articles | https://arxiv.org/abs/2110.03179 |
| SportsSum2.0 | https://github.com/krystalan/SportsSum2.0 |
| SportsSum2.0: Generating High-Quality Sports News from Live Text Commentary | https://arxiv.org/abs/2110.05750 |
| CoCoSum | https://github.com/megagonlabs/cocosum |
| Comparative Opinion Summarization via Collaborative Decoding | https://arxiv.org/abs/2110.07520 |
| MReD | https://github.com/Shen-Chenhui/MReD/ |
| MReD: A Meta-Review Dataset for Controllable Text Generation | https://arxiv.org/abs/2110.07474 |
| MSˆ2 | https://github.com/allenai/ms2 |
| MSˆ2: Multi-Document Summarization of Medical Studies | https://aclanthology.org/2021.emnlp-main.594/ |
| MassiveSumm | https://github.com/danielvarab/massive-summ |
| MassiveSumm: a very large-scale, very multilingual, news summarisation dataset | https://aclanthology.org/2021.emnlp-main.797/ |
| XWikis | https://github.com/lauhaide/clads |
| Models and Datasets for Cross-Lingual Summarisation | https://aclanthology.org/2021.emnlp-main.742/ |
| SUBSUME | https://github.com/afariha/SubSumE |
| SUBSUME: A Dataset for Subjective Summary Extraction from Wikipedia Documents | https://aclanthology.org/2021.newsum-1.14/ |
| TLDR9+ | https://github.com/sajastu/reddit_collector |
| TLDR9+: A Large Scale Resource for Extreme Summarization of Social Media Posts | https://aclanthology.org/2021.newsum-1.15/ |
| 20 Minuten | https://github.com/ZurichNLP/20Minuten |
| A New Dataset and Efficient Baselines for Document-level Text Simplification in German | https://aclanthology.org/2021.newsum-1.16/ |
| WSD | https://github.com/MehwishFatimah/wsd |
| A Novel Wikipedia based Dataset for Monolingual and Cross-Lingual Summarization | https://aclanthology.org/2021.newsum-1.5/ |
| TEDSummary | https://github.com/nttcslab-sp-admin/TEDSummary |
| Attention-based Multi-hypothesis Fusion for Speech Summarization | https://arxiv.org/abs/2111.08201 |
| SummaC Benchmark | https://github.com/tingofurro/summac/ |
| SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization | https://arxiv.org/abs/2111.09525 |
| ForumSum | https://huggingface.co/datasets/forumsum |
| K-SportsSum | https://github.com/krystalan/K-SportsSum |
| Knowledge Enhanced Sports Game Summarization | https://arxiv.org/abs/2111.12535 |
| Test-Amazon | https://github.com/abrazinskas/Copycat-abstractive-opinion-summarizer |
| Unsupervised Opinion Summarization as Copycat-Review Generation | https://aclanthology.org/2020.acl-main.461/ |
| Test-Amazon-Yelp | https://github.com/abrazinskas/FewSum |
| Few-Shot Learning for Opinion Summarization | https://aclanthology.org/2020.emnlp-main.337/ |
| AmaSum | https://github.com/abrazinskas/SelSum |
| Learning Opinion Summarizers by Selecting Informative Reviews | https://aclanthology.org/2021.emnlp-main.743/ |
| CrossSum | https://github.com/csebuetnlp/CrossSum |
| CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs | https://arxiv.org/abs/2112.08804 |
| HCSCL-MSDataset | https://github.com/LitianD/HCSCL-MSDataset |
| Hierarchical Cross-Modality Semantic Correlation Learning Model for Multimodal Summarization | https://arxiv.org/abs/2112.12072 |
| Klexikon | https://github.com/dennlinger/klexikon |
| Klexikon: A German Dataset for Joint Summarization and Simplification | https://arxiv.org/abs/2201.07198 |
| TODSum | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main |
| TODSum: Task-Oriented Dialogue Summarization with State Tracking | https://arxiv.org/abs/2110.12680 |
| TWEETSUMM | https://aclanthology.org/2021.findings-emnlp.24/ |
| TWEETSUMM - A Dialog Summarization Dataset for Customer Service | https://aclanthology.org/2021.findings-emnlp.24/ |
| PeerSum | https://github.com/oaimli/PeerSum |
| PeerSum: A Peer Review Dataset for Abstractive Multi-document Summarization | https://arxiv.org/abs/2203.01769 |
| Celebrity TS, Event TS, Wiki TS | https://github.com/iriscxy/Unified-Timeline-Summarizer |
| Follow the Timeline! Generating Abstractive and Extractive Timeline Summary in Chronological Order | https://dl.acm.org/doi/abs/10.1145/3517221 |
| Chart-to-Text | https://github.com/vis-nlp/Chart-to-text |
| Chart-to-Text: A Large-Scale Benchmark for Chart Summarization | https://arxiv.org/abs/2203.06486 |
| GovReport-QS | https://gov-report-data.github.io/ |
| HIBRIDS: Attention with Hierarchical Biases for Structure-aware Long Document Summarization | https://arxiv.org/abs/2203.10741 |
| EntSUM | https://zenodo.org/record/6359875 |
| EntSUM: A Data Set for Entity-Centric Summarization | https://github.com/bloomberg/entsum |
| ALLSIDES | https://github.com/HLTCHKUST/framing-bias-metric |
| NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias | https://arxiv.org/abs/2204.04902 |
| GRAPHELSUMS | https://github.com/maartjeth/summarization_with_graphical_elements |
| Summarization with Graphical Elements | https://arxiv.org/abs/2204.07551 |
| Annotated-Wikilarge-Newsela | https://github.com/AshOlogn/Evaluating-Factuality-in-Text-Simplification |
| Evaluating Factuality in Text Simplification | https://arxiv.org/abs/2204.07562 |
| WikiMulti | https://github.com/tikhonovpavel/wikimulti |
| WikiMulti: a Corpus for Cross-Lingual Summarization | https://arxiv.org/abs/2204.11104 |
| Welsh | https://github.com/UCREL/welsh-summarization-dataset |
| Introducing the Welsh Text Summarisation Dataset and Baseline Systems | https://arxiv.org/abs/2205.02545 |
| SuMe | https://stonybrooknlp.github.io/SuMe/ |
| SuMe: A Dataset Towards Summarizing Biomedical Mechanisms | https://arxiv.org/abs/2205.04652 |
| CiteSum | https://github.com/morningmoni/CiteSum |
| CiteSum: Citation Text-guided Scientific Extreme Summarization and Low-resource Domain Adaptation | https://arxiv.org/abs/2205.06207 |
| MSAMSum | https://github.com/xcfcode/MSAMSum |
| MSAMSum: Towards Benchmarking Multi-lingual Dialogue Summarization | https://aclanthology.org/2022.dialdoc-1.1/ |
| SQuALITY | https://github.com/nyu-mll/SQuALITY |
| SQuALITY: Building a Long-Document Summarization Dataset the Hard Way | https://aclanthology.org/2022.emnlp-main.75/ |
| X-SCITLDR | https://github.com/sobamchan/xscitldr |
| X-SCITLDR: Cross-Lingual Extreme Summarization of Scholarly Documents | https://arxiv.org/abs/2205.15051 |
| NEWTS | https://github.com/ali-bahrainian/NEWTS |
| NEWTS: A Corpus for News Topic-Focused Summarization | https://arxiv.org/abs/2205.15661 |
| EntSUM | https://github.com/bloomberg/entsum |
| EntSUM: A Data Set for Entity-Centric Extractive Summarization | https://aclanthology.org/2022.acl-long.237/ |
| ASPECTNEWS | https://github.com/oja/aosumm |
| ASPECTNEWS: Aspect-Oriented Summarization of News Documents | https://aclanthology.org/2022.acl-long.449/ |
| RNSum | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main |
| RNSum: A Large-Scale Dataset for Automatic Release Note Generation via Commit Logs Summarization | https://aclanthology.org/2022.acl-long.597/ |
| AnswerSumm | https://github.com/Alex-Fabbri/AnswerSumm |
| AnswerSumm: A Manually-Curated Dataset and Pipeline for Answer Summarization | https://arxiv.org/abs/2111.06474 |
| CHQ-Summ | https://github.com/shwetanlp/Yahoo-CHQ-Summ |
| CHQ-Summ: A Dataset for Consumer Healthcare Question Summarization | https://arxiv.org/abs/2206.06581 |
| Multi-LexSum | https://github.com/multilexsum/dataset |
| Real-World Summaries of Civil Rights Lawsuits at Multiple Granularities | https://arxiv.org/abs/2206.10883 |
| DACSA | https://xarrador.dsic.upv.es/resources/dacsa |
| DACSA: A large-scale Dataset for Automatic summarization of Catalan and Spanish newspaper Articles | https://aclanthology.org/2022.naacl-main.434/ |
| BigSurvey | https://github.com/StevenLau6/BigSurvey |
| Generating a Structured Summary of Numerous Academic Papers: Dataset and Method | https://www.ijcai.org/proceedings/2022/0591.pdf |
| CSL | https://github.com/ydli-ai/CSL |
| https://camo.githubusercontent.com/b03277bfadaa193d7391a74767f590e8a5e66158b8b15a084e425b5cb32db4e3/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d4368696e6573652d6f72616e6765 |
| CSL: A Large-scale Chinese Scientific Literature Dataset | https://arxiv.org/abs/2209.05034 |
| PCC Summaries | https://github.com/fhewett/pcc-summaries |
| Extractive Summarisation for German-language Data: A Text-level Approach with Discourse Features | https://aclanthology.org/2022.coling-1.63/ |
| LipKey | https://github.com/fajri91/LipKey |
| LipKey: A Large-Scale News Dataset for Absent Keyphrases Generation and Abstractive Summarization | https://aclanthology.org/2022.coling-1.303/ |
| PLOS | https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation |
| Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature | https://arxiv.org/abs/2210.09932 |
| eLife | https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation |
| Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature | https://arxiv.org/abs/2210.09932 |
| ECTSum | https://github.com/rajdeep345/ECTSum |
| ECTSum: A New Benchmark Dataset For Bullet Point Summarization of Long Earnings Call Transcripts | https://arxiv.org/abs/2210.12467 |
| EUR-Lex-Sum | https://github.com/achouhan93/eur-lex-sum |
| EUR-Lex-Sum: A Multi- and Cross-lingual Dataset for Long-form Summarization in the Legal Domain | https://arxiv.org/abs/2210.13448 |
| CrisisLTLSum | https://github.com/CrisisLTLSum/CrisisTimelines |
| CrisisLTLSum: A Benchmark for Local Crisis Event Timeline Extraction and Summarization | https://arxiv.org/abs/2210.14190 |
| LANS: Large-scale Arabic News Summarization Corpus | https://arxiv.org/abs/2210.13600 |
| MACSUM | https://github.com/psunlpgroup/MACSum |
| MACSUM: Controllable Summarization with Mixed Attributes | https://arxiv.org/abs/2211.05041 |
| NarraSum | https://github.com/zhaochaocs/narrasum |
| NarraSum: A Large-Scale Dataset for Abstractive Narrative Summarization | https://arxiv.org/abs/2212.01476 |
| LoRaLay | https://github.com/recitalAI/loralay-datasets |
| LoRaLay: A Multilingual and Multimodal Dataset for Long Range and Layout-Aware Summarization | https://arxiv.org/abs/2301.11312 |
| HunSum-1 | https://github.com/dorinapetra/summarization |
| HunSum-1: an Abstractive Summarization Dataset for Hungarian | https://arxiv.org/abs/2302.00455 |
| MCLS | https://github.com/korokes/MCLS |
| Assist Non-native Viewers: Multimodal Cross-Lingual Summarization for How2 Videos | https://aclanthology.org/2022.emnlp-main.468/ |
| JDDC 2.1 | https://github.com/hrlinlp/jddc2.1 |
| JDDC 2.1: A Multimodal Chinese Dialogue Dataset with Joint Tasks of Query Rewriting, Response Generation, Discourse Parsing, and Summarization | https://aclanthology.org/2022.emnlp-main.825/ |
| CroCoSum | https://github.com/RosenZhang/CroCoSum |
| CroCoSum: A Benchmark Dataset for Cross-Lingual Code-Switched Summarization | https://arxiv.org/abs/2303.04092 |
| unarXive | https://github.com/IllDepence/unarXive |
| unarXive: a large scholarly data set with publications’ full-text, annotated in-text citations, and links to metadata | https://link.springer.com/article/10.1007/s11192-020-03382-z |
| TempoSum | https://github.com/AndyCheang/TempoSum |
| TempoSum: Evaluating the Temporal Generalization of Abstractive Summarization | https://arxiv.org/abs/2305.01951 |
| VCSUM | https://github.com/hahahawu/VCSum |
| VCSUM: A Versatile Chinese Meeting Summarization Dataset | https://arxiv.org/abs/2305.05280 |
