René's URL Explorer Experiment


Title: GitHub - viewcode/3D-Machine-Learning: A resource repository for 3D machine learning

Open Graph Title: GitHub - viewcode/3D-Machine-Learning: A resource repository for 3D machine learning

X Title: GitHub - viewcode/3D-Machine-Learning: A resource repository for 3D machine learning

Description: A resource repository for 3D machine learning. Contribute to viewcode/3D-Machine-Learning development by creating an account on GitHub.

Open Graph Description: A resource repository for 3D machine learning. Contribute to viewcode/3D-Machine-Learning development by creating an account on GitHub.

X Description: A resource repository for 3D machine learning. Contribute to viewcode/3D-Machine-Learning development by creating an account on GitHub.

Opengraph URL: https://github.com/viewcode/3D-Machine-Learning

X: @github

direct link

Domain: patch-diff.githubusercontent.com

route-pattern/:user_id/:repository
route-controllerfiles
route-actiondisambiguate
fetch-noncev2:6f9a4923-14dc-4f5e-7fc4-6fb52d3fdc6b
current-catalog-service-hashf3abb0cc802f3d7b95fc8762b94bdcb13bf39634c40c357301c4aa1d67a256fb
request-idB830:13AA49:6A4FCD7:89B3EA3:697E2E90
html-safe-nonce82f5707cfc84da8c3b54b896e29076ee5154f5f52f0421163d7721382d729e9b
visitor-payloadeyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJCODMwOjEzQUE0OTo2QTRGQ0Q3Ojg5QjNFQTM6Njk3RTJFOTAiLCJ2aXNpdG9yX2lkIjoiODI4Mjc2MzAyNTI5NTc0ODc1MiIsInJlZ2lvbl9lZGdlIjoiaWFkIiwicmVnaW9uX3JlbmRlciI6ImlhZCJ9
visitor-hmac4ae098113bc8cf7a5a99ab0a76cd3136159ccb5526225a89e339a32f2591b010
hovercard-subject-tagrepository:264461577
github-keyboard-shortcutsrepository,copilot
google-site-verificationApib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I
octolytics-urlhttps://collector.github.com/github/collect
analytics-location//
fb:app_id1401488693436528
apple-itunes-appapp-id=1477376905, app-argument=https://github.com/viewcode/3D-Machine-Learning
twitter:imagehttps://opengraph.githubassets.com/1713833fe06b1e553030fe7db51f75eb2874cade72effb2578df59b8a6be8194/viewcode/3D-Machine-Learning
twitter:cardsummary_large_image
og:imagehttps://opengraph.githubassets.com/1713833fe06b1e553030fe7db51f75eb2874cade72effb2578df59b8a6be8194/viewcode/3D-Machine-Learning
og:image:altA resource repository for 3D machine learning. Contribute to viewcode/3D-Machine-Learning development by creating an account on GitHub.
og:image:width1200
og:image:height600
og:site_nameGitHub
og:typeobject
hostnamegithub.com
expected-hostnamegithub.com
None60279d4097367e16897439d16d6bbe4180663db828c666eeed2656988ffe59f6
turbo-cache-controlno-preview
go-importgithub.com/viewcode/3D-Machine-Learning git https://github.com/viewcode/3D-Machine-Learning.git
octolytics-dimension-user_id14194306
octolytics-dimension-user_loginviewcode
octolytics-dimension-repository_id264461577
octolytics-dimension-repository_nwoviewcode/3D-Machine-Learning
octolytics-dimension-repository_publictrue
octolytics-dimension-repository_is_forktrue
octolytics-dimension-repository_parent_id100120455
octolytics-dimension-repository_parent_nwotimzhang642/3D-Machine-Learning
octolytics-dimension-repository_network_root_id100120455
octolytics-dimension-repository_network_root_nwotimzhang642/3D-Machine-Learning
turbo-body-classeslogged-out env-production page-responsive
disable-turbofalse
browser-stats-urlhttps://api.github.com/_private/browser/stats
browser-errors-urlhttps://api.github.com/_private/browser/errors
release7c85641c598ad130c74f7bcc27f58575cac69551
ui-targetfull
theme-color#1e2327
color-schemelight dark

Links:

Skip to contenthttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#start-of-content
https://patch-diff.githubusercontent.com/
Sign in https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2Fviewcode%2F3D-Machine-Learning
GitHub CopilotWrite better code with AIhttps://github.com/features/copilot
GitHub SparkBuild and deploy intelligent appshttps://github.com/features/spark
GitHub ModelsManage and compare promptshttps://github.com/features/models
MCP RegistryNewIntegrate external toolshttps://github.com/mcp
ActionsAutomate any workflowhttps://github.com/features/actions
CodespacesInstant dev environmentshttps://github.com/features/codespaces
IssuesPlan and track workhttps://github.com/features/issues
Code ReviewManage code changeshttps://github.com/features/code-review
GitHub Advanced SecurityFind and fix vulnerabilitieshttps://github.com/security/advanced-security
Code securitySecure your code as you buildhttps://github.com/security/advanced-security/code-security
Secret protectionStop leaks before they starthttps://github.com/security/advanced-security/secret-protection
Why GitHubhttps://github.com/why-github
Documentationhttps://docs.github.com
Bloghttps://github.blog
Changeloghttps://github.blog/changelog
Marketplacehttps://github.com/marketplace
View all featureshttps://github.com/features
Enterpriseshttps://github.com/enterprise
Small and medium teamshttps://github.com/team
Startupshttps://github.com/enterprise/startups
Nonprofitshttps://github.com/solutions/industry/nonprofits
App Modernizationhttps://github.com/solutions/use-case/app-modernization
DevSecOpshttps://github.com/solutions/use-case/devsecops
DevOpshttps://github.com/solutions/use-case/devops
CI/CDhttps://github.com/solutions/use-case/ci-cd
View all use caseshttps://github.com/solutions/use-case
Healthcarehttps://github.com/solutions/industry/healthcare
Financial serviceshttps://github.com/solutions/industry/financial-services
Manufacturinghttps://github.com/solutions/industry/manufacturing
Governmenthttps://github.com/solutions/industry/government
View all industrieshttps://github.com/solutions/industry
View all solutionshttps://github.com/solutions
AIhttps://github.com/resources/articles?topic=ai
Software Developmenthttps://github.com/resources/articles?topic=software-development
DevOpshttps://github.com/resources/articles?topic=devops
Securityhttps://github.com/resources/articles?topic=security
View all topicshttps://github.com/resources/articles
Customer storieshttps://github.com/customer-stories
Events & webinarshttps://github.com/resources/events
Ebooks & reportshttps://github.com/resources/whitepapers
Business insightshttps://github.com/solutions/executive-insights
GitHub Skillshttps://skills.github.com
Documentationhttps://docs.github.com
Customer supporthttps://support.github.com
Community forumhttps://github.com/orgs/community/discussions
Trust centerhttps://github.com/trust-center
Partnershttps://github.com/partners
GitHub SponsorsFund open source developershttps://github.com/sponsors
Security Labhttps://securitylab.github.com
Maintainer Communityhttps://maintainers.github.com
Acceleratorhttps://github.com/accelerator
Archive Programhttps://archiveprogram.github.com
Topicshttps://github.com/topics
Trendinghttps://github.com/trending
Collectionshttps://github.com/collections
Enterprise platformAI-powered developer platformhttps://github.com/enterprise
GitHub Advanced SecurityEnterprise-grade security featureshttps://github.com/security/advanced-security
Copilot for BusinessEnterprise-grade AI featureshttps://github.com/features/copilot/copilot-business
Premium SupportEnterprise-grade 24/7 supporthttps://github.com/premium-support
Pricinghttps://github.com/pricing
Search syntax tipshttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
documentationhttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
Sign in https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2Fviewcode%2F3D-Machine-Learning
Sign up https://patch-diff.githubusercontent.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=viewcode%2F3D-Machine-Learning
Reloadhttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning
Reloadhttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning
Reloadhttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning
viewcode https://patch-diff.githubusercontent.com/viewcode
3D-Machine-Learninghttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning
timzhang642/3D-Machine-Learninghttps://patch-diff.githubusercontent.com/timzhang642/3D-Machine-Learning
Notifications https://patch-diff.githubusercontent.com/login?return_to=%2Fviewcode%2F3D-Machine-Learning
Fork 0 https://patch-diff.githubusercontent.com/login?return_to=%2Fviewcode%2F3D-Machine-Learning
Star 0 https://patch-diff.githubusercontent.com/login?return_to=%2Fviewcode%2F3D-Machine-Learning
0 stars https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/stargazers
1.8k forks https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/forks
Branches https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/branches
Tags https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/tags
Activity https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/activity
Star https://patch-diff.githubusercontent.com/login?return_to=%2Fviewcode%2F3D-Machine-Learning
Notifications https://patch-diff.githubusercontent.com/login?return_to=%2Fviewcode%2F3D-Machine-Learning
Code https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning
Pull requests 0 https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/pulls
Actions https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/actions
Projects 0 https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/projects
Security 0 https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/security
Insights https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/pulse
Code https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning
Pull requests https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/pulls
Actions https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/actions
Projects https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/projects
Security https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/security
Insights https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/pulse
Brancheshttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/branches
Tagshttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/tags
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/branches
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/tags
264 Commitshttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/commits/master/
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/commits/master/
imgshttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/tree/master/imgs
imgshttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/tree/master/imgs
README.mdhttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/blob/master/README.md
README.mdhttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/blob/master/README.md
READMEhttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#3d-machine-learning
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#get-involved
this linkhttps://join.slack.com/t/3d-machine-learning/shared_invite/enQtMzUyMTgyNzgwOTgzLTFiYTM4YWFjMTcxY2Q3YjQwMTA3ZGE2OTYwNDRlMDA5NGFmNDU5Njg4ODJhN2YwNmZkMDM4ZTllZWQzNjRjNDc
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#table-of-contents
Courseshttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#courses
Datasetshttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#datasets
3D Modelshttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#3d_models
3D Sceneshttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#3d_scenes
3D Pose Estimationhttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#pose_estimation
Single Object Classificationhttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#single_classification
Multiple Objects Detectionhttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#multiple_detection
Scene/Object Semantic Segmentationhttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#segmentation
3D Geometry Synthesis/Reconstructionhttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#3d_synthesis
Parametric Morphable Model-based methodshttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#3d_synthesis_model_based
Part-based Template Learning methodshttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#3d_synthesis_template_based
Deep Learning Methodshttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#3d_synthesis_dl_based
Texture/Material Analysis and Synthesishttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#material_synthesis
Style Learning and Transferhttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#style_transfer
Scene Synthesis/Reconstructionhttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#scene_synthesis
Scene Understandinghttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#scene_understanding
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#available-courses
Stanford CS231A: Computer Vision-From 3D Reconstruction to Recognition (Winter 2018)http://web.stanford.edu/class/cs231a/
UCSD CSE291-I00: Machine Learning for 3D Data (Winter 2018)https://cse291-i.github.io/index.html
Stanford CS468: Machine Learning for 3D Data (Spring 2017)http://graphics.stanford.edu/courses/cs468-17-spring/
MIT 6.838: Shape Analysis (Spring 2017)http://groups.csail.mit.edu/gdpgroup/6838_spring_2017.html
Princeton COS 526: Advanced Computer Graphics (Fall 2010)https://www.cs.princeton.edu/courses/archive/fall10/cos526/syllabus.php
Princeton CS597: Geometric Modeling and Analysis (Fall 2003)https://www.cs.princeton.edu/courses/archive/fall03/cs597D/
Geometric Deep Learninghttp://geometricdeeplearning.com/
Paper Collection for 3D Understandinghttps://www.cs.princeton.edu/courses/archive/spring15/cos598A/cos598A.html#Estimating