| MeetingBank | https://meetingbank.github.io/ |
| MeetingBank: A Benchmark Dataset for Meeting Summarization | https://aclanthology.org/2023.acl-long.906/ |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#dialogue |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#dataset-1 |
| [pdf] | https://aclanthology.org/2023.acl-long.906/ |
| [data] | https://meetingbank.github.io/ |
| [pdf] | https://arxiv.org/abs/2210.12467 |
| [data] | https://github.com/rajdeep345/ECTSum |
| [pdf] | https://arxiv.org/abs/2110.12680 |
| [pdf] | https://aclanthology.org/2021.findings-emnlp.24/ |
| [data] | https://github.com/guyfe/Tweetsumm |
| [pdf] | https://aclanthology.org/2021.findings-emnlp.391/ |
| [data] | https://huggingface.co/datasets/forumsum |
| [pdf] | https://aclanthology.org/2021.emnlp-main.365/ |
| [data] | https://github.com/xiaolinAndy/CSDS |
| [pdf] | https://aclanthology.org/2021.acl-long.537/ |
| [data] | https://github.com/ZhangShiyue/EmailSum |
| [pdf] | https://arxiv.org/abs/2105.06762 |
| [data] | https://github.com/cylnlp/DialSumm |
| [pdf] | https://aclanthology.org/2021.acl-long.535/ |
| [code] | https://github.com/Yale-LILY/ConvoSumm |
| [pdf] | https://arxiv.org/abs/2103.06410 |
| [code] | https://github.com/zcgzcgzcg1/MediaSum |
| [pdf] | https://arxiv.org/abs/2104.05938 |
| [data] | https://github.com/Yale-LILY/QMSum |
| [pdf] | https://www.aclweb.org/anthology/2020.acl-main.459/ |
| [data] | https://github.com/RevanthRameshkumar/CRD3 |
| [pdf] | https://www.aclweb.org/anthology/2020.coling-main.503/ |
| [code] | https://github.com/huawei-noah/sumtitles |
| [pdf] | https://www.aclweb.org/anthology/2020.coling-main.63/ |
| [code] | https://github.com/cuhksz-nlp/HET-MC |
| [pdf] | https://aclanthology.org/2021.emnlp-main.499/ |
| [code] | https://github.com/midas-research/gupshup |
| [pdf] | https://aclanthology.org/2022.acl-long.589/ |
| [data] | https://github.com/mingdachen/SummScreen |
| [pdf] | https://arxiv.org/abs/1911.12237 |
| [data] | https://arxiv.org/src/1911.12237v2/anc/corpus.7z |
| [pdf] | https://arxiv.org/abs/1811.00185 |
| [pdf] | https://link.springer.com/chapter/10.1007/11677482_3 |
| [pdf] | https://www.researchgate.net/publication/4015071_The_ICSI_meeting_corpus |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#email-summarization |
| [pdf] | https://faculty.cc.gatech.edu/~dyang888/docs/acl22_summarization.pdf |
| [pdf] | https://aclanthology.org/2021.acl-long.537/ |
| [data] | https://github.com/ZhangShiyue/EmailSum |
| [pdf] | https://www.aclweb.org/anthology/2020.acl-main.767/ |
| [code] | https://github.com/MSR-LIT/SmartToDo |
| [bib] | https://www.aclweb.org/anthology/2020.acl-main.767.bib |
| [pdf] | https://www.aclweb.org/anthology/2020.aacl-main.32/ |
| [pdf] | https://www.aclweb.org/anthology/P19-1043/ |
| [data] | https://github.com/ryanzhumich/AESLC |
| [bib] | https://www.aclweb.org/anthology/P19-1043.bib |
| [pdf] | https://www.aclweb.org/anthology/L14-1028/ |
| [pdf] | https://www.aaai.org/Papers/Workshops/2008/WS-08-04/WS08-04-014.pdf |
| [pdf] | https://www2007.org/papers/paper631.pdf |
| [pdf] | https://www.aclweb.org/anthology/W04-1008.pdf |
| [pdf] | https://www.aclweb.org/anthology/N04-4027/ |
| [bib] | https://www.aclweb.org/anthology/N04-4027.bib |
| [pdf] | https://www.academia.edu/21603342/Facilitating_email_thread_access_by_extractive_summary_generation |
| [pdf] | http://john.blitzer.com/papers/iui.pdf |
| [pdf] | https://www.aclweb.org/anthology/W01-0719/ |
| [bib] | https://www.aclweb.org/anthology/W01-0719.bib |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#meeting-summarization |
| [pdf] | https://aclanthology.org/2023.findings-acl.538/ |
| [pdf] | https://aclanthology.org/2023.acl-long.731/ |
| [code] | https://github.com/hkim-etri/ExplainMeetSum |
| [pdf] | https://aclanthology.org/2023.findings-acl.377/ |
| [data] | https://github.com/hahahawu/VCSum |
| [pdf] | https://arxiv.org/abs/2303.04487 |
| [pdf] | https://arxiv.org/abs/2210.11374 |
| [demo] | https://www.youtube.com/watch?v=TG1pJJo0Iqo&feature=youtu.be |
| [pdf] | https://arxiv.org/abs/2209.06913 |
| [pdf] | https://arxiv.org/abs/2208.04163 |
| [pdf] | https://arxiv.org/abs/2205.05433 |
| [data] | https://github.com/ELITR/alignmeet |
| [pdf] | https://aclanthology.org/2022.findings-naacl.198/ |
| [pdf] | https://aclanthology.org/2022.acl-long.112/ |
| [code] | https://github.com/psunlpgroup/Summ-N |
| https://github.com/psunlpgroup/Summ-N | https://github.com/psunlpgroup/Summ-N |
| [pdf] | https://arxiv.org/abs/2112.07637 |
| [code] | https://github.com/salesforce/query-focused-sum |
| [pdf] | https://aclanthology.org/2021.findings-emnlp.97/ |
| [pdf] | https://arxiv.org/abs/2111.08210 |
| [code] | https://github.com/wxj77/MeetingSummarization |
| [pdf] | https://aclanthology.org/2021.newsum-1.11/ |
| [pdf] | https://arxiv.org/abs/2109.07943 |
| [pdf] | https://arxiv.org/abs/2109.04609 |
| [pdf] | https://arxiv.org/abs/2109.02492 |
| [code] | https://github.com/microsoft/DialogLM |
| [pdf] | https://arxiv.org/abs/2108.13629 |
| [pdf] | https://arxiv.org/abs/2108.06310 |
| [pdf] | https://sigdial.org/sites/default/files/workshops/conference22/Proceedings/pdf/2021.sigdial-1.56.pdf |
| [pdf] | http://www.interspeech2020.org/uploadfile/pdf/Thu-2-6-2.pdf |
| [code] | https://github.com/potsawee/spoken_summ_div |
| [pdf] | https://www.aclweb.org/anthology/W08-0112/ |
| [pdf] | https://www.isca-speech.org/archive/archive_papers/interspeech_2010/i10_2518.pdf |
| [pdf] | https://www.emerald.com/insight/content/doi/10.1108/DTA-09-2017-0062/full/html |
| [pdf] | https://ieeexplore.ieee.org/document/4777863 |
| [pdf] | https://ieeexplore.ieee.org/document/4960697 |
| [pdf] | https://ieeexplore.ieee.org/document/4777864 |
| [pdf] | https://arxiv.org/abs/1609.07035 |
| [pdf] | https://www.aclweb.org/anthology/W17-4506/ |
| [bib] | https://www.aclweb.org/anthology/W17-4506.bib |
| [pdf] | https://arxiv.org/abs/1805.05271 |
| [code] | https://bitbucket.org/dascim/acl2018_abssumm/src |
| [pdf] | https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11605/1160504/Abstractive-meeting-summarization-based-on-an-attentional-neural-model/10.1117/12.2587172.full |
| [pdf] | https://link.springer.com/chapter/10.1007/978-3-030-50316-1_33 |
| [pdf] | https://link.springer.com/chapter/10.1007/978-3-030-20521-8_53 |
| [pdf] | https://arxiv.org/abs/1609.07033 |
| [pdf] | https://www.aclweb.org/anthology/2020.lrec-1.829 |
| [bib] | https://www.aclweb.org/anthology/2020.lrec-1.829.bib |
| [pdf] | https://arxiv.org/abs/2012.03502 |
| [code] | https://github.com/xcfcode/DDAMS |
| [pdf] | https://arxiv.org/abs/2011.00692 |
| [code] | https://github.com/ucfnlp/meeting-domain-terminology |
| [pdf] | https://link.springer.com/content/pdf/10.1007/978-3-030-55393-7_22.pdf |
| [code] | https://github.com/d1jiasheng/DialogueSum |
| [pdf] | https://arxiv.org/abs/1809.05715 |
| [code] | https://github.com/MiuLab/DialSum |
| [pdf] | https://arxiv.org/abs/2104.12324 |
| [pdf] | https://arxiv.org/abs/2104.07545 |
| [code] | https://github.com/birch-research/hierarchical-learning |
| [pdf] | https://arxiv.org/abs/2004.02016 |
| [code] | https://github.com/microsoft/HMNet |
| [unofficial-code] | https://github.com/JudeLee19/HMNet-End-to-End-Abstractive-Summarization-for-Meetings |
| [pdf] | https://dl.acm.org/doi/10.1145/3308558.3313619 |
| [pdf] | https://arxiv.org/abs/1902.01615 |
| [pdf] | https://www.aclweb.org/anthology/P19-1210/ |
| [pdf] | https://link.springer.com/article/10.1007/s12046-011-0051-3 |
| [pdf] | https://dl.acm.org/doi/abs/10.1145/3379336.3381491 |
| [pdf] | https://www.mdpi.com/2414-4088/3/3/50 |
| [pdf] | https://dl.acm.org/doi/10.1145/3279981.3279987 |
| [pdf] | https://dl.acm.org/doi/10.1145/2993148.2993160 |
| [pdf] | https://www.cstr.ed.ac.uk/downloads/publications/2005/murray-eurospeech05.pdf |
| [pdf] | https://ieeexplore.ieee.org/document/1221239 |
| [pdf] | https://www.aclweb.org/anthology/2021.adaptnlp-1.24/ |
| [pdf] | https://arxiv.org/abs/2007.15296 |
| [pdf] | https://www.aclweb.org/anthology/W12-1642.pdf |
| [pdf] | https://arxiv.org/abs/2104.05938 |
| [data] | https://github.com/Yale-LILY/QMSum |
| [pdf] | https://www.aclweb.org/anthology/P13-1137.pdf |
| [pdf] | https://arxiv.org/abs/1606.07965 |
| [pdf] | https://www.aclweb.org/anthology/W09-3934/ |
| [bib] | https://www.aclweb.org/anthology/W09-3934.bib |
| [pdf] | https://arxiv.org/abs/2106.00829 |
| [code] | https://github.com/Yale-LILY/ConvoSumm |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#chat-summarization |
| [pdf] | https://aclanthology.org/2023.acl-long.775/ |
| [code] | https://github.com/Hannibal046/SDDS |
| [pdf] | https://aclanthology.org/2022.coling-1.548/ |
| [pdf] | https://aclanthology.org/2021.findings-emnlp.117/ |
| [code] | https://github.com/apexmeister/FINDS |
| [pdf] | https://aclanthology.org/2021.newsum-1.8/ |
| [pdf] | https://arxiv.org/abs/2109.14199 |
| [pdf] | https://arxiv.org/abs/2109.13070 |
| [pdf] | https://aclanthology.org/2021.emnlp-main.499/ |
| [code] | https://github.com/midas-research/gupshup |
| [pdf] | https://arxiv.org/abs/2109.04994 |
| [code] | https://github.com/Junpliu/ConDigSum |
| [pdf] | https://www.researchgate.net/publication/354162497_Give_the_Truth_Incorporate_Semantic_Slot_into_Abstractive_Dialogue_Summarization |
| [pdf] | https://arxiv.org/abs/2109.04080 |
| [code] | https://github.com/RowitZou/DAMS |
| [pdf] | https://www.isca-speech.org/archive/interspeech_2021/lee21_interspeech.html |
| [pdf] | https://www.sciencedirect.com/science/article/pii/S0950705121005906 |
| [pdf] | https://aclanthology.org/2021.acl-srw.14/ |
| [tool] | https://github.com/mechanicpanic/Chat-Corpora-Annotator |
| [data] | https://github.com/mechanicpanic/Situation_Dataset |
| [pdf] | https://arxiv.org/abs/2106.08556 |
| [pdf] | https://arxiv.org/abs/2010.10044 |
| [pdf] | https://ieeexplore.ieee.org/document/9414547 |
| [pdf] | https://arxiv.org/abs/2106.03337 |
| [pdf] | https://arxiv.org/abs/2105.14064 |
| [code] | https://github.com/salesforce/ConvSumm |
| [pdf] | https://arxiv.org/abs/2104.08400 |
| [code] | https://github.com/GT-SALT/Structure-Aware-BART |
| [pdf] | https://aclanthology.org/2021.tacl-1.88/ |
| [pdf] | https://www.aclweb.org/anthology/2020.coling-main.39/ |
| [pdf] | https://arxiv.org/abs/2010.01672 |
| [code] | https://github.com/GT-SALT/Multi-View-Seq2Seq |
| [pdf] | https://arxiv.org/abs/1911.12237 |
| [data] | https://arxiv.org/src/1911.12237v2/anc/corpus.7z |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#medical-dialogue-summarization |
| [pdf] | https://dl.acm.org/doi/abs/10.1145/3534678.3539116 |
| [pdf] | https://arxiv.org/abs/2206.03886 |
| http://mpathic.ai/ | http://mpathic.ai/ |
| [pdf] | https://arxiv.org/abs/2111.07564 |
| [pdf] | https://www.cs.cmu.edu/~mgormley/papers/zhang+al.emnlp.2021.pdf |
| [pdf1] | https://aclanthology.org/2021.nlpmc-1.9/ |
| [pdf2] | https://arxiv.org/abs/2110.07356 |
| [pdf] | https://aclanthology.org/2021.acl-long.384/ |
| [code] | https://github.com/acmi-lab/modular-summarization |
| [pdf] | https://www.aclweb.org/anthology/2020.coling-main.63/ |
| [code] | https://github.com/cuhksz-nlp/HET-MC |
| [bib] | https://www.aclweb.org/anthology/2020.coling-main.63.bib |
| [pdf] | https://arxiv.org/abs/2009.08666 |