CreativeAI: Deep Learning for Graphicshttp://geometry.cs.ucl.ac.uk/creativeai/
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#datasets
collectionhttp://www0.cs.ucl.ac.uk/staff/M.Firman//RGBDdatasets/
RGBD Datasets: Past, Present and Futurehttps://arxiv.org/pdf/1604.00999.pdf
cataloguehttp://pointclouds.org/media/
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#3d-models
[Link]http://shape.cs.princeton.edu/benchmark/
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Princeton%20Shape%20Benchmark%20(2003).jpeg
[Link]http://ikea.csail.mit.edu/
https://camo.githubusercontent.com/59430f71c3de4bdb02a4c5f5c53bdd564e745b0a2d730ebd91381615dfef66d3/687474703a2f2f696b65612e637361696c2e6d69742e6564752f7765625f696d672f696b65615f6f626a6563742e706e67
[Link]http://opensurfaces.cs.cornell.edu/
https://camo.githubusercontent.com/afcbd38c975f8f8448179e287467374dd93905fa2c55a18a9acfe3cfb6b62f4d/687474703a2f2f6f70656e73757266616365732e63732e636f726e656c6c2e6564752f7374617469632f696d672f746561736572342d7765622e6a7067
[Link]http://cvgl.stanford.edu/projects/pascal3d.html
https://camo.githubusercontent.com/a74a806c70efe2dc017e50e9354c148a4d7732bf3a604240e080a92bf2c17c9e/687474703a2f2f6376676c2e7374616e666f72642e6564752f70726f6a656374732f70617363616c33642b2f70617363616c33642e706e67
[Link]http://modelnet.cs.princeton.edu/#
https://camo.githubusercontent.com/03d2b9141b8e9d1a3ad89dbc7cb8cb28faf451e4962ac180ab6db60c65c51e34/687474703a2f2f3364766973696f6e2e7072696e6365746f6e2e6564752f70726f6a656374732f323031342f4d6f64656c4e65742f7468756d626e61696c2e6a7067
[Link]https://www.shapenet.org/
[Link]http://shapenet.cs.stanford.edu/shrec16/
https://camo.githubusercontent.com/6913697f6f899c34f7ae5be94ddbbd732873e2a8ae1ab01e2d4da36b7cd1e4cf/687474703a2f2f6d73617676612e6769746875622e696f2f66696c65732f73686170656e65742e706e67
[Link]http://redwood-data.org/3dscan/index.html
https://camo.githubusercontent.com/e63d56e1081da3a588816338423672fd1b4be7bfaa87823f8c410132dad1a286/687474703a2f2f726564776f6f642d646174612e6f72672f33647363616e2f696d672f7465617365722e6a7067
[Link]http://cvgl.stanford.edu/projects/objectnet3d/
https://camo.githubusercontent.com/dfdef0a02b98ff2c8f8685dc2ac11ead8b230577165672197985162554251c60/687474703a2f2f6376676c2e7374616e666f72642e6564752f70726f6a656374732f6f626a6563746e657433642f4f626a6563744e657433442e706e67
[Link]https://ten-thousand-models.appspot.com/
https://camo.githubusercontent.com/0c109e10a39c331e44949a252f2cbe6697af56e40cc216e20267ddee1a40ff0c/68747470733a2f2f7062732e7477696d672e636f6d2f6d656469612f44526278576e71586b4145454830672e6a70673a6c61726765
[Link]https://cs.nyu.edu/~zhongshi/publication/abc-dataset/
[Paper]https://arxiv.org/abs/1812.06216
https://camo.githubusercontent.com/0a03de6e1841952a5fe146cc2f07267370aba105ccce3204b7aaae4ede8ded3d/68747470733a2f2f63732e6e79752e6564752f7e7a686f6e677368692f696d672f6162632d646174617365742e706e67
[Link]https://hkust-vgd.github.io/scanobjectnn/
https://camo.githubusercontent.com/38b9b6e006cc376e2b644b913f9159c54cb42bcfad42db89a598c717a644e7b9/68747470733a2f2f686b7573742d7667642e6769746875622e696f2f7363616e6f626a6563746e6e2f696d616765732f6f626a656374735f7465617365722e706e67
[Link]https://voca.is.tue.mpg.de/
[Paper]https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/510/paper_final.pdf
VOCASEThttps://voca.is.tue.mpg.de/
https://github.com/TimoBolkart/voca/blob/master/gif/vocaset.gif
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#3d-scenes
[Link]https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
https://camo.githubusercontent.com/6b05c515c57aa84811854c57b9e770359ab1f6973c2e172ec143959d09d7b73a/68747470733a2f2f63732e6e79752e6564752f7e73696c6265726d616e2f696d616765732f6e79755f64657074685f76325f6c6162656c65642e6a7067
[Link]http://rgbd.cs.princeton.edu/challenge.html
https://camo.githubusercontent.com/bb0e2fe32d632b894a9813f9f51c760e40ae8c0bc4b71dedcc8fb72014a59b98/687474703a2f2f726762642e63732e7072696e6365746f6e2e6564752f3364626f782e706e67
[Link]http://www.scenenn.net/
https://camo.githubusercontent.com/e536569df6ffacc9f511a8833f004297e13c9902c4467f53621fd0a7b03c4614/68747470733a2f2f63646e2d616b2e662e73742d686174656e612e636f6d2f696d616765732f666f746f6c6966652f722f726f626f6e6368752f32303137303631312f32303137303631313135353632352e706e67
[Link]http://www.scan-net.org/
https://camo.githubusercontent.com/1f3b4c6d43b033a507722d223defdcf11b6a8f6a5f28d48218bb46243a701572/687474703a2f2f7777772e7363616e2d6e65742e6f72672f696d672f616e6e6f746174696f6e732e706e67
[Link]https://niessner.github.io/Matterport/
https://camo.githubusercontent.com/c8cc9d7eda332ec0af76e90e334d862543feef0ab94a11d7b44a7fbb22420108/68747470733a2f2f6e696573736e65722e6769746875622e696f2f4d6174746572706f72742f7465617365722e706e67
[Link]http://suncg.cs.princeton.edu/
https://camo.githubusercontent.com/fae8137e520d3cf32f31eb15432cf0c93a9e971dd6e7a997f3ca392a8e4c56c2/687474703a2f2f73756e63672e63732e7072696e6365746f6e2e6564752f666967757265732f646174615f66756c6c2e706e67
[Link]https://github.com/minosworld/minos
https://camo.githubusercontent.com/b8499650d9a4e85d3885dc54e9a83ab3b147cf3894b03c41a8e710c6b3b95358/687474703a2f2f766c61646c656e2e696e666f2f77702d636f6e74656e742f75706c6f6164732f323031372f31322f4d494e4f532e6a7067
[Link]https://github.com/facebookresearch/House3D
https://user-images.githubusercontent.com/1381301/33509559-87c4e470-d6b7-11e7-8266-27c940d5729a.jpg
[Link]https://home-platform.github.io/
https://camo.githubusercontent.com/dd17b5f28f6b86f9e9a45bee361df5f04c19263ea64802430ae1567a15315409/68747470733a2f2f686f6d652d706c6174666f726d2e6769746875622e696f2f6173736574732f6f766572766965772e706e67
[Link]http://ai2thor.allenai.org/
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/AI2-Thor.jpeg
[Link]http://unrealcv.org/
[Paper]http://www.idm.pku.edu.cn/staff/wangyizhou/papers/ACMMM2017_UnrealCV.pdf
https://camo.githubusercontent.com/32014f0b9d0a0ac642e7a3a206f54d00c58a2c74a4eca048124690fea150979b/687474703a2f2f756e7265616c63762e6f72672f696d616765732f686f6d65706167655f7465617365722e706e67
[Link]http://gibsonenv.stanford.edu/
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Gibson%20Environment-%20Real-World%20Perception%20for%20Embodied%20Agents%20(2018%20CVPR)%20.jpeg
[Link]https://interiornet.org/
https://camo.githubusercontent.com/1298670d90d6a18b8d71dcd6a3185bd6953002edea76c841a7806b218c087f45/68747470733a2f2f696e746572696f726e65742e6f72672f6974656d732f496e746572696f724e65742e6a7067
[Link]http://www.semantic3d.net/
https://camo.githubusercontent.com/0105e1b9738c85473d2dfe340d9756e3e4fa0c418a7c78883eaf5a1447946be8/687474703a2f2f7777772e73656d616e74696333642e6e65742f696d672f66756c6c5f7265736f6c7574696f6e2f736732375f382e6a7067
[Link]https://structured3d-dataset.org/
https://camo.githubusercontent.com/de851607496970b793239b0009c67182953933f37eff13198bffb3cf24796f29/68747470733a2f2f7374727563747572656433642d646174617365742e6f72672f7374617469632f696d672f7465617365722e706e67
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#3d-pose-estimation
[Paper]https://people.eecs.berkeley.edu/~akar/categoryshapes.pdf
https://camo.githubusercontent.com/0e565c49e3d767c9ad1e1a7cd0832e20f132b9a8102b510ed4220bf3797107d9/687474703a2f2f70656f706c652e656563732e6265726b656c65792e6564752f7e616b61722f62617369737368617065735f686967687265732e706e67
[Paper]https://people.eecs.berkeley.edu/~shubhtuls/papers/cvpr15vpsKps.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Viewpoints%20and%20Keypoints.jpeg
[Paper]https://shapenet.cs.stanford.edu/projects/RenderForCNN/
https://camo.githubusercontent.com/4cf27179c131be8b5c9a2794830232470567850a2cbe06ea0f70cc68ca9d59ea/68747470733a2f2f73686170656e65742e63732e7374616e666f72642e6564752f70726f6a656374732f52656e646572466f72434e4e2f696d616765732f7465617365722e6a7067
[Paper]https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Kendall_PoseNet_A_Convolutional_ICCV_2015_paper.pdf
https://camo.githubusercontent.com/d5f95662ac9b89d1a07139f9bf73f6b28d9a273ff12c08f283f05eb3a5f69acd/687474703a2f2f6d692e656e672e63616d2e61632e756b2f70726f6a656374732f72656c6f63616c69736174696f6e2f696d616765732f6d61702e706e67
[Paper]https://arxiv.org/pdf/1509.05909.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Modeling%20Uncertainty%20in%20Deep%20Learning%20for%20Camera%20Relocalization.jpeg
[Paper]https://link.springer.com/article/10.1007/s41095-016-0067-z
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Robust%20camera%20pose%20estimation%20by%20viewpoint%20classification%20using%20deep%20learning.jpeg
[Paper]https://arxiv.org/pdf/1704.00390.pdf
https://camo.githubusercontent.com/88705539dec19a6d0efcc20cefd3bee116c99938537d1ee843470164d0e020c7/687474703a2f2f6d692e656e672e63616d2e61632e756b2f7e6369706f6c6c612f696d616765732f706f73652d6e65742e706e67
[Paper]http://3drepresentation.stanford.edu/
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Generic%203D%20Representation%20via%20Pose%20Estimation%20and%20Matching.jpeg
[Paper]https://arxiv.org/pdf/1612.00496.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/3D%20Bounding%20Box%20Estimation%20Using%20Deep%20Learning%20and%20Geometry.png
[Paper]https://www.seas.upenn.edu/~pavlakos/projects/object3d/
https://camo.githubusercontent.com/1931dd9e222ca36f39de44e3770c410fbdf51b610ff7af543c559fba338e56d2/68747470733a2f2f7777772e736561732e7570656e6e2e6564752f7e7061766c616b6f732f70726f6a656374732f6f626a65637433642f66696c65732f6f626a65637433642d7465617365722e706e67
[Paper]https://arxiv.org/pdf/1702.01381.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Relative%20Camera%20Pose%20Estimation%20Using%20Convolutional%20Neural%20Networks.png
[Paper]http://3dmatch.cs.princeton.edu/
https://camo.githubusercontent.com/6ad9238a643496deb3008271a56ceb14d3b7e5cbabf4623af696e7a1eede3419/687474703a2f2f33646d617463682e63732e7072696e6365746f6e2e6564752f696d672f6f766572766965772e6a7067
[Paper]http://3dinterpreter.csail.mit.edu/
[Code]https://github.com/jiajunwu/3dinn
https://camo.githubusercontent.com/89fccdea90eace40de58e5ee3b61e54f52b59d9e804388ca5ceef19af9cde6a8/687474703a2f2f3364696e7465727072657465722e637361696c2e6d69742e6564752f696d616765732f73706f746c696768745f3364696e6e5f6c617267652e6a7067
[Paper]https://shubhtuls.github.io/mvcSnP/
https://camo.githubusercontent.com/b5ef05fd32c7d748a72c355b237e1b7fbad86c709b52800fb93e2d0279a64303/68747470733a2f2f736875626874756c732e6769746875622e696f2f6d7663536e502f7265736f75726365732f696d616765732f7465617365722e706e67
[Paper]https://rse-lab.cs.washington.edu/projects/posecnn/
https://camo.githubusercontent.com/5776c2c0a0b9fd3927e7121178d668b8a53476984d6cf3a4aab6d8d0fbac774a/68747470733a2f2f7975786e672e6769746875622e696f2f506f7365434e4e2e706e67
[Paper]https://arxiv.org/pdf/1712.03904.pdf
https://camo.githubusercontent.com/644fc4326e578361d6a9fb2bf9a2bc802ac6f98849914ae30e0d44e1069f9460/68747470733a2f2f656e637279707465642d74626e302e677374617469632e636f6d2f696d616765733f713d74626e3a414e64394763546e7079616a4568626872504d6330597045517a7145384e39453743575f45565759413342786734366f55455946663958766b41
[Paper]http://pix3d.csail.mit.edu/
https://camo.githubusercontent.com/43d99d2d9a9ccf7e5fcd711f27b02d605b0eed7c218aff3a5f632b57ca28a63f/687474703a2f2f70697833642e637361696c2e6d69742e6564752f696d616765732f73706f746c696768745f70697833642e6a7067
[Paper]https://arxiv.org/pdf/1803.11493.pdf
https://camo.githubusercontent.com/2c5538177983d9308596a6a9270b35b0d9d00e61354e755148c48eef69e4b719/68747470733a2f2f7777772e74756772617a2e61742f66696c6561646d696e2f757365725f75706c6f61642f496e737469747574652f4943472f446f63756d656e74732f7465616d5f6c6570657469742f696d616765732f677261626e65722f706f73655f72657472696576616c5f6f766572766965772e706e67
[Paper]https://research.nvidia.com/publication/2018-09_Deep-Object-Pose
https://camo.githubusercontent.com/f3020adbbe74fb8a47852402d9cc30a891dee5709146c1077f9158b7e0ff7550/68747470733a2f2f72657365617263682e6e76696469612e636f6d2f73697465732f64656661756c742f66696c65732f7075626c69636174696f6e732f666f7277656273697465315f302e706e67
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#single-object-classification
[Paper]http://3dshapenets.cs.princeton.edu/
https://camo.githubusercontent.com/917a6d991c8e2a50a3f5b86ba41bf1ad1111ce8e1365b72f3f16e58caef0fda5/68747470733a2f2f6169322d73322d7075626c69632e73332e616d617a6f6e6177732e636f6d2f666967757265732f323031362d31312d30382f336564323333383632383461353633396362336538626161656366343936636161373636653333352f312d466967757265312d312e706e67
[Paper]http://www.dimatura.net/publications/voxnet_maturana_scherer_iros15.pdf
[Code]https://github.com/dimatura/voxnet
https://camo.githubusercontent.com/91ad68649b8fa12fa2323b5fcc69ca5f54d3ce370c2dd88796b1366479fe2c2c/687474703a2f2f7777772e64696d61747572612e6e65742f72657365617263682f766f786e65742f6361725f766f786e65745f736964652e706e67
[Paper]http://vis-www.cs.umass.edu/mvcnn/
https://camo.githubusercontent.com/78e0260a6d78572e64b4dfe147a8f96cf4fbd0251770d7dc5a3ef15c104bef51/687474703a2f2f7669732d7777772e63732e756d6173732e6564752f6d76636e6e2f696d616765732f6d76636e6e2e706e67
[Paper]http://mclab.eic.hust.edu.cn/UpLoadFiles/Papers/DeepPano_SPL2015.pdf
https://camo.githubusercontent.com/5f47d678297e22fff2c6f68f1e7e22383d62ef0ab293b5f18dbb7511eb3456c1/68747470733a2f2f6169322d73322d7075626c69632e73332e616d617a6f6e6177732e636f6d2f666967757265732f323031362d31312d30382f356131623564333139303564386365636537623738353130663531663364386262623036333036332f312d466967757265332d312e706e67
[Paper]https://stanford.edu/~rezab/papers/fusionnet.pdf