| [bib] | https://www.aclweb.org/anthology/2020.findings-emnlp.335.bib |
| [pdf] | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225507/ |
| [bib] | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main |
| [pdf] | https://www.aclweb.org/anthology/2020.nlpmc-1.4/ |
| [bib] | https://www.aclweb.org/anthology/2020.nlpmc-1.4.bib |
| [pdf] | https://www.aclweb.org/anthology/W19-1918/ |
| [bib] | https://www.aclweb.org/anthology/W19-1918.bib |
| [pdf] | https://www.aclweb.org/anthology/2020.lrec-1.52/ |
| [bib] | https://www.aclweb.org/anthology/2020.lrec-1.52.bib |
| [pdf] | https://arxiv.org/abs/1910.01335 |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#customer-service-summarization |
| [pdf] | https://aclanthology.org/2022.acl-long.182/ |
| [code] | https://github.com/xiaolinandy/rods |
| [pdf] | https://arxiv.org/abs/2204.12951 |
| [pdf] | https://arxiv.org/abs/2203.15590 |
| [pdf] | https://arxiv.org/abs/2203.01552 |
| [code] | https://github.com/jshin49/ds2 |
| [pdf] | https://aclanthology.org/2021.findings-emnlp.24/ |
| [data] | https://github.com/guyfe/Tweetsumm |
| [pdf] | https://ieeexplore.ieee.org/document/9645319/authors#authors |
| [pdf] | https://arxiv.org/abs/2110.12680 |
| [pdf] | https://arxiv.org/abs/2108.13139 |
| [data] | https://github.com/xiaolinAndy/CSDS |
| [pdf] | https://dl.acm.org/doi/10.1145/3404835.3463046 |
| [pdf] | https://arxiv.org/abs/2009.06851 |
| [pdf] | https://arxiv.org/abs/2012.07311 |
| [code] | https://github.com/RowitZou/topic-dialog-summ |
| [pdf] | https://arxiv.org/abs/2012.07300 |
| [code] | https://github.com/RowitZou/RankAE |
| [pdf] | https://arxiv.org/abs/1910.00825 |
| [pdf] | https://dl.acm.org/doi/10.1145/3292500.3330683 |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#domain-adaption |
| [pdf] | https://arxiv.org/abs/2212.10018 |
| [pdf] | https://arxiv.org/abs/2204.04362 |
| [code] | https://github.com/Zeng-WH/DOP-Tuning |
| [pdf] | https://arxiv.org/abs/2103.11332 |
| [code] | https://github.com/TysonYu/AdaptSum |
| [pdf] | https://www.aclweb.org/anthology/W10-2603/ |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#others |
| [pdf] | https://aclanthology.org/2022.emnlp-main.250/ |
| [code] | https://github.com/megagonlabs/qa-summarization |
| [pdf] | https://aclanthology.org/2022.emnlp-main.72/ |
| [pdf] | https://arxiv.org/abs/2212.12652 |
| [pdf] | https://arxiv.org/abs/2301.12376 |
| [code] | https://github.com/xnliang98/bart-glc |
| [pdf] | https://arxiv.org/abs/2301.10483 |
| [code] | https://github.com/amazon-science/AWS-SWING |
| [pdf] | https://arxiv.org/abs/2212.09750 |
| [pdf] | https://arxiv.org/pdf/2211.08464.pdf |
| [pdf] | https://arxiv.org/abs/2211.07145 |
| [pdf] | https://aclanthology.org/2022.emnlp-main.325/ |
| [code] | https://github.com/BinWang28/FacEval |
| [pdf] | https://arxiv.org/abs/2210.09894 |
| [pdf] | https://arxiv.org/abs/2210.09474 |
| [pdf] | https://aclanthology.org/2022.coling-1.569/ |
| [pdf] | https://aclanthology.org/2022.coling-1.531/ |
| [code] | https://github.com/shakeley/View2dSum |
| [pdf] | https://aclanthology.org/2022.coling-1.528/ |
| [pdf] | https://arxiv.org/abs/2202.05599 |
| [code] | https://github.com/krystalan/ClidSum |
| [pdf] | https://arxiv.org/abs/2209.11910 |
| [pdf] | https://arxiv.org/abs/2208.03898 |
| [pdf] | https://arxiv.org/abs/2207.08305 |
| [pdf] | https://aclanthology.org/2022.findings-naacl.53/ |
| [pdf] | https://aclanthology.org/2022.naacl-industry.6/ |
| [pdf] | https://aclanthology.org/2022.naacl-srw.32/ |
| [code] | https://github.com/dafraile/Clinical-Dialogue-Summarization |
| [pdf] | https://aclanthology.org/2022.naacl-main.418/ |
| [code] | https://github.com/kite99520/DialSummEval |
| [pdf] | https://aclanthology.org/2022.naacl-main.357/ |
| [code] | https://github.com/Zeng-WH/DOP-Tuning |
| [pdf] | https://aclanthology.org/2022.naacl-main.283/ |
| [pdf] | https://arxiv.org/abs/2205.13108 |
| [code] | https://github.com/seongminp/graph-dialogue-summary |
| [pdf] | https://aclanthology.org/2022.dialdoc-1.1/ |
| [data] | https://github.com/xcfcode/MSAMSum |
| [pdf] | https://arxiv.org/abs/2205.00379 |
| [pdf] | https://aclanthology.org/2022.findings-naacl.125/ |
| [code] | https://github.com/JiaQiSJTU/DialSent-PGG |
| [pdf] | https://arxiv.org/abs/2112.08713 |
| [pdf] | https://aclanthology.org/2021.newsum-1.12/ |
| [pdf] | https://arxiv.org/abs/2111.03284 |
| [pdf] | https://www.akbc.ws/2021/papers/AJKd0iIFMDc |
| [code] | https://github.com/HKUST-KnowComp/CODC-Dialogue-Summarization |
| [pdf] | https://www.techrxiv.org/articles/preprint/Prompt_scoring_system_for_dialogue_summarization_using_GPT-3/16652392 |
| [pdf] | https://www.cc.gatech.edu/~dyang888/docs/emnlp21_chen_coda.pdf |
| [code] | https://github.com/GT-SALT/CODA |
| [pdf] | https://arxiv.org/abs/2109.08232 |
| [pdf] | https://arxiv.org/abs/2108.09597 |
| [pdf] | https://aclanthology.org/2021.acl-long.471/ |
| [code] | https://github.com/xiyan524/RepSum |
| [pdf] | https://aclanthology.org/2021.acl-long.117/ |
| [code] | https://github.com/xcfcode/PLM_annotator |
| [pdf] | https://arxiv.org/abs/2011.08291 |
| [pdf] | https://arxiv.org/abs/2104.07545 |
| [code] | https://github.com/birch-research/hierarchical-learning |
| [pdf] | https://arxiv.org/abs/2103.13587 |
| [code] | https://github.com/sansiri20/forums_summ |
| [pdf] | https://arxiv.org/abs/2103.10599 |
| [pdf] | https://dl.acm.org/doi/10.1145/3357384.3357940 |
| [pdf] | https://dl.acm.org/doi/10.1145/3159652.3160588 |
| [pdf] | https://arxiv.org/abs/1711.00092 |
| [pdf] | https://www.aclweb.org/anthology/W16-3605/ |
| [pdf] | https://www.aclweb.org/anthology/C04-1110/ |
| [bib] | https://www.aclweb.org/anthology/C04-1110.bib |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#long-document |
| [pdf] | https://arxiv.org/abs/2303.14337 |
| [code] | https://github.com/blender-nlp/SmartBook |
| [pdf] | https://arxiv.org/abs/2301.13298 |
| [code] | https://github.com/martiansideofthemoon/longeval-summarization |
| [pdf] | https://arxiv.org/abs/2301.11312 |
| [code] | https://github.com/recitalAI/loralay-datasets |
| [pdf] | https://arxiv.org/abs/2211.10247 |
| [pdf] | https://arxiv.org/abs/2211.04903 |
| [pdf] | https://arxiv.org/abs/2210.16732 |
| [code] | https://github.com/huankoh/How-Far-are-We-from-Robust-Long-Abstractive-Summarization |
| [pdf] | https://aclanthology.org/2022.emnlp-main.8/ |
| [code] | https://github.com/tencent-ailab/Lodoss |
| [pdf] | https://aclanthology.org/2022.coling-1.545/ |
| [code] | https://github.com/tuananhphan97vn/HeterGraphLongSum |
| [pdf] | https://aclanthology.org/2022.coling-1.512/ |
| [code] | https://github.com/dungdx34/MTGNN-SUM |
| [pdf] | https://arxiv.org/abs/2210.04126 |
| [pdf] | https://aclanthology.org/2022.coling-1.546/ |
| [code] | https://github.com/xashely/GRETEL_extractive |
| [pdf] | https://arxiv.org/abs/2208.09454 |
| [pdf] | https://aclanthology.org/2022.coling-1.558/ |
| [code] | https://github.com/xnliang98/c2f-far |
| [pdf] | https://arxiv.org/abs/2208.04347 |
| [code] | https://github.com/google-research/pegasus/tree/main/pegasus/flax |
| [pdf] | https://arxiv.org/abs/2207.00939 |
| [pdf] | https://aclanthology.org/2022.acl-long.450/ |
| [code] | https://github.com/nianlonggu/memsum |
| [pdf] | https://www.aaai.org/AAAI22Papers/AAAI-3882.MoroG.pdf |
| [pdf] | https://arxiv.org/abs/2205.12486 |
| [pdf] | https://arxiv.org/abs/2205.12476 |
| [pdf] | https://aclanthology.org/2022.emnlp-main.29/ |
| [data] | https://github.com/tagoyal/snac |
| [pdf] | https://arxiv.org/abs/2204.03301 |
| [pdf] | https://arxiv.org/abs/2203.15349 |
| [data1] | https://huggingface.co/datasets/midas/ldkp3k |
| [data2] | https://huggingface.co/datasets/midas/ldkp10k |
| [pdf] | https://aclanthology.org/2022.acl-long.58/ |
| [code] | https://github.com/ShuyangCao/hibrids_summ |
| [data] | https://gov-report-data.github.io/ |
| [pdf] | https://arxiv.org/abs/2203.09629 |
| [code] | https://github.com/QianRuan/histruct |
| [pdf] | https://arxiv.org/abs/2203.07586 |
| [pdf] | https://arxiv.org/abs/2110.10150 |
| [pdf] | https://aclanthology.org/2022.acl-long.118/ |
| [code] | https://github.com/Yale-LILY/DYLE |
| [pdf] | https://arxiv.org/abs/2201.08495 |
| [code] | https://github.com/atharsefid/SciBERTSUM |
| [pdf] | https://arxiv.org/abs/2112.08550 |
| [pdf] | https://arxiv.org/abs/2112.07916 |
| [pdf] | https://arxiv.org/abs/2112.01660 |
| [pdf] | https://arxiv.org/abs/2110.07850 |
| [pdf] | https://arxiv.org/abs/2110.01280 |
| [pdf] | https://arxiv.org/abs/2109.14059 |
| [pdf] | https://arxiv.org/abs/2109.03888 |
| [code] | https://github.com/potsawee/encdec_attn_sparse |
| [pdf] | https://aclanthology.org/2021.acl-short.137/ |
| [data] | https://github.com/hfthair/emerald_crawler |
| [pdf] | https://www.aclweb.org/anthology/2021.naacl-main.470/ |
| [code] | https://github.com/pcui-nlp/SSN_DM |
| [pdf] | https://aclanthology.org/2021.acl-long.470/ |
| [pdf] | https://www.aclweb.org/anthology/2021.eacl-main.154/ |
| [pdf] | https://www.aclweb.org/anthology/2021.eacl-main.93/ |
| [code] | https://github.com/mirandrom/HipoRank |
| [pdf] | https://arxiv.org/abs/2104.03057 |
| [code] | https://github.com/ChenxinAn-fdu/CGSum |
| [pdf] | https://arxiv.org/abs/2104.02112 |
| [code] | https://github.com/luyang-huang96/LongDocSum |
| [data] | https://gov-report-data.github.io/ |
| [pdf] | https://arxiv.org/abs/2102.00176 |
| [code] | https://github.com/neulab/ReviewAdvisor |
| [pdf] | https://aclanthology.org/2021.acl-srw.7/ |
| [pdf] | https://arxiv.org/abs/2101.03553 |
| [pdf] | https://arxiv.org/abs/2012.14136 |
| [code] | https://github.com/Georgetown-IR-Lab/ExtendedSumm |
| [pdf] | https://arxiv.org/abs/2012.11213 |
| pdf | https://www.aclweb.org/anthology/2020.aacl-main.51/ |
| [code] | http://www.cs.ubc.ca/cs-research/lci/research-groups/natural-language-processing/ |
| [pdf] | https://arxiv.org/abs/1909.03186 |
| [pdf] | https://arxiv.org/abs/2010.09252 |
| [code] | https://github.com/TysonYu/Laysumm |
| [pdf] | https://arxiv.org/abs/2010.09190 |
| [code] | https://github.com/mingzi151/SummPip |
| [pdf] | https://arxiv.org/abs/2010.06253 |
| [pdf] | https://arxiv.org/abs/2010.14235 |
| [data] | https://github.com/yaolu/Multi-XScience |
| [pdf] | https://arxiv.org/abs/2004.06190 |
| [pdf] | https://arxiv.org/abs/2004.15011 |
| [data] | https://github.com/allenai/scitldr |
| [pdf] | https://arxiv.org/abs/1909.08089 |
| [code] | https://github.com/Wendy-Xiao/Extsumm_local_global_context |
| [pdf] | https://arxiv.org/abs/1909.01716 |
| [data] | https://cs.stanford.edu/~myasu/projects/scisumm_net/ |
| [pdf] | https://www.aclweb.org/anthology/P19-1204/ |
| [data] | https://github.com/levguy/talksumm |
| [pdf] | https://arxiv.org/abs/1804.05685 |
| [data] | https://github.com/armancohan/long-summarization |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#factual-consistency |
| https://camo.githubusercontent.com/78e793cfc7f09f7a1ef017842f733cb02751d00180c985c3293bd66d1172064e/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f486f77253230746f2532306576616c756174652532306661637475616c253230636f6e73697374656e63792532306f6625323073756d6d6172792d6576616c756174696f6e2d627269676874677265656e |