https://camo.githubusercontent.com/484d484654f571c73afd28a9e05da3b7f92f6fbaedc4619d2ebe67debe48f4ad/68747470733a2f2f6169322d73322d7075626c69632e73332e616d617a6f6e6177732e636f6d2f666967757265732f323031362d31312d30382f306161623866626365663166306131346635363533643137306361333666346535616165383031302f362d466967757265352d312e706e67
[Paper]https://arxiv.org/pdf/1604.03265.pdf
[Code]https://github.com/charlesq34/3dcnn.torch
https://camo.githubusercontent.com/64d92fcbb209c5381694fea2bbd940f70399d1583c79e8288d26cae239b33e80/687474703a2f2f67726170686963732e7374616e666f72642e6564752f70726f6a656374732f3364636e6e2f7465617365722e6a7067
[Paper]https://arxiv.org/pdf/1608.04236.pdf
[Code]https://github.com/ajbrock/Generative-and-Discriminative-Voxel-Modeling
https://camo.githubusercontent.com/978bce4c47ac39a2ec991d636e856f3199e48138b3417d799ed88aee4fb88c34/687474703a2f2f6461766964737475747a2e64652f776f726470726573732f77702d636f6e74656e742f75706c6f6164732f323031372f30322f62726f636b5f7661652e706e67
[Link]https://arxiv.org/pdf/1611.08402.pdf
https://camo.githubusercontent.com/38a3a3d0dc10ad502962644848157893e73de5f7419c87e3ca66983a5138947b/68747470733a2f2f69322e77702e636f6d2f70726566657272656472657365617263682e6a702f77702d636f6e74656e742f75706c6f6164732f323031372f30382f6d6f6e65742e706e673f726573697a653d3538312532433135352673736c3d31
[Paper]https://arxiv.org/pdf/1610.07584.pdf
[Code]https://github.com/zck119/3dgan-release
https://camo.githubusercontent.com/c8c072145030b5df55542e6c43be8f43c1dc491ec242b97a645730409e807bdd/687474703a2f2f336467616e2e637361696c2e6d69742e6564752f696d616765732f6d6f64656c2e6a7067
[Paper]https://github.com/ajbrock/Generative-and-Discriminative-Voxel-Modeling
https://github.com/ajbrock/Generative-and-Discriminative-Voxel-Modeling/blob/master/doc/GUI3.png
[Paper]http://yangyanli.github.io/FPNN/
[Code]https://github.com/yangyanli/FPNN
https://camo.githubusercontent.com/dc491828f2322aa649f215484f870915ebecafb6c0426ab9df1245d66e78ec6a/68747470733a2f2f6169322d73322d7075626c69632e73332e616d617a6f6e6177732e636f6d2f666967757265732f323031362d31312d30382f313563613761646363663563643464633330396364636161363332386634633432396561643333372f312d466967757265322d312e706e67
[Paper]https://arxiv.org/pdf/1611.05009.pdf
[Code]https://github.com/griegler/octnet
https://camo.githubusercontent.com/76d1e0801217050d75ce642f3899818566225ee777643e0e1d45575623f5eb04/68747470733a2f2f69732e74756562696e67656e2e6d70672e64652f75706c6f6164732f7075626c69636174696f6e2f696d6167652f31383932312f696d6730332e706e67
[Paper]http://wang-ps.github.io/O-CNN
[Code]https://github.com/Microsoft/O-CNN
https://camo.githubusercontent.com/777235ef887fd40bd4387d340dff725103661cf9b1757ef9f1edafb626af3e2d/687474703a2f2f77616e672d70732e6769746875622e696f2f4f2d434e4e5f66696c65732f7465617365722e706e67
[Paper]https://lmb.informatik.uni-freiburg.de/Publications/2017/SZB17a/
[Code]https://github.com/lmb-freiburg/orion
https://camo.githubusercontent.com/29b89744d34950e7255d8e9bdb956d83ed4d4603170c40e1c8d44271323f13ac/68747470733a2f2f6c6d622e696e666f726d6174696b2e756e692d66726569627572672e64652f5075626c69636174696f6e732f323031372f535a423137612f7465617365725f772e706e67
[Paper]http://stanford.edu/~rqi/pointnet/
[Code]https://github.com/charlesq34/pointnet
https://camo.githubusercontent.com/5014fe7e23933c292d2f20162bf4f35db1d2640ef52acbfb2ad2034146dad2d8/68747470733a2f2f7765622e7374616e666f72642e6564752f7e7271692f7061706572732f706f696e746e65742e706e67
[Paper]https://arxiv.org/pdf/1706.02413.pdf
[Code]https://github.com/charlesq34/pointnet2
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/PointNet%2B%2B-%20Deep%20Hierarchical%20Feature%20Learning%20on%20Point%20Sets%20in%20a%20Metric%20Space.png
[Paper]http://feedbacknet.stanford.edu/
[Code]https://github.com/amir32002/feedback-networks
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Feedback%20Networks.png
[Paper]http://www.arxiv.org/pdf/1704.01222.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Escape From Cells.png
[Paper]https://arxiv.org/pdf/1801.07829.pdf
https://camo.githubusercontent.com/2a9168881a758c703325f62cef81d81491a95cba61292d763b215e04be5891e9/68747470733a2f2f6c69757a69776569372e6769746875622e696f2f686f6d65706167655f66696c65732f64796e616d696367636e6e5f6c6f676f2e706e67
[Paper]https://yangyanli.github.io/PointCNN/
https://camo.githubusercontent.com/b24dab106b1743be5f2d12528410948cae4f40165e06017b306aa73dc52eee5a/687474703a2f2f79616e6779616e2e6c692f696d616765732f70617065722f706f696e74636e6e2e706e67
[Paper]http://openaccess.thecvf.com/content_cvpr_2018/papers/Roveri_A_Network_Architecture_CVPR_2018_paper.pdf
https://camo.githubusercontent.com/e77da80d9ba901a1e79366aa8a9b7450c67a3541bb1a6c77722f2531c59c8117/68747470733a2f2f73332d75732d776573742d312e616d617a6f6e6177732e636f6d2f6469736e657972657365617263682f77702d636f6e74656e742f75706c6f6164732f32303138303631393131343733322f412d4e6574776f726b2d4172636869746563747572652d666f722d506f696e742d436c6f75642d436c617373696669636174696f6e2d7669612d4175746f6d617469632d44657074682d496d616765732d47656e65726174696f6e2d496d6167652d363030783331372e6a7067
[Paper]http://openaccess.thecvf.com/content_cvpr_2018/papers/Le_PointGrid_A_Deep_CVPR_2018_paper.pdf
[Code]https://github.com/trucleduc/PointGrid
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/PointGrid-%20A%20Deep%20Network%20for%203D%20Shape%20Understanding%20(2018).jpeg
[Paper]https://arxiv.org/pdf/1811.11424.pdf
[Code]https://github.com/Yue-Group/MeshNet
https://camo.githubusercontent.com/a3c969397c85055b23f5379dd12b940f8ad896eb3b99d92762728251ada5658a/687474703a2f2f7777772e67616f7975652e6f72672f656e5f7473696e676875612f72657372632f6d6573686e65742e6a7067
[Paper]https://github.com/xyf513/SpiderCNN
[Code]https://github.com/xyf513/SpiderCNN
https://camo.githubusercontent.com/c8cb8f347fe4368468d1f4759d025722d5b6db108543bd255b5420520daae019/687474703a2f2f356230393838653539353232352e63646e2e736f687563732e636f6d2f696d616765732f32303138313130392f34356333623637306536376634336232383837393163363530666237666230622e6a706567
[Paper]https://github.com/DylanWusee/pointconv/tree/master/imgs
[Code]https://github.com/DylanWusee/pointconv/tree/master/imgs
https://camo.githubusercontent.com/ed5d4038f7c65d3f5daedfc42443cf1c811ed556c4009d83d503149126d7d4bd/68747470733a2f2f70696373342e62616964752e636f6d2f666565642f386238326239303134613930663630333237326665323966383865663036316662323531656434392e6a7065673f746f6b656e3d623233653164626261656166313266666533643136386264393937613864363626733d3031333037443332384645303743303130433639433143453030303044304233
[Paper]https://bit.ly/meshcnn
[Code]https://github.com/ranahanocka/MeshCNN
https://github.com/ranahanocka/MeshCNN/blob/master/docs/imgs/alien.gif?raw=true
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#multiple-objects-detection