| https://camo.githubusercontent.com/78343a2681c677a72880481ff6e721098c89f61563d37c97a9e7a02f4fea0cb9/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f486f77253230746f253230696d70726f76652532306661637475616c253230636f6e73697374656e63792532306f6625323073756d6d6172792d696d70726f76652d6f72616e6765 |
| https://camo.githubusercontent.com/d1a2ba93260790d814ab7952ef73129e353952dd65a7b9a0947af34ab69e42b4/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f616e616c7973697325323061626f75742532306661637475616c253230636f6e73697374656e63792532306f6625323073756d6d6172792d616e616c797369732d626c7565 |
| https://camo.githubusercontent.com/b6351a761abe2d78a221bce08143442e8686416cf5988b00730a358120c46e8b/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f486f77253230746f253230636f72726563742532306661637475616c2532306572726f7273253230696e25323073756d6d6172792d636f72726563742d726564 |
| factsumm | https://github.com/Huffon/factsumm |
| [pdf] | https://arxiv.org/abs/2303.15621 |
| [pdf] | https://arxiv.org/abs/2303.03948 |
| [pdf] | https://arxiv.org/abs/2303.03278 |
| [code] | https://github.com/amazon-science/faithful-summarization-generation |
| [pdf] | https://arxiv.org/abs/2303.00242 |
| [code] | https://github.com/google-research/language/tree/master/language/diffqg |
| [pdf] | https://aclanthology.org/2022.emnlp-main.816/ |
| [code] | https://github.com/COFE2022/CoFE |
| [pdf] | https://aclanthology.org/2022.emnlp-main.663/ |
| [code] | https://github.com/mcao516/rej-summ |
| [pdf] | https://aclanthology.org/2022.emnlp-main.478/ |
| [pdf] | https://arxiv.org/abs/2301.13298 |
| [code] | https://github.com/martiansideofthemoon/longeval-summarization |
| [pdf] | https://arxiv.org/abs/2212.10622 |
| [pdf] | https://arxiv.org/abs/2212.09726 |
| [pdf] | https://arxiv.org/abs/2212.02712 |
| [pdf] | https://arxiv.org/abs/2211.16853 |
| [pdf] | https://arxiv.org/abs/2211.12118 |
| [pdf] | https://arxiv.org/pdf/2211.08464.pdf |
| [pdf] | https://arxiv.org/abs/2211.08412 |
| [pdf] | https://arxiv.org/abs/2211.06196 |
| [code] | https://github.com/salesforce/CompEdit |
| [pdf] | https://arxiv.org/abs/2211.02580 |
| [code] | https://github.com/meetdavidwan/faithful-multimodal-summ |
| [pdf] | https://arxiv.org/abs/2211.00294 |
| [pdf] | https://arxiv.org/abs/2210.17378 |
| [data] | https://github.com/YanzhuGuo/SummFC |
| [pdf] | https://arxiv.org/abs/2210.13210 |
| [code] | https://github.com/VanderpoelLiam/CPMI |
| [pdf] | https://arxiv.org/abs/2210.12378 |
| [code] | https://github.com/vidhishanair/FactEdit |
| [pdf] | https://aclanthology.org/2022.coling-1.537/ |
| [code] | https://github.com/taka2946/sumphrase |
| [pdf] | https://arxiv.org/abs/2210.02804 |
| [pdf] | https://arxiv.org/abs/2209.03549 |
| [code] | https://github.com/ZhangShiyue/extractive_is_not_faithful |
| [pdf] | https://arxiv.org/abs/2209.03479 |
| [code] | https://github.com/Wendy-Xiao/Entity-based-SpanCopy |
| [pdf] | https://aclanthology.org/2022.findings-naacl.180/ |
| [pdf] | https://aclanthology.org/2022.findings-naacl.76/ |
| [code] | https://github.com/hwanheelee1993/MFMA |
| https://github.com/hwanheelee1993/MFMA | https://github.com/hwanheelee1993/MFMA |
| [pdf] | https://aclanthology.org/2022.findings-naacl.40/ |
| [code] | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main |
| [pdf] | https://aclanthology.org/2022.naacl-main.74/ |
| [code] | https://github.com/meetdavidwan/factpegasus |
| [pdf] | https://arxiv.org/abs/2207.02263 |
| [pdf] | https://aclanthology.org/2022.tacl-1.10/ |
| [code] | https://github.com/tingofurro/summac/ |
| [pdf] | https://aclanthology.org/2022.acl-long.236/ |
| [code] | https://github.com/mcao516/entfa |
| [pdf] | https://arxiv.org/abs/2205.12854 |
| [code] | https://github.com/Liyan06/AggreFact |
| [pdf] | https://aclanthology.org/2022.naacl-main.199/ |
| [code] | https://github.com/joshbambrick/Falsesum |
| [pdf] | https://arxiv.org/abs/2205.02035 |
| [code] | https://github.com/hwanheelee1993/MFMA |
| [pdf] | https://arxiv.org/abs/2204.13761 |
| [pdf] | https://arxiv.org/abs/2204.10290 |
| [code] | https://github.com/amazon-research/summary-reference-revision |
| [pdf] | https://arxiv.org/abs/2204.08263 |
| [pdf] | https://arxiv.org/abs/2204.07562 |
| [code] | https://github.com/AshOlogn/Evaluating-Factuality-in-Text-Simplification |
| [pdf] | https://aclanthology.org/2022.naacl-main.236/ |
| [code] | https://github.com/amazon-research/fact-graph |
| [pdf] | https://arxiv.org/abs/2203.08436 |
| [code] | https://github.com/allenai/pinocchio |
| [pdf] | https://aclanthology.org/2022.naacl-main.415/ |
| [pdf] | https://aclanthology.org/2022.naacl-main.187/ |
| [code] | https://github.com/salesforce/QAFactEval |
| [pdf] | https://arxiv.org/abs/2112.01147 |
| [pdf] | https://aclanthology.org/2021.findings-emnlp.179/ |
| [code] | https://github.com/zide05/AdvFact |
| [pdf] | https://arxiv.org/abs/2111.09525 |
| [code] | https://github.com/tingofurro/summac/ |
| [pdf] | https://arxiv.org/abs/2111.03284 |
| [pdf] | https://aclanthology.org/2021.emnlp-main.9/ |
| [pdf] | https://arxiv.org/abs/2110.07166 |
| [pdf] | https://aclanthology.org/2022.naacl-main.417/ |
| [pdf] | https://arxiv.org/abs/2109.10650 |
| [data] | https://github.com/XinnuoXu/MiRANews |
| [pdf] | https://arxiv.org/abs/2109.09784 |
| [pdf] | https://arxiv.org/abs/2109.09209 |
| [code] | https://shuyangcao.github.io/projects/cliff_summ |
| [pdf] | https://aclanthology.org/2022.acl-long.100/ |
| [code] | https://github.com/fladhak/effective-faithfulness |
| [pdf] | https://arxiv.org/abs/2108.13134 |
| [code] | https://github.com/xieyxclack/factual_coco |
| [pdf] | https://aclanthology.org/2021.ecnlp-1.19/ |
| [pdf] | https://arxiv.org/abs/2106.02278 |
| [data] | https://github.com/google-research-datasets/AgreeSum |
| [pdf] | https://aclanthology.org/2021.acl-long.474/ |
| [pdf] | https://aclanthology.org/2021.acl-long.536/ |
| [code] | https://github.com/amazon-research/fact-check-summarization |
| [pdf] | https://www.aclweb.org/anthology/2021.eacl-main.34/ |
| [code] | https://github.com/skgabriel/coopnet |
| [pdf] | https://arxiv.org/abs/2104.09061 |
| [code] | https://github.com/CogComp/faithful_summarization |
| https://camo.githubusercontent.com/7b91995d6055cc5c0cdbe290210583e14208f9250923c78388e3c3b3a1941854/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d696d70726f76652d6f72616e6765 |
| [pdf] | https://arxiv.org/abs/2104.13346 |
| [code] | https://github.com/artidoro/frank |
| https://camo.githubusercontent.com/24cd0b763396c976c32ddb3c711fa1b724f09ff1174f5cd0ef8d9f4868e31cfe/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6576616c756174696f6e2d627269676874677265656e |
| [pdf] | https://arxiv.org/abs/2104.04302 |
| [code] | https://github.com/tagoyal/factuality-datasets |
| [pdf] | https://arxiv.org/abs/2103.12693 |
| [code] | https://github.com/recitalAI/QuestEval |
| https://camo.githubusercontent.com/24cd0b763396c976c32ddb3c711fa1b724f09ff1174f5cd0ef8d9f4868e31cfe/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6576616c756174696f6e2d627269676874677265656e |
| [pdf] | https://arxiv.org/abs/2003.08612 |
| https://camo.githubusercontent.com/7b91995d6055cc5c0cdbe290210583e14208f9250923c78388e3c3b3a1941854/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d696d70726f76652d6f72616e6765 |
| [pdf] | https://www.aclweb.org/anthology/2021.eacl-main.235/ |
| [code] | https://github.com/amazon-research/fact-check-summarization |
| https://camo.githubusercontent.com/24cd0b763396c976c32ddb3c711fa1b724f09ff1174f5cd0ef8d9f4868e31cfe/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6576616c756174696f6e2d627269676874677265656e |
| [pdf] | https://www.aclweb.org/anthology/2020.coling-main.502/ |
| [code] | https://github.com/ypnlp/coling |
| https://camo.githubusercontent.com/7b91995d6055cc5c0cdbe290210583e14208f9250923c78388e3c3b3a1941854/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d696d70726f76652d6f72616e6765 |
| [pdf] | https://arxiv.org/abs/2011.13662 |
| [code] | https://github.com/fajri91/ffci |
| https://camo.githubusercontent.com/24cd0b763396c976c32ddb3c711fa1b724f09ff1174f5cd0ef8d9f4868e31cfe/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6576616c756174696f6e2d627269676874677265656e |
| [pdf] | https://arxiv.org/abs/2010.08014 |
| [code] | https://github.com/neulab/guided_summarization |
| https://camo.githubusercontent.com/7b91995d6055cc5c0cdbe290210583e14208f9250923c78388e3c3b3a1941854/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d696d70726f76652d6f72616e6765 |
| [pdf] | https://www.aclweb.org/anthology/2020.eval4nlp-1.1/ |
| [pdf] | https://arxiv.org/abs/2011.02593 |
| [code] | https://github.com/violet-zct/fairseq-detect-hallucination |
| [pdf] | https://arxiv.org/abs/2010.12834 |
| https://camo.githubusercontent.com/24cd0b763396c976c32ddb3c711fa1b724f09ff1174f5cd0ef8d9f4868e31cfe/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6576616c756174696f6e2d627269676874677265656e |
| [pdf] | https://arxiv.org/abs/2010.12723 |
| https://camo.githubusercontent.com/7b91995d6055cc5c0cdbe290210583e14208f9250923c78388e3c3b3a1941854/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d696d70726f76652d6f72616e6765 |
| [pdf] | https://arxiv.org/abs/2010.08712 |
| [code] | https://github.com/mcao610/Factual-Error-Correction |
| https://camo.githubusercontent.com/6efef5908ccede34b5799849580a80625d3cf784c01a7b5d4449b75a906b8302/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d636f72726563742d726564 |
| [pdf] | https://arxiv.org/abs/2010.02443 |
| https://camo.githubusercontent.com/6efef5908ccede34b5799849580a80625d3cf784c01a7b5d4449b75a906b8302/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d636f72726563742d726564 |
| [pdf] | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main |
| https://camo.githubusercontent.com/6efef5908ccede34b5799849580a80625d3cf784c01a7b5d4449b75a906b8302/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d636f72726563742d726564 |
| [pdf] | https://arxiv.org/abs/1910.12840 |
| [code] | https://github.com/salesforce/factCC |
| https://camo.githubusercontent.com/24cd0b763396c976c32ddb3c711fa1b724f09ff1174f5cd0ef8d9f4868e31cfe/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6576616c756174696f6e2d627269676874677265656e |
| [pdf] | https://arxiv.org/abs/2009.13312 |
| https://camo.githubusercontent.com/24cd0b763396c976c32ddb3c711fa1b724f09ff1174f5cd0ef8d9f4868e31cfe/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6576616c756174696f6e2d627269676874677265656e |
| [pdf] | https://arxiv.org/abs/2005.00661 |
| [data] | https://github.com/google-research-datasets/xsum_hallucination_annotations |
| https://camo.githubusercontent.com/9cae165c27990b425f8df0281b24835177b6bd3fb66adc085cb5d03352785871/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d616e616c797369732d626c7565 |
| [pdf] | https://arxiv.org/abs/2005.00882 |
| https://camo.githubusercontent.com/7b91995d6055cc5c0cdbe290210583e14208f9250923c78388e3c3b3a1941854/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d696d70726f76652d6f72616e6765 |
| [pdf] | https://arxiv.org/abs/1911.02541 |
| https://camo.githubusercontent.com/7b91995d6055cc5c0cdbe290210583e14208f9250923c78388e3c3b3a1941854/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d696d70726f76652d6f72616e6765 |
| [pdf] | https://arxiv.org/abs/2005.03754 |
| [code] | https://github.com/esdurmus/feqa |