[Paper]http://slidingshapes.cs.princeton.edu/
https://camo.githubusercontent.com/d2ae717cc43bb64c429d4863445621b85d0884e31c00f21dc0b27fa2550d6c3f/687474703a2f2f736c6964696e677368617065732e63732e7072696e6365746f6e2e6564752f7465617365722e6a7067
[Paper]https://stanford.edu/class/ee367/Winter2016/Qi_Report.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Object%20Detection%20in%203D%20Scenes%20Using%20CNNs%20in%20Multi-view%20Images.png
[Paper]http://dss.cs.princeton.edu/
[Code]https://github.com/shurans/DeepSlidingShape
https://camo.githubusercontent.com/4b2e54daddd23fa3e0ca8d473db59499cd8c0df9403deaddb564a714c8f84e53/687474703a2f2f3364766973696f6e2e7072696e6365746f6e2e6564752f736c6964652f4453532e6a7067
[CVPR '16 Paper]https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Ren_Three-Dimensional_Object_Detection_CVPR_2016_paper.pdf
[CVPR '18 Paper]http://openaccess.thecvf.com/content_cvpr_2018/papers/Ren_3D_Object_Detection_CVPR_2018_paper.pdf
[T-PAMI '19 Paper]https://arxiv.org/pdf/1906.04725
https://github.com/luvegood/3D-Machine-Learning/blob/master/imgs/Three-Dimensional%20Object%20Detection%20and%20Layout%20Prediction%20using%20Clouds%20of%20Oriented%20Gradients.png
[Paper]http://deepcontext.cs.princeton.edu/
https://camo.githubusercontent.com/e6af42c7384fe425f8a24c5dcf0dd415a360182af0db3811827cd7f94f32404f/687474703a2f2f64656570636f6e746578742e63732e7072696e6365746f6e2e6564752f7465617365722e706e67
[Paper]http://rgbd.cs.princeton.edu/
https://camo.githubusercontent.com/ccb40c6cd7365f8c910aed28b48ae70afa348a7ca2d0bd28c77dd01b9aa016ae/687474703a2f2f726762642e63732e7072696e6365746f6e2e6564752f7465617365722e6a7067
[Paper]https://arxiv.org/pdf/1711.06396.pdf
https://camo.githubusercontent.com/a97661a128de2add87f338f65d079899ec4d64ef96cb245f69ce0424b8f4077d/68747470733a2f2f7062732e7477696d672e636f6d2f6d656469612f44504d744c68485855416351556a322e6a7067
[Paper]https://arxiv.org/pdf/1711.08488.pdf
https://camo.githubusercontent.com/5b719fd9f5aab06ef4bb1f1ed4719936b27fa26b064b502a414ba507a0413945/687474703a2f2f7374616e666f72642e6564752f7e7271692f6672757374756d2d706f696e746e6574732f696d616765732f7465617365722e6a7067
[Paper]https://arxiv.org/abs/1901.00785
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/blob/master/imgs/a-square-net-min.jpg
[Paper]https://arxiv.org/abs/1902.09738v1
https://camo.githubusercontent.com/acf1a58e8ef93dfd0ddec329ecbb64072c6d9e180e6566743bd4cb7da730571c/68747470733a2f2f7777772e67726f756e6461692e636f6d2f6d656469612f61727869765f70726f6a656374732f3531353333382f73797374656d5f6e65776e65772e706e67
[Paper]https://arxiv.org/pdf/1904.09664.pdf
[code]https://github.com/facebookresearch/votenet
https://github.com/facebookresearch/votenet/blob/master/doc/teaser.jpg
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#sceneobject-semantic-segmentation
[Paper]https://people.cs.umass.edu/~kalo/papers/LabelMeshes/LabelMeshes.pdf
https://camo.githubusercontent.com/a27358a89a46cb5c70d53dcd3ef5bb1884c0e81cdb00c61d987e029bec39f9e6/68747470733a2f2f6169322d73322d7075626c69632e73332e616d617a6f6e6177732e636f6d2f666967757265732f323031362d31312d30382f306266333930653261313466373462636338383338643566623163306334636336306539326562372f372d466967757265372d312e706e67
[Paper]https://www.cs.sfu.ca/~haoz/pubs/sidi_siga11_coseg.pdf
https://camo.githubusercontent.com/0ddce2a46de15533a9f42cac478242c7b3176bc685a8e93740f179fcb7cbae56/687474703a2f2f70656f706c652e7363732e6361726c65746f6e2e63612f7e6f6c6976657276616e6b6169636b2f636f7365676d656e746174696f6e2f726573756c7473362e706e67
[Paper]https://www.cs.utexas.edu/~huangqx/modeling_sig15.pdf
[Code]https://github.com/huangqx/image_shape_align
https://camo.githubusercontent.com/2441da9e3fb1bbd880886aad276ab03bc71b3cbc203e14ff1b4950a49a9ba104/687474703a2f2f766c61646c656e2e696e666f2f77702d636f6e74656e742f75706c6f6164732f323031352f30352f73696e676c652d766965772e706e67
[Paper]http://people.cs.umass.edu/~kalo/papers/shapepfcn/
[Code]https://github.com/kalov/ShapePFCN
https://camo.githubusercontent.com/25839f2980d2e2821938cdabcb7567b9a6be9e0271eae3cd6d142f7895bb29ee/687474703a2f2f70656f706c652e63732e756d6173732e6564752f7e6b616c6f2f7061706572732f73686170657066636e2f7465617365722e6a7067
[Paper]http://cs.stanford.edu/~ericyi/project_page/hier_seg/index.html
https://camo.githubusercontent.com/567eaaddf037e6886e6bbc429381f101b338eeb158b0269a5367dfa7d42884f3/687474703a2f2f63732e7374616e666f72642e6564752f7e6572696379692f70726f6a6563745f706167652f686965725f7365672f666967757265732f7465617365722e6a7067
[Paper]https://arxiv.org/pdf/1702.04405.pdf
[Code]https://github.com/scannet/scannet
https://camo.githubusercontent.com/e72c967984dc8658daefcf90d72f0d46abb29d142acd20160854873a2159a07a/687474703a2f2f7777772e7363616e2d6e65742e6f72672f696d672f766f78656c2d70726564696374696f6e732e6a7067
[Paper]http://stanford.edu/~rqi/pointnet/
[Code]https://github.com/charlesq34/pointnet
https://camo.githubusercontent.com/5014fe7e23933c292d2f20162bf4f35db1d2640ef52acbfb2ad2034146dad2d8/68747470733a2f2f7765622e7374616e666f72642e6564752f7e7271692f7061706572732f706f696e746e65742e706e67
[Paper]https://arxiv.org/pdf/1706.02413.pdf
[Code]https://github.com/charlesq34/pointnet2
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/PointNet%2B%2B-%20Deep%20Hierarchical%20Feature%20Learning%20on%20Point%20Sets%20in%20a%20Metric%20Space.png
[Paper]http://www.cs.toronto.edu/~rjliao/papers/iccv_2017_3DGNN.pdf
https://camo.githubusercontent.com/66b8af2363ba81c409e9dbac2fbe8816e61facd7e7bf400cb0984bf6496bdac3/687474703a2f2f7777772e666f6e6f772e636f6d2f496d616765732f323031372d31302d31382f36363337322d32303137313031383131353830393734302d323132353232373235302e6a7067
[Paper]https://arxiv.org/pdf/1707.06783.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/3DCNN-DQN-RNN.png
[Paper]https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W4/101/2017/isprs-annals-IV-4-W4-101-2017.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Semantic Segmentation of Indoor Point Clouds using Convolutional Neural Networks.png
[Paper]https://arxiv.org/pdf/1710.07563.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/SEGCloud.png
[Paper]https://arxiv.org/pdf/1710.06104.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Core55.png
[Link]http://pointwise.scenenn.net/
https://camo.githubusercontent.com/addf6f1a849e95a977b8f6307e1000b451ad812eb9ff9cc68aa7adc5441ee9f8/687474703a2f2f706f696e74776973652e7363656e656e6e2e6e65742f696d616765732f7465617365722e706e67
[Paper]https://arxiv.org/pdf/1801.07829.pdf
https://camo.githubusercontent.com/2a9168881a758c703325f62cef81d81491a95cba61292d763b215e04be5891e9/68747470733a2f2f6c69757a69776569372e6769746875622e696f2f686f6d65706167655f66696c65732f64796e616d696367636e6e5f6c6f676f2e706e67
[Paper]https://yangyanli.github.io/PointCNN/