| https://camo.githubusercontent.com/24cd0b763396c976c32ddb3c711fa1b724f09ff1174f5cd0ef8d9f4868e31cfe/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6576616c756174696f6e2d627269676874677265656e |
| [pdf] | https://arxiv.org/abs/2004.04228 |
| [code] | https://github.com/W4ngatang/qags |
| https://camo.githubusercontent.com/24cd0b763396c976c32ddb3c711fa1b724f09ff1174f5cd0ef8d9f4868e31cfe/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6576616c756174696f6e2d627269676874677265656e |
| [pdf] | https://arxiv.org/abs/2005.01159 |
| https://camo.githubusercontent.com/7b91995d6055cc5c0cdbe290210583e14208f9250923c78388e3c3b3a1941854/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d696d70726f76652d6f72616e6765 |
| [pdf] | https://arxiv.org/abs/2006.15435 |
| https://camo.githubusercontent.com/7b91995d6055cc5c0cdbe290210583e14208f9250923c78388e3c3b3a1941854/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d696d70726f76652d6f72616e6765 |
| [pdf] | https://arxiv.org/abs/1905.13322 |
| https://camo.githubusercontent.com/24cd0b763396c976c32ddb3c711fa1b724f09ff1174f5cd0ef8d9f4868e31cfe/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6576616c756174696f6e2d627269676874677265656e |
| [pdf] | https://www.aclweb.org/anthology/P19-1213/ |
| [data] | https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/2002 |
| https://camo.githubusercontent.com/24cd0b763396c976c32ddb3c711fa1b724f09ff1174f5cd0ef8d9f4868e31cfe/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6576616c756174696f6e2d627269676874677265656e |
| [pdf] | https://www.aclweb.org/anthology/C18-1121/ |
| [code] | https://github.com/hrlinlp/entail_sum |
| https://camo.githubusercontent.com/7b91995d6055cc5c0cdbe290210583e14208f9250923c78388e3c3b3a1941854/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d696d70726f76652d6f72616e6765 |
| [pdf] | https://arxiv.org/abs/1711.04434 |
| https://camo.githubusercontent.com/7b91995d6055cc5c0cdbe290210583e14208f9250923c78388e3c3b3a1941854/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d696d70726f76652d6f72616e6765 |
| [pdf] | https://www.sciencedirect.com/science/article/abs/pii/S0306457320309675 |
| https://camo.githubusercontent.com/7b91995d6055cc5c0cdbe290210583e14208f9250923c78388e3c3b3a1941854/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d696d70726f76652d6f72616e6765 |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#contrastive-learning |
| [pdf] | https://aclanthology.org/2022.coling-1.508/ |
| [code] | https://github.com/ChenxinAn-fdu/CoLo |
| [pdf] | https://arxiv.org/abs/2109.09209 |
| [code] | https://shuyangcao.github.io/projects/cliff_summ |
| https://arxiv.org/abs/2109.03481 | https://arxiv.org/abs/2109.03481 |
| [pdf] | https://arxiv.org/abs/2108.11992 |
| [code] | https://github.com/chz816/esacl |
| [pdf] | https://arxiv.org/abs/2104.05094 |
| [pdf] | https://arxiv.org/abs/2108.11846 |
| [code] | https://github.com/ShichaoSun/ConAbsSum |
| [pdf] | https://aclanthology.org/2021.acl-short.135/ |
| [code] | https://github.com/yixinL7/SimCLS |
| [pdf] | https://arxiv.org/abs/2012.07280 |
| [pdf] | https://arxiv.org/abs/1811.02394 |
| [code] | https://github.com/lliangchenc/DeepChannel |
| [pdf] | https://arxiv.org/abs/2010.01781 |
| [code] | https://github.com/whl97/LS-Score |
| [pdf] | https://www.aclweb.org/anthology/D19-1301/ |
| [code] | https://github.com/travel-go/Abstractive-Text-Summarization |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#evaluation |
| [pdf] | https://arxiv.org/abs/2303.15621 |
| [pdf] | https://arxiv.org/abs/2303.15078 |
| [pdf] | https://arxiv.org/abs/2302.04166 |
| [code] | https://github.com/jinlanfu/GPTScore |
| [pdf] | https://arxiv.org/abs/2212.10397 |
| [pdf] | https://arxiv.org/abs/2212.10013 |
| [pdf] | https://arxiv.org/abs/2212.08775 |
| [code] | https://github.com/google-research/google-research/tree/master/rise |
| [pdf] | https://arxiv.org/abs/2210.14260 |
| [pdf] | https://arxiv.org/abs/2210.08145 |
| [pdf] | https://aclanthology.org/2022.coling-1.527/ |
| [code] | https://github.com/julmaxi/summary_coherence_evaluation |
| [pdf] | https://aclanthology.org/2022.coling-1.515/ |
| [code] | https://github.com/NKWBTB/PrefScore |
| [pdf] | https://arxiv.org/abs/2209.06517 |
| [code] | https://github.com/julmaxi/summary_coherence_evaluation |
| [pdf] | https://arxiv.org/abs/2207.04660 |
| [pdf] | https://aclanthology.org/2022.naacl-main.173/ |
| [code] | https://github.com/PrimerAI/primer-research/ |
| https://github.com/PrimerAI/primer-research/ | https://github.com/PrimerAI/primer-research/ |
| [pdf] | https://aclanthology.org/2022.naacl-main.442/ |
| [code] | https://cogcomp.seas.upenn.edu/page/publication_view/973 |
| [pdf] | https://aclanthology.org/2022.naacl-main.175/ |
| [code] | https://github.com/forrestbao/SueNes/ |
| [pdf] | https://aclanthology.org/2022.naacl-main.153/ |
| [code] | https://github.com/YizhuLiu/summeval |
| [pdf] | https://arxiv.org/abs/2205.12394 |
| [code] | https://github.com/YuLuLiu/MaskEval |
| [pdf] | https://arxiv.org/abs/2204.04991 |
| [pdf] | https://arxiv.org/abs/2103.10918 |
| [code] | https://github.com/PrimerAI/blanc/tree/master/shannon |
| [pdf] | https://arxiv.org/abs/2202.04003 |
| [code] | https://github.com/zhuyunqi96/ngramObj |
| [pdf] | https://arxiv.org/abs/2201.11176 |
| [code] | https://github.com/AIPHES/DiscoScore |
| [pdf] | https://arxiv.org/abs/2201.09282 |
| [code] | https://github.com/Raghav10j/WIDAR |
| [pdf] | https://arxiv.org/abs/2112.01589 |
| [pdf] | https://aclanthology.org/2021.newsum-1.6/ |
| [pdf] | https://arxiv.org/abs/2110.05847 |
| [pdf] | https://arxiv.org/abs/2110.04384 |
| [pdf] | https://arxiv.org/abs/2109.11503 |
| [code] | https://github.com/ZhangShiyue/Lite2-3Pyramid |
| [pdf] | https://arxiv.org/abs/2103.12693 |
| [code] | https://github.com/recitalAI/QuestEval |
| [pdf] | https://arxiv.org/abs/2106.11520 |
| [code] | https://github.com/neulab/BARTScore |
| [pdf] | https://aclanthology.org/2021.acl-long.34/ |
| [code] | https://github.com/Chen-Wang-CUHK/Training-Free-and-Ref-Free-Summ-Evaluation |
| [pdf] | https://arxiv.org/abs/2106.01478 |
| [pdf] | https://arxiv.org/abs/2106.00219 |
| [pdf] | https://arxiv.org/abs/2105.06027 |
| [pdf] | https://www.aclweb.org/anthology/2021.humeval-1.10/ |
| [code] | https://github.com/nesliskender/reliability_humeval_summarization |
| [pdf] | https://aclanthology.org/2021.acl-demo.18/ |
| [data] | https://github.com/robustness-gym/summvis |
| [pdf] | https://arxiv.org/abs/2012.14602 |
| [pdf] | https://www.aclweb.org/anthology/2021.eacl-main.160/ |
| [code] | https://github.com/julmaxi/summary_lq_analysis |
| [pdf] | https://www.aclweb.org/anthology/2020.coling-main.498/ |
| [bib] | https://www.aclweb.org/anthology/2020.coling-main.498.bib |
| [pdf] | https://arxiv.org/abs/2011.13662 |
| [code] | https://github.com/fajri91/ffci |
| https://camo.githubusercontent.com/24cd0b763396c976c32ddb3c711fa1b724f09ff1174f5cd0ef8d9f4868e31cfe/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6576616c756174696f6e2d627269676874677265656e |
| [pdf] | https://arxiv.org/abs/2010.01781 |
| [code] | https://github.com/whl97/LS-Score |
| [pdf] | https://arxiv.org/abs/2007.05374 |
| [code] | https://github.com/danieldeutsch/sacrerouge |
| [pdf] | https://arxiv.org/abs/2007.12626 |
| [code] | https://github.com/Yale-LILY/SummEval |
| [pdf] | https://arxiv.org/abs/1906.01361 |
| [code] | https://github.com/sheffieldnlp/highres |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#multi-document |
| [pdf] | https://arxiv.org/abs/2303.06565 |
| [code] | https://github.com/oaimli/HGSum |
| [pdf] | https://arxiv.org/abs/2301.13844 |
| [pdf] | https://arxiv.org/abs/2212.10526 |
| [code] | https://github.com/allenai/open-mds |
| [pdf] | https://arxiv.org/abs/2210.12688 |
| [code] | https://github.com/ariecattan/multi_mds |
| [pdf] | https://aclanthology.org/2022.coling-1.542/ |
| [code] | https://github.com/PortNLP/DivSumm |
| [pdf] | https://arxiv.org/abs/2209.05929 |
| [pdf] | https://aclanthology.org/2022.coling-1.543/ |
| [code] | https://github.com/muguruzawang/KGSum |
| [pdf] | https://www.ijcai.org/proceedings/2022/591 |
| [data] | https://github.com/StevenLau6/BigSurvey |
| [pdf] | https://aclanthology.org/2022.naacl-main.128/ |
| [code] | https://github.com/oriern/ProCluster |
| [pdf] | https://arxiv.org/abs/2206.10883 |
| [data] | https://github.com/multilexsum/dataset |
| [pdf] | https://aclanthology.org/2022.naacl-main.180/ |
| [code] | https://github.com/Alex-Fabbri/AnswerSumm |
| [pdf] | https://aclanthology.org/2022.acl-long.350/ |
| [pdf] | https://aclanthology.org/2022.acl-long.137/ |
| [code] | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main |
| [pdf] | https://aclanthology.org/2022.acl-long.15/ |
| [code] | https://disi-unibo-nlp.github.io/projects/damen/ |
| [pdf] | https://arxiv.org/abs/2205.03978 |
| [pdf] | https://aclanthology.org/2022.naacl-main.120/ |
| [code] | https://github.com/yunzhusong/NAACL2022-REFLECT |
| [pdf] | https://aclanthology.org/2022.naacl-main.228/ |
| [code] | https://github.com/HLTCHKUST/framing-bias-metric |
| [pdf] | https://arxiv.org/abs/2203.10254 |
| [code] | https://github.com/zhaochaocs/MDS-DR |
| [pdf] | https://aclanthology.org/2022.acl-long.351/ |
| [code] | https://github.com/jacob-parnell-rozetta/longformer_coverage/ |
| [pdf] | https://aclanthology.org/2022.acl-long.360/ |
| [code] | https://github.com/allenai/PRIMER |
| [pdf] | https://arxiv.org/abs/2203.01769 |
| [data] | https://github.com/oaimli/PeerSum |
| [pdf] | https://arxiv.org/abs/2112.08770 |
| [code] | https://github.com/oriern/ClusterProp |
| [pdf] | https://aclanthology.org/2021.emnlp-main.594/ |
| [data] | https://github.com/allenai/ms2 |
| [pdf] | https://arxiv.org/abs/2110.12645 |
| [code] | https://github.com/PaddlePaddle/Research/tree/master/NLP/EMNLP2021-SgSum |
| [pdf] | https://arxiv.org/abs/2110.11207 |
| [pdf] | https://aclanthology.org/2021.newsum-1.13/ |
| [pdf] | https://arxiv.org/abs/2109.11199 |
| [pdf] | https://aclanthology.org/2021.acl-long.473/ |
| [data] | https://github.com/iriscxy/relatedworkgeneration |
| [pdf] | https://aclanthology.org/2021.findings-acl.445/ |
| [pdf] | https://aclanthology.org/2021.findings-acl.30/ |
| [code] | https://github.com/Oceandam/EMSum |
| [pdf] | https://aclanthology.org/2021.acl-long.356/ |
| [code] | https://github.com/THU-KEG/TWAG |
| [pdf] | https://arxiv.org/abs/2106.02278 |
| [data] | https://github.com/google-research-datasets/AgreeSum |
| [pdf] | https://arxiv.org/abs/2105.11908 |
| [pdf] | https://www.aclweb.org/anthology/2021.naacl-main.54/ |
| [code] | https://github.com/OriShapira/InterExp |
| [pdf] | https://www.aclweb.org/anthology/2021.naacl-main.380/ |
| [code] | https://github.com/amazon-research/BartGraphSumm |
| [pdf] | https://www.aclweb.org/anthology/2021.eacl-main.141/ |
| [pdf] | https://arxiv.org/abs/2104.06486 |
| [data] | https://github.com/allenai/ms2 |
| [pdf] | https://arxiv.org/abs/2103.11921 |
| [code] | https://github.com/darsh10/Nutribullets |
| [pdf] | https://arxiv.org/abs/2103.03736 |
| [pdf] | https://www.aclweb.org/anthology/2020.coling-main.494/ |
| [pdf] | https://www.aclweb.org/anthology/2020.findings-emnlp.231/ |
| [code] | https://github.com/zhongxia96/MDS-and-SDS |
| [pdf] | https://www.aclweb.org/anthology/2020.emnlp-main.296/ |
| [code] | https://github.com/yumoxu/querysum |