https://camo.githubusercontent.com/b24dab106b1743be5f2d12528410948cae4f40165e06017b306aa73dc52eee5a/687474703a2f2f79616e6779616e2e6c692f696d616765732f70617065722f706f696e74636e6e2e706e67
[Paper]https://arxiv.org/pdf/1803.10409.pdf
https://github.com/angeladai/3DMV/blob/master/images/teaser.jpg
[Paper]https://arxiv.org/pdf/1712.10215.pdf
https://github.com/angeladai/ScanComplete/blob/master/images/teaser_mesh.jpg
[Paper]https://arxiv.org/pdf/1802.08275.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/SPLATNet-%20Sparse%20Lattice%20Networks%20for%20Point%20Cloud%20Processing.jpeg
[Paper]http://openaccess.thecvf.com/content_cvpr_2018/papers/Le_PointGrid_A_Deep_CVPR_2018_paper.pdf
[Code]https://github.com/trucleduc/PointGrid
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/PointGrid-%20A%20Deep%20Network%20for%203D%20Shape%20Understanding%20(2018).jpeg
[Paper]https://github.com/DylanWusee/pointconv/tree/master/imgs
[Code]https://github.com/DylanWusee/pointconv/tree/master/imgs
https://camo.githubusercontent.com/ed5d4038f7c65d3f5daedfc42443cf1c811ed556c4009d83d503149126d7d4bd/68747470733a2f2f70696373342e62616964752e636f6d2f666565642f386238326239303134613930663630333237326665323966383865663036316662323531656434392e6a7065673f746f6b656e3d623233653164626261656166313266666533643136386264393937613864363626733d3031333037443332384645303743303130433639433143453030303044304233
[Paper]https://github.com/xyf513/SpiderCNN
[Code]https://github.com/xyf513/SpiderCNN
https://camo.githubusercontent.com/c8cb8f347fe4368468d1f4759d025722d5b6db108543bd255b5420520daae019/687474703a2f2f356230393838653539353232352e63646e2e736f687563732e636f6d2f696d616765732f32303138313130392f34356333623637306536376634336232383837393163363530666237666230622e6a706567
[Paper]https://arxiv.org/pdf/1812.07003.pdf
[Code]https://github.com/Sekunde/3D-SIS
https://camo.githubusercontent.com/28fcc499a00eae45bc2cb50bdb9ee911e8b735c8f6f90582be5c4c35b2baeac2/687474703a2f2f7777772e6e696573736e65726c61622e6f72672f7061706572732f323031392f367369732f7465617365722e6a7067
[Link]https://pqhieu.github.io/research/proseg/
https://camo.githubusercontent.com/59dac0ccb2c8dd67db16cd67024d7cc7111e9f1b87bdac13251bef94aa985a8b/68747470733a2f2f7071686965752e6769746875622e696f2f6d656469612f696d616765732f7761637631392f7468756d626e61696c2e676966
[Link]https://pqhieu.github.io/research/jsis3d/
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/blob/master/imgs/jsis3d.png
[Link]https://hkust-vgd.github.io/shellnet/
https://camo.githubusercontent.com/838f23c418be73b237074a6a7f35f5e47c37306067f607db2da414dcd26a7f5c/68747470733a2f2f686b7573742d7667642e6769746875622e696f2f7368656c6c6e65742f696d616765732f7368656c6c636f6e765f6e65772e706e67
[Link]https://hkust-vgd.github.io/riconv/
https://camo.githubusercontent.com/93eb9279e5bdb928aa7f8cbba3fc6d4a4a27989f00727cd626ebc6ad4b0ac115/68747470733a2f2f686b7573742d7667642e6769746875622e696f2f7269636f6e762f696d616765732f52494f5f63616d2e706e67
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#3d-model-synthesisreconstruction
[Paper]http://gravis.dmi.unibas.ch/publications/Sigg99/morphmod2.pdf
[Code]https://github.com/MichaelMure/3DMM
https://camo.githubusercontent.com/65ec463171f6bd08c10ab302128f6238771ae5e03595740b48971652172fbfbc/687474703a2f2f6d626c6f677468756d62332e7068696e662e6e617665722e6e65742f4d6a41784e7a417a4d5464664d6a637a2f4d4441784e4467354e7a45334d7a55304f4449332e396c51696f4c78776f476d746f49565858397362564f7a68657a6f71674b4d4b69546f76426e6255464e30672e73584e357447344b6f68676b374f4a4574506e75782d6d76374f416f5856787843796f3353475a4d633659672e504e472e6174656c6965726a70726f2f3033313731375f303232325f4461746144726976656e53342e706e673f747970653d77343230
[Paper]https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/400/paper.pdf
[Code (Chumpy)]https://github.com/Rubikplayer/flame-fitting
[Code (TF)]https://github.com/TimoBolkart/TF_FLAME
FLAMEhttp://flame.is.tue.mpg.de/
speech-driven facial animationhttps://github.com/TimoBolkart/voca
https://github.com/TimoBolkart/TF_FLAME/blob/master/gifs/model_variations.gif
[Paper]http://grail.cs.washington.edu/projects/digital-human/pub/allen03space-submit.pdf
https://camo.githubusercontent.com/683245e4f18ed863e0b05893476f7438b09fe73c1ebca4119e666e67511f9834/68747470733a2f2f6169322d73322d7075626c69632e73332e616d617a6f6e6177732e636f6d2f666967757265732f323031362d31312d30382f343664333962306532316165393536653462636237613738396639326265343830643435656531322f372d46696775726531302d312e706e67
[Paper]https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/497/SMPL-X.pdf
[Video]https://youtu.be/XyXIEmapWkw
[Code]https://github.com/vchoutas/smplify-x
https://github.com/vchoutas/smplify-x/blob/master/images/teaser_fig.png
[Paper]https://people.eecs.berkeley.edu/~akar/categoryshapes.pdf
https://camo.githubusercontent.com/ab055b2721da447521968d52619169022a822f559bb854ef4c23cf1cf3e0b3f7/687474703a2f2f70656f706c652e656563732e6265726b656c65792e6564752f7e616b61722f63617465676f72795368617065732f696d616765732f7465617365722e706e67
[Paper]http://ai.stanford.edu/~haosu/papers/SI2PC_arxiv_submit.pdf
https://camo.githubusercontent.com/a84c0f8390819a14a25c68bab38b1199ea955a0b27e56b521d19e592a38c3d5f/68747470733a2f2f636872697363686f792e6769746875622e696f2f696d616765732f7075626c69636174696f6e2f6465666f726d6e65742f6d6f64656c2e706e67
[Paper]https://arxiv.org/pdf/1709.04304.pdf
https://camo.githubusercontent.com/d48fd227483e54f7eb5efd2303e17165b9ab5fef39fbcd2daf2f4fc73fe27644/687474703a2f2f717974616e2e636f6d2f696d672f706f696e745f636f6e762e6a7067
[Paper]https://www.autodeskresearch.com/publications/exploring_generative_3d_shapes
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Exploring%20Generative%203D%20Shapes%20Using%20Autoencoder%20Networks.jpeg
[Paper]http://ci2cv.net/media/papers/chenkong_cvpr_2017.pdf
https://camo.githubusercontent.com/ca2e45b091737101cc16030c050911623e8b63d6e6683900ca8f67aafcf05b13/68747470733a2f2f6368656e687375616e6c696e2e6269746275636b65742e696f2f696d616765732f72702f7230322e706e67
[Paper]https://jhonykaesemodel.com/publication/3dv2017/
https://camo.githubusercontent.com/1735c681765a66eaf89ea306d2235052991e5a3db4fe45762265c6cdd537c881/68747470733a2f2f6a686f6e796b616573656d6f64656c2e636f6d2f696d672f686561646572732f6f766572766965772e706e67
[Paper]https://arxiv.org/pdf/1711.10669.pdf
https://camo.githubusercontent.com/360e49eb6e33614c39468645f89bdda3c9b690f5f853cd9eefe20447f6c7ad5a/68747470733a2f2f7062732e7477696d672e636f6d2f6d656469612f44573556686a70573441414553484f2e6a7067
[Paper]https://jhonykaesemodel.com/publication/learning_ffd/
https://camo.githubusercontent.com/b322fef10ba67383ecf47263fa801b32277924d0f378d912945410e5ffbffa49/68747470733a2f2f6a686f6e796b616573656d6f64656c2e636f6d2f6c6561726e696e675f6666645f6f766572766965772e706e67