| [code] | https://github.com/yumoxu/querysum |
| [pdf] | https://arxiv.org/abs/2011.01421 |
| [code] | https://github.com/tahmedge/WSL-DS-COLING-2020 |
| [pdf] | https://arxiv.org/abs/2010.12694 |
| [data] | https://github.com/google-research-datasets/aquamuse |
| [pdf] | https://arxiv.org/abs/2010.00117 |
| [code] | https://github.com/morningmoni/RL-MMR.git |
| [pdf] | https://arxiv.org/abs/2004.12393v1 |
| [code] | https://github.com/brxx122/HeterSUMGraph |
| [pdf] | https://www.aclweb.org/anthology/2020.acl-main.556/ |
| [pdf] | https://arxiv.org/abs/2005.03724 |
| [code] | https://github.com/yg211/acl20-ref-free-eval.git |
| [pdf] | https://arxiv.org/abs/2005.10043 |
| [code] | https://github.com/PaddlePaddle/Research/tree/master/NLP/ACL2020-GraphSum |
| [pdf] | https://arxiv.org/abs/2001.09386 |
| [code] | https://github.com/google-research-datasets/NewSHead.git |
| [pdf] | https://arxiv.org/abs/1909.12231 |
| [pdf] | https://arxiv.org/abs/1906.00072 |
| [code] | https://github.com/ucfnlp/summarization-dpp-capsnet |
| [pdf] | https://arxiv.org/abs/1905.13164 |
| [code] | https://github.com/nlpyang/hiersumm |
| [pdf] | https://arxiv.org/abs/1810.05739 |
| [code] | https://github.com/sosuperic/MeanSum |
| [pdf] | https://arxiv.org/abs/1801.10198 |
| [code] | https://github.com/lucidrains/memory-compressed-attention.git |
| [pdf] | https://www.aclweb.org/anthology/D18-1446/ |
| [code] | https://github.com/ucfnlp/multidoc_summarization |
| [pdf] | https://www.aclweb.org/anthology/K17-1045/ |
| [pdf] | https://arxiv.org/abs/1611.09238 |
| [pdf] | https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.4261 |
| [data] | https://github.com/jingqiangchen/RWS-Cit |
| [pdf] | https://www.aclweb.org/anthology/C16-1143/ |
| [pdf] | https://www.microsoft.com/en-us/research/publication/event-centric-summary-generation/ |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#cross-lingual |
| [pdf] | https://aclanthology.org/2023.acl-long.843/ |
| [pdf] | https://arxiv.org/abs/2303.12308 |
| [code] | https://zenodo.org/record/7604438 |
| [pdf] | https://arxiv.org/abs/2303.04092 |
| [code] | https://github.com/RosenZhang/CroCoSum |
| [pdf] | https://arxiv.org/abs/2302.06560 |
| [code] | https://github.com/anubhav-jangra/M3LS |
| https://arxiv.org/abs/2302.06560 | https://arxiv.org/abs/2302.06560 |
| [pdf] | https://arxiv.org/abs/2212.07220 |
| [pdf] | https://arxiv.org/abs/2212.05740 |
| [code] | https://github.com/qinyiwei/Multi-Sum |
| [pdf] | https://arxiv.org/abs/2202.05599 |
| [code] | https://github.com/krystalan/ClidSum |
| [pdf] | https://arxiv.org/abs/2203.12515 |
| [pdf] | https://arxiv.org/abs/2205.12647 |
| [pdf] | https://aclanthology.org/2022.dialdoc-1.1/ |
| [data] | https://github.com/xcfcode/MSAMSum |
| [pdf] | https://arxiv.org/abs/2205.00379 |
| [pdf] | https://aclanthology.org/2022.acl-long.42/ |
| [pdf] | https://arxiv.org/abs/2204.07834 |
| [pdf] | https://aclanthology.org/2022.acl-long.148/ |
| [code] | https://github.com/XL2248/VHM |
| [pdf] | https://arxiv.org/abs/2203.02797 |
| [pdf] | https://arxiv.org/abs/2112.08804 |
| [code] | https://github.com/csebuetnlp/CrossSum |
| [pdf] | https://arxiv.org/abs/2112.03473 |
| [code] | https://github.com/nguyentthong/CrossSummOptimalTransport |
| [pdf] | https://aclanthology.org/2021.newsum-1.7/ |
| [pdf] | https://aclanthology.org/2021.emnlp-main.742/ |
| [data] | https://github.com/lauhaide/clads |
| [pdf] | https://aclanthology.org/2021.emnlp-main.797/ |
| [code] | https://github.com/danielvarab/massive-summ |
| [pdf] | https://arxiv.org/abs/2110.07936 |
| [pdf] | https://aclanthology.org/2021.findings-acl.242/ |
| [data] | https://github.com/brxx122/CALMS |
| [pdf] | https://arxiv.org/abs/2106.13822 |
| [data] | https://github.com/csebuetnlp/xl-sum |
| [pdf] | https://arxiv.org/abs/2106.01597 |
| [code] | https://github.com/kaushal0494/ZmBART |
| [pdf] | https://arxiv.org/abs/2104.08692 |
| [code] | https://github.com/microsoft/unilm |
| [pdf] | https://arxiv.org/abs/2106.01478 |
| [pdf] | https://aclanthology.org/2021.acl-long.538/ |
| [code] | https://github.com/WoodenWhite/MCLAS |
| [pdf] | https://www.aclweb.org/anthology/2021.hackashop-1.13/ |
| [code] | https://colab.research.google.com/drive/12wUDg64k4oK24rNSd4DRZL9xywNMiPil?usp=sharing |
| [pdf] | https://www.aclweb.org/anthology/2021.eacl-main.146/ |
| [data] | https://deephelp.zendesk.com/hc/en-us/sections/360011925552-MultiHumES |
| [pdf] | https://arxiv.org/abs/2012.04307 |
| [pdf] | https://arxiv.org/abs/2010.08892 |
| [pdf] | https://arxiv.org/abs/2010.07503 |
| [pdf] | https://arxiv.org/abs/2010.03093 |
| [data] | https://github.com/esdurmus/Wikilingua |
| [pdf] | https://www.aclweb.org/anthology/2020.ngt-1.7/ |
| [code] | https://github.com/zdou0830/crosslingual_summarization_semantic |
| [pdf] | https://www.aclweb.org/anthology/2020.acl-main.554/ |
| [pdf] | https://www.aclweb.org/anthology/2020.acl-main.121/ |
| [code] | https://github.com/ZNLP/ATSum |
| [pdf] | https://aaai.org/ojs/index.php/AAAI/article/view/5328 |
| [code] | https://github.com/ycao1996/Multi-Lingual-Summarization |
| [pdf] | https://arxiv.org/abs/1909.10481 |
| [code] | https://github.com/CZWin32768/XNLG |
| [pdf] | https://arxiv.org/abs/1910.00421 |
| [data] | https://forms.gle/gpkJDT6RJWHM1Ztz9 |
| [pdf] | https://arxiv.org/abs/1909.00156 |
| [code] | http://www.nlpr.ia.ac.cn/cip/dataset.htm |
| [pdf] | https://www.aclweb.org/anthology/P19-1305/ |
| [code] | https://github.com/KelleyYin/Cross-lingual-Summarization |
| [pdf] | https://www.aclweb.org/anthology/N19-1204/ |
| [pdf] | https://link.springer.com/chapter/10.1007/978-3-030-14799-0_17 |
| [pdf] | https://link.springer.com/article/10.1007/s10115-018-1152-7 |
| [pdf] | https://dl.acm.org/doi/10.1109/TASLP.2018.2842432 |
| [pdf] | https://hal.archives-ouvertes.fr/hal-01779465/document |
| [pdf] | http://www.nlpr.ia.ac.cn/cip/ZhangPublications/zhang-taslp-2016.pdf |
| [pdf] | https://www.aclweb.org/anthology/D15-1012.pdf |
| [pdf] | https://www.aclweb.org/anthology/W13-3111/ |
| [pdf] | https://www.aclweb.org/anthology/P11-1155.pdf |
| [pdf] | https://hal.archives-ouvertes.fr/hal-02021891/file/Polibits11.pdf |
| [pdf] | https://www.aclweb.org/anthology/P10-1094/ |
| [pdf] | http://www.lrec-conf.org/proceedings/lrec2008/pdf/539_paper.pdf |
| [pdf] | https://dl.acm.org/doi/10.1145/979872.979877 |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#multi-modal |
| [pdf] | https://arxiv.org/abs/2305.05496 |
| [pdf] | https://arxiv.org/abs/2305.04824 |
| [pdf] | https://arxiv.org/abs/2303.12060 |
| [code] | https://videoxum.github.io/ |
| [pdf] | https://arxiv.org/abs/2303.04361 |
| [pdf] | https://arxiv.org/abs/2302.06560 |
| [code] | https://github.com/anubhav-jangra/M3LS |
| https://arxiv.org/abs/2302.06560 | https://arxiv.org/abs/2302.06560 |
| [pdf] | https://aclanthology.org/2022.emnlp-main.468/ |
| [data] | https://github.com/korokes/MCLS |
| [pdf] | https://arxiv.org/abs/2210.08481 |
| [pdf] | https://arxiv.org/abs/2210.04829 |
| [pdf] | https://arxiv.org/abs/2208.11303 |
| [pdf] | https://arxiv.org/abs/2204.03734 |
| [pdf] | https://arxiv.org/abs/2201.02494 |
| [pdf] | https://arxiv.org/abs/2109.05812 |
| [pdf] | https://arxiv.org/abs/2112.12072 |
| [data] | https://github.com/LitianD/HCSCL-MSDataset |
| [pdf] | https://arxiv.org/abs/2111.08201 |
| [pdf] | https://arxiv.org/abs/2109.02401 |
| [code] | https://github.com/HLTCHKUST/VG-GPLMs |
| [pdf] | https://dl.acm.org/doi/10.1145/3404835.3462877 |
| [pdf] | https://aclanthology.org/2021.acl-long.33/ |
| [code] | https://github.com/nc-ai/knowledge/tree/master/publications/MultimodalSum |
| [pdf] | https://arxiv.org/abs/2104.12465 |
| [pdf] | https://www.aclweb.org/anthology/2020.coling-main.496/ |
| [pdf] | https://www.aclweb.org/anthology/2020.emnlp-main.144/ |
| [pdf] | https://arxiv.org/abs/2010.08021 |
| [code] | https://github.com/amankhullar/mast |
| [pdf] | https://arxiv.org/abs/2010.05406 |
| [data] | https://github.com/yingtaomj/VMSMO |
| [pdf] | https://arxiv.org/abs/2009.08018 |
| [code] | https://github.com/xiyan524/MM-AVS |
| [pdf] | https://link.springer.com/chapter/10.1007/978-3-030-45442-5_24 |
| [pdf] | https://aaai.org/ojs/index.php/AAAI/article/view/6332/6188 |
| [code] | https://github.com/hrlinlp/cepsum |
| [pdf] | https://arxiv.org/abs/2002.03740 |
| [pdf] | https://aaai.org/ojs/index.php/AAAI/article/view/6525/6381 |
| [pdf] | https://ieeexplore.ieee.org/document/8948010 |
| [pdf] | http://www.ijirset.com/upload/2019/february/4_shilpa_IEEE.pdf |
| [pdf] | https://research.aston.ac.uk/en/publications/extractive-summarization-of-documents-with-images-based-on-multi- |
| [pdf] | https://www.aclweb.org/anthology/P19-1210/ |
| [pdf] | https://www.aclweb.org/anthology/P19-1659/ |
| [pdf] | https://www.aclweb.org/anthology/D18-1448/ |
| [data] | http://www.nlpr.ia.ac.cn/cip/jjzhang.htm |
| [pdf] | https://www.aclweb.org/anthology/D18-1438/ |
| [pdf] | https://www.ijcai.org/Proceedings/2018/0577.pdf |
| [pdf] | https://nips2018vigil.github.io/static/papers/accepted/8.pdf |
| [data] | https://github.com/srvk/how2-dataset |
| [pdf] | https://ieeexplore.ieee.org/document/8387512 |
| [pdf] | https://dl.acm.org/doi/10.1145/3279981.3279987 |
| [pdf] | https://www.aclweb.org/anthology/D17-1114/ |
| [pdf] | https://dl.acm.org/doi/10.1145/2993148.2993160 |
| [pdf] | https://www.aclweb.org/anthology/L12-1524/ |
| [pdf] | https://eprints.qut.edu.au/43479/1/WACV_266_%281%29.pdf |
| [pdf] | https://www.cs.cmu.edu/~jbigham/pubs/pdfs/2011/multimodal_summarization.pdf |
| [pdf] | http://www.lrec-conf.org/proceedings/lrec2004/pdf/502.pdf |
| [pdf] | http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.862.6509&rep=rep1&type=pdf |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#sentiment-related |
| [pdf] | https://aclanthology.org/2022.emnlp-main.642/ |
| [code] | https://github.com/honglizhan/CovidET |
| [pdf] | https://www.aclweb.org/anthology/2020.coling-main.15/ |
| [code] | https://github.com/RingoS/sentiment-review-summary |
| [bib] | https://www.aclweb.org/anthology/2020.coling-main.15.bib |
| [pdf] | https://arxiv.org/abs/2006.01592 |
| [code] | https://github.com/kenchan0226/dual_view_review_sum |
| [pdf] | https://arxiv.org/abs/1805.01089 |
| [pdf] | https://ieeexplore.ieee.org/document/8076735 |
| [pdf] | https://ieeexplore.ieee.org/document/7878001/ |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#pre-trained-language-model-based |
| [pdf] | https://aclanthology.org/2023.acl-long.844/ |
| [code] | https://github.com/salesforce/socratic-pretraining |
| [pdf] | https://arxiv.org/abs/2303.12796 |
| [pdf] | https://arxiv.org/abs/2208.09770 |
| [pdf] | https://arxiv.org/abs/2206.12131 |
| [code] | https://github.com/RUCAIBox/MVP |
| [pdf] | https://arxiv.org/abs/2205.14912 |
| [pdf] | https://aclanthology.org/2021.findings-emnlp.273/ |
| [code] | https://github.com/acmi-lab/pretraining-with-nonsense |
| [pdf] | https://aclanthology.org/2021.emnlp-main.741/ |
| [code] | https://github.com/alirezasalemi7/ARMAN |
| [pdf] | https://dl.acm.org/doi/10.1145/3404835.3462846 |
| [pdf] | https://arxiv.org/abs/2107.02137 |
| [pdf] | https://arxiv.org/abs/2012.15525 |
| [code] | https://github.com/microsoft/BANG |
| [pdf] | https://arxiv.org/abs/2011.09739 |
| [code] | https://github.com/Ruifeng-paper/FactExsum-coling2020 |
| [pdf] | https://www.aclweb.org/anthology/2020.findings-emnlp.289/ |
| [code] | https://github.com/h4ste/mtft_zsl |
| [pdf] | https://arxiv.org/abs/2010.12836 |
| [pdf] | https://arxiv.org/abs/2010.13002 |
| [code] | https://github.com/huggingface/transformers |
| [pdf] | https://arxiv.org/abs/2004.01853v3 |
| [code] | https://github.com/zoezou2015/abs_pretraining |
| [pdf] | https://arxiv.org/abs/2004.07159 |
| [pdf] | https://arxiv.org/abs/2001.00725 |
| [pdf] | https://arxiv.org/abs/2004.11026 |
| [pdf] | https://arxiv.org/abs/1912.08777 |
| [code] | https://github.com/google-research/pegasus |
| [pdf] | https://arxiv.org/abs/2003.13027 |
| [pdf] | https://arxiv.org/abs/2003.13028 |
| [pdf] | https://arxiv.org/abs/2002.07767 |
| [code] | https://github.com/icml-2020-nlp/semsim |
| [pdf] | https://arxiv.org/abs/1908.08345 |
| [code] | https://github.com/nlpyang/PreSumm |
| [pdf] | https://www.aclweb.org/anthology/P19-1499/ |
| [pdf] | https://arxiv.org/abs/1905.02450 |
| [code] | https://github.com/microsoft/MASS |
| [pdf] | https://arxiv.org/abs/1902.09243 |
| [pdf] | https://arxiv.org/abs/1903.10318 |
| [code] | https://github.com/nlpyang/BertSum |
| [pdf] | https://arxiv.org/abs/1905.03197 |
| [code] | https://github.com/microsoft/unilm |
| [pdf] | https://arxiv.org/abs/1906.04466 |
| [code] | https://github.com/hongwang600/Summarization |
| [pdf] | https://arxiv.org/abs/1906.00138 |
| [code] | https://github.com/Andrew03/transformer-abstractive-summarization |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#controllable |
| [pdf] | https://arxiv.org/abs/2305.05171 |
| [pdf] | https://aclanthology.org/2022.emnlp-main.30/ |
| [code] | https://github.com/salesforce/hydra-sum |
| [pdf] | https://arxiv.org/abs/2212.10449 |
| [code] | https://github.com/salesforce/socratic-pretraining |
| [pdf] | https://arxiv.org/abs/2212.10819 |
| [code] | https://github.com/Wendy-Xiao/relattn_controllable_summ |
| [pdf] | https://arxiv.org/abs/2211.05041 |
| [code] | https://github.com/psunlpgroup/MACSum |
| [pdf] | https://arxiv.org/abs/2210.14502 |
| [code] | https://github.com/Shen-Chenhui/SentBS |
| [pdf] | https://arxiv.org/abs/2210.04705 |
| [pdf] | https://arxiv.org/abs/2210.04029 |
| [pdf] | https://arxiv.org/abs/2206.04317 |
| [code] | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main |
| [pdf] | https://aclanthology.org/2022.acl-long.474/ |
| [code] | https://github.com/yizhuliu/lengthcontrol |
| [pdf] | https://arxiv.org/abs/2205.14522 |
| [code] | https://github.com/MANGA-UOFA/NACC |
| [pdf] | https://arxiv.org/abs/2204.02213 |
| [code] | https://github.com/bloomberg/entsum |
| [data] | https://zenodo.org/record/6359875 |
| [pdf] | https://arxiv.org/abs/2112.07534 |
| [pdf] | https://arxiv.org/abs/2110.04400 |
| [pdf] | https://arxiv.org/abs/2109.07943 |
| [pdf] | https://arxiv.org/abs/2109.03171 |
| [code] | https://github.com/rktamplayo/AceSum |
| [pdf] | https://arxiv.org/abs/2104.08724 |
| [code] | https://github.com/morningmoni/LCGen-eval |
| [pdf] | https://arxiv.org/abs/2104.07606 |
| [pdf] | https://arxiv.org/abs/2010.08014 |
| [code] | https://github.com/neulab/guided_summarization |
| https://camo.githubusercontent.com/7ed1522d03db2fb1fc252a624eb6655895fa57c638d06d5bc11f2892de5f3b43/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6b6579776f7264732d627269676874677265656e |
| https://camo.githubusercontent.com/38a72e4833e1e313a2cf17e42ee23538f06df9a3eb58d12b993db7348f4d6cd7/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d73656e74656e63652d726564 |
| https://camo.githubusercontent.com/f78a093fc451f1b326e73647fa58438c3af5de16dbd0344f2c9c9b9d26e86341/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d747269706c65732d6f72616e6765 |
| https://camo.githubusercontent.com/33f834a153bed96e69a379771d6cef50f292119897e2841065f4eb222bb9a6f9/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d73756d6d61726965732d626c7565 |
| [pdf] | https://arxiv.org/abs/2003.13028 |
| https://camo.githubusercontent.com/7ed1522d03db2fb1fc252a624eb6655895fa57c638d06d5bc11f2892de5f3b43/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6b6579776f7264732d627269676874677265656e |
| https://camo.githubusercontent.com/38a72e4833e1e313a2cf17e42ee23538f06df9a3eb58d12b993db7348f4d6cd7/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d73656e74656e63652d726564 |
| [pdf] | https://www.aclweb.org/anthology/2021.eacl-main.141/ |
| [pdf] | https://arxiv.org/abs/2108.03405 |
| [code] | https://github.com/kenchan0226/control-sum-cmdp |
| [pdf] | https://arxiv.org/abs/2106.00316 |
| [code] | https://github.com/X-AISIG/LenAtten |
| [pdf] | https://arxiv.org/abs/2105.14064 |
| [code] | https://github.com/salesforce/ConvSumm |
| [pdf] | https://arxiv.org/abs/2003.08612 |
| https://camo.githubusercontent.com/7b91995d6055cc5c0cdbe290210583e14208f9250923c78388e3c3b3a1941854/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d696d70726f76652d6f72616e6765 |
| [pdf] | https://arxiv.org/abs/2104.01724 |
| [code] | https://shuyangcao.github.io/projects/inference_style_control/ |
| [pdf] | https://arxiv.org/abs/2012.04281 |
| [code] | https://github.com/salesforce/ctrl-sum |
| [pdf] | https://arxiv.org/abs/2010.12723 |
| https://camo.githubusercontent.com/7b91995d6055cc5c0cdbe290210583e14208f9250923c78388e3c3b3a1941854/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d696d70726f76652d6f72616e6765 |
| [pdf] | https://ojs.aaai.org/index.php/AAAI/article/view/6333 |
| https://camo.githubusercontent.com/7ed1522d03db2fb1fc252a624eb6655895fa57c638d06d5bc11f2892de5f3b43/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6b6579776f7264732d627269676874677265656e |
| [pdf] | https://ojs.aaai.org//index.php/AAAI/article/view/6312 |
| [code] | https://github.com/zhongxia96/SemSUM |
| https://camo.githubusercontent.com/f78a093fc451f1b326e73647fa58438c3af5de16dbd0344f2c9c9b9d26e86341/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d747269706c65732d6f72616e6765 |
| [pdf] | https://www.aclweb.org/anthology/2020.coling-main.606/ |
| [pdf] | https://www.aclweb.org/anthology/2020.coling-main.497/ |
| [code] | https://github.com/thecharm/Abs-LRModel |
| https://camo.githubusercontent.com/7ed1522d03db2fb1fc252a624eb6655895fa57c638d06d5bc11f2892de5f3b43/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6b6579776f7264732d627269676874677265656e |
| [pdf] | https://arxiv.org/abs/2010.06792 |
| [code] | https://github.com/tanyuqian/aspect-based-summarization |
| [pdf] | https://arxiv.org/abs/2001.07331 |
| [pdf] | https://www.aclweb.org/anthology/2020.acl-main.460/ |
| [pdf] | https://arxiv.org/abs/2004.01980 |
| [code] | https://github.com/jind11/TitleStylist |
| [pdf] | https://www.aclweb.org/anthology/P19-1207/ |
| [code] | https://github.com/InitialBug/BiSET |
| https://camo.githubusercontent.com/33f834a153bed96e69a379771d6cef50f292119897e2841065f4eb222bb9a6f9/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d73756d6d61726965732d626c7565 |
| [pdf] | https://www.aclweb.org/anthology/P19-1205/ |
| [code] | https://github.com/StevenWD/ETADS |
| [pdf] | https://www.aclweb.org/anthology/N19-1401/ |
| [code] | https://github.com/takase/control-length |
| [pdf] | https://arxiv.org/abs/1801.07704 |
| [pdf] | https://www.aclweb.org/anthology/N18-2009/ |
| https://camo.githubusercontent.com/7ed1522d03db2fb1fc252a624eb6655895fa57c638d06d5bc11f2892de5f3b43/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d6b6579776f7264732d627269676874677265656e |
| [pdf] | https://arxiv.org/abs/1711.05217 |
| [pdf] | https://www.aclweb.org/anthology/P18-1015/ |
| https://camo.githubusercontent.com/33f834a153bed96e69a379771d6cef50f292119897e2841065f4eb222bb9a6f9/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d73756d6d61726965732d626c7565 |
| [pdf] | https://www.aclweb.org/anthology/D18-1444/ |
| [code] | http://202.120.38.146/sumlen |
| [pdf] | https://arxiv.org/abs/1801.10198 |
| [code] | https://github.com/lucidrains/memory-compressed-attention.git |
| https://camo.githubusercontent.com/38a72e4833e1e313a2cf17e42ee23538f06df9a3eb58d12b993db7348f4d6cd7/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f2d73656e74656e63652d726564 |
| [pdf] | https://www.aclweb.org/anthology/D16-1140/ |
| [code] | https://github.com/kiyukuta/lencon |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#abstractive |
| [pdf] | https://arxiv.org/abs/2302.07124 |
| [code] | https://github.com/RLSNLP/Sum4Simp |
| [pdf] | https://arxiv.org/abs/2302.01342 |
| [pdf] | https://aclanthology.org/2022.emnlp-main.423/ |
| [pdf] | https://arxiv.org/abs/2210.15553 |
| [code] | https://github.com/Priberam/SummEBR |
| [pdf] | https://arxiv.org/abs/2210.12330 |
| [code] | https://github.com/tencent-ailab/season |
| [pdf] | https://arxiv.org/abs/2210.08779 |
| [code] | https://github.com/ntunlp/SummaFusion/ |
| [pdf] | https://aclanthology.org/2022.coling-1.544/ |
| [code] | https://github.com/pengshancai/AVS_gen |
| [pdf] | https://aclanthology.org/2022.coling-1.540/ |
| [code] | https://github.com/EngSalem/arglegalsumm |
| [pdf] | https://aclanthology.org/2022.coling-1.526/ |
| [code] | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main |
| [pdf] | https://aclanthology.org/2022.coling-1.264/ |
| [pdf] | https://aclanthology.org/2022.findings-naacl.163/ |
| [pdf] | https://aclanthology.org/2022.naacl-srw.3/ |
| [code] | https://github.com/loem-ms/ExtraPhrase |
| [pdf] | https://aclanthology.org/2022.acl-long.207/ |
| [code] | https://github.com/yixinL7/BRIO |
| [pdf] | https://aclanthology.org/2022.acl-long.309/ |
| [code] | https://github.com/ntunlp/SummaReranker |
| https://github.com/ntunlp/SummaReranker | https://github.com/ntunlp/SummaReranker |
| [pdf] | https://arxiv.org/abs/2201.02739 |
| [pdf] | https://arxiv.org/abs/2112.01591 |
| [pdf] | https://arxiv.org/abs/2111.10269 |
| [pdf] | https://aclanthology.org/2021.newsum-1.2/ |
| [pdf] | https://aclanthology.org/2021.newsum-1.4/ |
| [pdf] | https://aclanthology.org/2021.newsum-1.3.pdf |
| [code] | https://github.com/SeanG-325/KAS |
| [pdf] | https://aclanthology.org/2021.newsum-1.1/ |
| [code] | https://github.com/idiap/sentence-planner |
| [pdf] | https://aclanthology.org/2021.emnlp-main.336/ |
| [code] | https://github.com/hrlinlp/coconet |
| [pdf] | https://arxiv.org/abs/2110.04741 |
| [pdf] | https://arxiv.org/abs/2110.04257 |
| [pdf] | https://arxiv.org/abs/2109.10616 |
| [pdf] | https://arxiv.org/abs/2109.06046 |
| [pdf] | https://arxiv.org/abs/2109.04098 |
| [data] | https://github.com/mohammadiahmad/persian-dataset |
| [pdf] | https://arxiv.org/abs/2106.10084 |
| [code] | https://github.com/thinkwee/SubjectiveBiasABS |
| [pdf] | https://arxiv.org/abs/2106.03953 |
| [pdf] | https://aclanthology.org/2022.acl-long.11/ |
| [code] | https://github.com/Shengqiang-Zhang/plate |
| [pdf] | https://aclanthology.org/2021.acl-long.472/ |
| [pdf] | https://www.aclweb.org/anthology/2021.naacl-main.381/ |
| [code] | https://github.com/jiangycTarheel/TPT-Summ |
| [pdf] | https://arxiv.org/abs/2105.10155 |
| [pdf] | https://arxiv.org/abs/2105.00816 |
| [pdf] | https://arxiv.org/abs/2105.03279 |
| [pdf] | https://arxiv.org/abs/2104.14860 |
| [pdf] | https://www.aclweb.org/anthology/2021.eacl-main.119/ |
| [pdf] | https://arxiv.org/abs/2104.10454 |
| [pdf] | https://arxiv.org/abs/2104.07606 |
| [pdf] | https://arxiv.org/abs/2104.02205 |
| [code] | https://shuyangcao.github.io/projects/inference_head_masking/ |
| [pdf] | https://arxiv.org/abs/2104.01726 |
| [code] | https://github.com/ucfnlp/varying-length-summ |
| [pdf] | https://arxiv.org/abs/2004.11779 |
| [code] | https://github.com/Wanghn95/Esca_Code |
| [pdf] | https://www.aclweb.org/anthology/2020.emnlp-main.35/ |
| [code] | https://github.com/BoChenGroup/TA |
| [pdf] | https://arxiv.org/abs/2101.07120 |
| [pdf] | https://arxiv.org/abs/2010.10323 |
| [code] | https://github.com/taas-www21/taas |
| [pdf] | https://arxiv.org/abs/2010.03738 |
| [pdf] | https://arxiv.org/abs/2010.05369 |
| [pdf] | https://arxiv.org/abs/2010.03726 |
| [code] | https://github.com/ucfnlp/sent-fusion-transformers |
| [pdf] | https://arxiv.org/abs/2010.03722 |
| [code] | https://github.com/ucfnlp/cascaded-summ |
| [pdf] | https://www.ijcai.org/Proceedings/2020/0761.pdf |
| [code] | http://www.cs.nccu.edu.tw/~hhhuang/auto_survey/ |
| [pdf] | https://arxiv.org/abs/2004.09739 |
| [pdf] | https://www.ijcai.org/Proceedings/2020/644 |
| [pdf] | https://arxiv.org/abs/2002.10375 |
| [pdf] | https://arxiv.org/abs/1911.10390 |
| [code] | https://github.com/ucfnlp/control-over-copying |
| [pdf] | https://arxiv.org/abs/2002.10101 |
| [pdf] | https://arxiv.org/abs/2008.09676 |
| [pdf] | https://arxiv.org/abs/1910.08486 |
| [code] | https://github.com/wprojectsn/codes |
| [pdf] | https://arxiv.org/abs/1907.01272 |
| [pdf] | https://www.aclweb.org/anthology/D19-1301/ |
| [code] | https://github.com/travel-go/Abstractive-Text-Summarization |
| [pdf] | https://arxiv.org/abs/1909.02059 |
| [code] | https://evasharma.github.io/SENECA/ |
| [pdf] | https://www.aclweb.org/anthology/D19-1616/ |
| [code] | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main |
| [pdf] | https://arxiv.org/abs/1910.11491 |
| [code] | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main |
| [pdf] | https://www.aclweb.org/anthology/P19-1209/ |
| [code] | https://github.com/ucfnlp/summarization-sing-pair-mix |
| [pdf] | https://www.aclweb.org/anthology/P19-1630/ |
| [code] | https://github.com/ColiLea/aspect_based_summarization |
| [pdf] | https://arxiv.org/abs/1906.04687 |
| [code] | https://github.com/lauhaide/WikiCatSum |
| [pdf] | https://arxiv.org/abs/1907.10873 |
| [code] | https://github.com/ninikolov/summary-denoising |
| [pdf] | https://arxiv.org/abs/1809.04585 |
| [pdf] | https://www.aclweb.org/anthology/D18-1441/ |
| [pdf] | https://arxiv.org/abs/1808.10792 |
| [code] | https://github.com/sebastianGehrmann/bottom-up-summary |
| [pdf] | https://www.aclweb.org/anthology/P18-1013/ |
| [pdf] | https://www.aclweb.org/anthology/P18-1064/ |
| [pdf] | https://link.springer.com/chapter/10.1007/978-3-030-05090-0_31 |
| [pdf] | https://www.aclweb.org/anthology/N18-1064/ |
| [pdf] | https://arxiv.org/abs/1704.04368 |
| [code] | https://github.com/abisee/pointer-generator |
| [pdf] | https://arxiv.org/abs/1704.07073 |
| [pdf] | https://www.aclweb.org/anthology/P17-1108/ |
| [pdf] | https://www.aclweb.org/anthology/N15-1114/ |
| [pdf] | https://www.aclweb.org/anthology/W13-2117/ |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#graph-based |
| [pdf] | https://arxiv.org/abs/2211.09458 |
| [code] | https://github.com/yfqiu-nlp/hiergnn |
| [pdf] | https://www.aaai.org/AAAI22Papers/AAAI-6812.SongZ.pdf |
| [pdf] | https://arxiv.org/abs/2204.07551 |
| [code] | https://github.com/maartjeth/summarization_with_graphical_elements |
| [pdf] | https://arxiv.org/abs/2110.06388 |
| [pdf] | https://arxiv.org/abs/2103.15327 |
| [pdf] | https://www.aclweb.org/anthology/2020.emnlp-main.295/ |
| [code] | https://github.com/coder352/HAHSum |
| [pdf] | https://arxiv.org/abs/2010.06253 |
| [pdf] | https://arxiv.org/abs/2004.12393 |
| [code] | https://github.com/brxx122/HeterSUMGraph |
| [pdf] | https://arxiv.org/abs/1811.01824 |
| [code] | https://github.com/CoderPat/structured-neural-summarization |
| [pdf] | https://arxiv.org/abs/1905.13164 |
| [code] | https://github.com/nlpyang/hiersumm |
| [pdf] | https://arxiv.org/abs/1909.12231 |
| [pdf] | https://www.aclweb.org/anthology/K17-1045/ |
| [pdf] | https://www.aclweb.org/anthology/P17-1108/ |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#unsupervised |
| [pdf] | https://arxiv.org/abs/2302.12490 |
| [code] | https://github.com/ShichaoSun/SS4Sum |
| [pdf] | https://arxiv.org/abs/2212.10843 |
| [code] | https://github.com/dmhyun/MSRP |
| [pdf] | https://arxiv.org/abs/2210.13800 |
| [code] | https://github.com/msclar/referee |
| [pdf] | https://aclanthology.org/2022.coling-1.550/ |
| [code] | https://github.com/THU-KEG/UPER |
| https://github.com/THU-KEG/UPER | https://github.com/THU-KEG/UPER |
| [pdf] | https://aclanthology.org/2022.acl-long.545/ |
| [code] | https://github.com/manga-uofa/naus |
| [pdf] | https://aclanthology.org/2022.acl-long.86/ |
| [code] | https://github.com/brcsomnath/SemAE |
| [pdf] | https://arxiv.org/abs/2108.13487 |
| [pdf] | https://aclanthology.org/2021.findings-acl.147/ |
| [code] | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/blob/main |
| [pdf] | https://arxiv.org/abs/2105.00239 |
| [code] | https://github.com/saurabhhssaurabh/reviews_summarization |
| [pdf] | https://arxiv.org/abs/2103.15327 |
| [pdf] | https://arxiv.org/abs/2012.07808 |
| [code] | https://github.com/rktamplayo/PlanSum |
| [pdf] | https://arxiv.org/abs/2011.01026 |
| [code] | https://lit.eecs.umich.edu/downloads.html |
| [pdf] | https://arxiv.org/abs/2010.08242 |
| [code] | https://github.com/xssstory/STAS |
| [pdf] | https://arxiv.org/abs/2010.04379 |
| [code] | https://github.com/kohilin/ealm |
| [pdf] | https://arxiv.org/abs/1907.12951 |
| [code] | https://github.com/ninikolov/low_resource_summarization |
| [pdf] | https://arxiv.org/abs/1906.05691 |
| [code] | https://github.com/misonuma/strsum |
| [pdf] | https://www.aclweb.org/anthology/P19-1628/ |
| [code] | https://github.com/mswellhao/PacSum |
| [pdf] | https://arxiv.org/abs/2005.01791 |
| [code] | https://github.com/raphael-sch/HC_Sentence_Summarization |
| [pdf] | https://arxiv.org/abs/1910.00998 |
| [code] | https://github.com/google-research/google-research/tree/master/summae |
| [pdf] | https://arxiv.org/abs/1810.05739 |
| [code] | https://github.com/sosuperic/MeanSum |
| [pdf] | https://arxiv.org/abs/1904.03651 |
| [code] | https://github.com/cbaziotis/seq3 |
| [pdf] | https://www.aclweb.org/anthology/D18-1451/ |
| [code] | https://github.com/yaushian/Unparalleled-Text-Summarization-using-GAN |
| [pdf] | https://arxiv.org/abs/1805.05271 |
| [code] | https://bitbucket.org/dascim/acl2018_abssumm |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#concept-map-based |
| [pdf] | https://www.aclweb.org/anthology/N19-1074/ |
| [code] | https://github.com/UKPLab/naacl2019-cmaps-lshcw |
| [pdf] | https://www.aclweb.org/anthology/D17-1320/ |
| [code] | https://github.com/UKPLab/emnlp2017-cmapsum-corpus/ |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#timeline |
| [pdf] | https://arxiv.org/abs/2301.00867 |
| [code] | https://github.com/iriscxy/Unified-Timeline-Summarizer |
| [pdf] | https://arxiv.org/abs/2210.14190 |
| [data] | https://github.com/CrisisLTLSum/CrisisTimelines |
| [pdf] | https://aclanthology.org/2022.naacl-main.301/ |
| [data] | https://github.com/MorenoLaQuatra/SDF-TLS |
| [pdf] | https://aclanthology.org/2022.acl-long.446/ |
| [code] | https://github.com/panthap2/updated-headline-generation |
| [pdf] | https://arxiv.org/abs/2204.02208 |
| [pdf] | https://dl.acm.org/doi/abs/10.1145/3517221 |
| [data] | https://github.com/iriscxy/Unified-Timeline-Summarizer |
| [pdf] | https://aclanthology.org/2021.acl-long.32/ |
| [data] | https://yiyualt.github.io/mtlsdata/ |
| [pdf] | https://dl.acm.org/doi/10.1145/3404835.3462954 |
| [data] | https://github.com/MorenoLaQuatra/SDF-TLS |
| [pdf] | https://arxiv.org/abs/2005.10107 |
| [code] | https://github.com/complementizer/news-tls |
| [pdf] | https://www.ijcai.org/Proceedings/2019/686 |
| [data] | https://github.com/yingtaomj/Learning-towards-Abstractive-Timeline-Summarization |
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#opinion |
| [pdf] | https://arxiv.org/abs/2303.11660 |
| [pdf] | https://aclanthology.org/2022.emnlp-main.201/ |
| [code] | https://github.com/YizhuLiu/Opinion-Summarization |
| [pdf] | https://arxiv.org/abs/2212.10791 |
| [pdf] | https://arxiv.org/abs/2211.15914 |
| [code] | https://github.com/testzer0/ZS-Summ-GPT3 |
| [pdf] | https://arxiv.org/abs/2211.14923 |
| [pdf] | https://arxiv.org/abs/2211.08723 |
| [pdf] | https://arxiv.org/abs/2209.07496 |
| [pdf] | https://arxiv.org/abs/2208.04083 |
| [pdf] | https://aclanthology.org/2022.findings-naacl.113/ |
| [code] | https://github.com/amazon-research/adasum |
| [pdf] | https://arxiv.org/abs/2112.08414 |
| [pdf] | https://aclanthology.org/2021.findings-emnlp.328/ |
| [code] | https://github.com/megagonlabs/coop |
| [pdf] | https://aclanthology.org/2021.newsum-1.9/ |
| [data] | https://github.com/wenyi-tay/sos |
| [pdf] | https://arxiv.org/abs/2110.07520 |
| [data] | https://github.com/megagonlabs/cocosum |
| [pdf] | https://arxiv.org/abs/2109.04325 |
| [code] | https://github.com/abrazinskas/SelSum |
| [pdf] | https://arxiv.org/abs/2109.03171 |
| [code] | https://github.com/rktamplayo/AceSum |
| [pdf] | https://arxiv.org/abs/2108.08010 |
| [code] | https://github.com/JD-AI-Research-NLP/CUSTOM |
|
nlp
| https://patch-diff.githubusercontent.com/topics/nlp |
|
natural-language-processing
| https://patch-diff.githubusercontent.com/topics/natural-language-processing |
|
text-generation
| https://patch-diff.githubusercontent.com/topics/text-generation |
|
summarization
| https://patch-diff.githubusercontent.com/topics/summarization |
|
pretrained-language-model
| https://patch-diff.githubusercontent.com/topics/pretrained-language-model |
|
chatgpt
| https://patch-diff.githubusercontent.com/topics/chatgpt |
|
Readme
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers#readme-ov-file |
| Please reload this page | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers |
|
Activity | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/activity |
|
1k
stars | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/stargazers |
|
23
watching | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/watchers |
|
147
forks | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/forks |
|
Report repository
| https://patch-diff.githubusercontent.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2Fxcfcode%2FSummarization-Papers&report=xcfcode+%28user%29 |
| Contributors
4 | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/graphs/contributors |
| Please reload this page | https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers |
|
TeX
97.8%
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/search?l=tex |
|
Python
2.2%
| https://patch-diff.githubusercontent.com/xcfcode/Summarization-Papers/search?l=python |
|
| https://github.com |
| Terms | https://docs.github.com/site-policy/github-terms/github-terms-of-service |
| Privacy | https://docs.github.com/site-policy/privacy-policies/github-privacy-statement |
| Security | https://github.com/security |
| Status | https://www.githubstatus.com/ |
| Community | https://github.community/ |
| Docs | https://docs.github.com/ |
| Contact | https://support.github.com?tags=dotcom-footer |