[Paper]http://qytan.com/publication/vae/
https://camo.githubusercontent.com/c9aa7919eba17fdec83ea431ee5572e517778236b007661887e32fc0d8570fd3/687474703a2f2f68756d616e6d6f74696f6e2e6963742e61632e636e2f7061706572732f3230313850355f566172696174696f6e616c4175746f656e636f646572732f546561736572496d6167652e6a7067
[Paper]http://files.is.tue.mpg.de/black/papers/zuffiCVPR2018.pdf
https://camo.githubusercontent.com/b0d295a2fa6d11c4115e311ec38579a233fa132f588130c5401dbd1b25279e2d/68747470733a2f2f336331373033666538642e736974652e696e7465726e617063646e2e6e65742f6e65776d616e2f6766782f6e6577732f68697265732f323031382f7265616c69737469636176612e6a7067
[Paper]http://www.cs.princeton.edu/~funk/sig04a.pdf
https://camo.githubusercontent.com/c34c017e458ac690ba1d4d603899e4620a6ddbec1eb85de47d158b92dc56f704/687474703a2f2f6766782e63732e7072696e6365746f6e2e6564752f707562732f46756e6b686f757365725f323030345f4d42452f63686169722e6a7067
[Paper]http://www.cs.princeton.edu/courses/archive/spring11/cos598A/pdfs/Kraevoy07.pdf
https://camo.githubusercontent.com/ea35c7ba3842b667600700f34cc101bf8b2f999f96a574fab4b5d2567d60bdd3/687474703a2f2f7777772e63732e7562632e63612f6c6162732f696d616765722f74722f323030372f566c61645f53687566666c65722f7465617365722e6a7067
[Paper]http://vladlen.info/publications/data-driven-suggestions-for-creativity-support-in-3d-modeling/
https://camo.githubusercontent.com/fc1d47200ae24eb4078261e271b5da786c84b926f6d51ab40b46cec135bf387c/687474703a2f2f766c61646c656e2e696e666f2f77702d636f6e74656e742f75706c6f6164732f323031312f31322f637265617469766974792e706e67
[Paper]http://kevinkaixu.net/projects/photo-inspired.html
https://camo.githubusercontent.com/c4e78230507f838d02014e5bc2b3f4ab555736116cbbe1b53df8a7701bc16d0d/687474703a2f2f6b6576696e6b616978752e6e65742f70726f6a656374732f70686f746f2d696e7370697265642f6f766572766965772e504e47
[Paper]https://people.cs.umass.edu/~kalo/papers/assembly/ProbReasoningShapeModeling.pdf
https://camo.githubusercontent.com/baaa57004d0f0e38eb84a487f874d21895c207ead8138c4e0b1261a3255078a5/687474703a2f2f766c61646c656e2e696e666f2f77702d636f6e74656e742f75706c6f6164732f323031312f31322f686967686c69676874392e706e67
[Paper]https://people.cs.umass.edu/~kalo/papers/ShapeSynthesis/ShapeSynthesis.pdf
https://github.com/timzhang642/test1/blob/master/imgs/A%20Probabilistic%20Model%20for%20Component-Based%20Shape%20Synthesis.png
[Paper]http://cg.cs.tsinghua.edu.cn/StructureRecovery/
https://github.com/timzhang642/test1/blob/master/imgs/Structure%20Recovery%20by%20Part%20Assembly.png
[Paper]http://kevinkaixu.net/projects/civil.html
https://camo.githubusercontent.com/8931f1b5b92e718d5d996577e84ec02013e6017de0f4db7dd1dc6b969e4a1fe1/687474703a2f2f6b6576696e6b616978752e6e65742f70726f6a656374732f636976696c2f7465617365722e706e67
[Paper]https://people.cs.umass.edu/~kalo/papers/attribit/AttribIt.pdf
https://camo.githubusercontent.com/22be2aa131be57d9b6801594f63d730ecc5253f757aa2db976a4d62c0718f40e/687474703a2f2f6766782e63732e7072696e6365746f6e2e6564752f6766782f707562732f4368617564687572695f323031335f4143432f7465617365722e6a7067
[Paper]http://shape.cs.princeton.edu/vkcorrs/papers/13_SIGGRAPH_CorrsTmplt.pdf
https://github.com/timzhang642/test1/blob/master/imgs/Learning%20Part-based%20Templates%20from%20Large%20Collections%20of%203D%20Shapes.png
[Paper]http://gruvi.cs.sfu.ca/project/topo/
https://camo.githubusercontent.com/fc829fa7f036637e28567e5cfbdb9791d22d602ac90f5f94bd8399839addc40e/68747470733a2f2f692e7974696d672e636f6d2f76692f5863347166377636612d772f6d617872657364656661756c742e6a7067
[Paper]http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/image_shape_net/imageShapeNet_sigg14.html
https://camo.githubusercontent.com/fc71dbf8f58d25e87f1af95df4e83a6405970319210da96b04ca7cb17f54d45b/687474703a2f2f766563672e63732e75636c2e61632e756b2f50726f6a656374732f536d61727447656f6d657472792f696d6167655f73686170655f6e65742f70617065725f646f63732f706970656c696e652e6a7067
[Paper]https://www.cs.utexas.edu/~huangqx/modeling_sig15.pdf
https://camo.githubusercontent.com/2441da9e3fb1bbd880886aad276ab03bc71b3cbc203e14ff1b4950a49a9ba104/687474703a2f2f766c61646c656e2e696e666f2f77702d636f6e74656e742f75706c6f6164732f323031352f30352f73696e676c652d766965772e706e67
[Paper]http://www.cs.umb.edu/~craigyu/papers/handson_low_res.pdf
https://github.com/timzhang642/test1/blob/master/imgs/Interchangeable%20Components%20for%20Hands-On%20Assembly%20Based%20Modeling.png
[Paper]http://www.kunzhou.net/2016/shapecompletion-tvcg16.pdf
https://camo.githubusercontent.com/d537be10fcd38a3b3211d7f931a6d020512de1ba65079b337f1dd40537f30fdf/687474703a2f2f7469616e6a69617368616f2e636f6d2f496d616765732f323031352f636f6d706c6574696f6e2e6a7067
[Paper]https://arxiv.org/pdf/1411.5928.pdf
https://camo.githubusercontent.com/557e9425465a3c9cea58c5cc5a3454f119e7ad00d3b72931b4a2704ba129f846/68747470733a2f2f7a6f372e6769746875622e696f2f696d672f323031362d30392d32352d67656e65726174696e672d66616365732f6368616972732d6d6f64656c2e706e67
[Paper]https://papers.nips.cc/paper/5639-weakly-supervised-disentangling-with-recurrent-transformations-for-3d-view-synthesis.pdf
https://github.com/jimeiyang/deepRotator/blob/master/demo_img.png
[Paper]https://people.cs.umass.edu/~hbhuang/publications/bsm/
https://camo.githubusercontent.com/4e271f88b75a873235468444fee27ae7ab9a38b23475f4a3e166bef2541f00df/68747470733a2f2f70656f706c652e63732e756d6173732e6564752f7e68626875616e672f7075626c69636174696f6e732f62736d2f62736d5f7465617365722e6a7067
[Paper]https://papers.nips.cc/paper/5639-weakly-supervised-disentangling-with-recurrent-transformations-for-3d-view-synthesis.pdf
[Code]https://github.com/jimeiyang/deepRotator
https://camo.githubusercontent.com/b66c4c74bca6673e5e197436438e7f5f7b8ee99f567f74b6de5c70bcd7e71007/68747470733a2f2f6169322d73322d7075626c69632e73332e616d617a6f6e6177732e636f6d2f666967757265732f323031362d31312d30382f303432393933633436323934613534323934366339633137303662376232326465623164376334332f322d466967757265312d312e706e67
[Paper]https://arxiv.org/pdf/1511.06702.pdf
[Code]https://github.com/lmb-freiburg/mv3d
https://camo.githubusercontent.com/7cbf778daa73f8de94243b0f63c22d1d3235a8891e57bc98d934717a1f205c23/68747470733a2f2f6169322d73322d7075626c69632e73332e616d617a6f6e6177732e636f6d2f666967757265732f323031362d31312d30382f336437636135616433346632336135666162313665373365323837643161303539646337656639612f342d466967757265322d312e706e67
[Paper]https://people.eecs.berkeley.edu/~tinghuiz/papers/eccv16_appflow.pdf
[Code]https://github.com/tinghuiz/appearance-flow
https://camo.githubusercontent.com/54c4657299f3bfddb01453d89b60e9f8cf6475931380f05912710ac4e74df031/68747470733a2f2f6169322d73322d7075626c69632e73332e616d617a6f6e6177732e636f6d2f666967757265732f323031362d31312d30382f313232383035303664633862356333636132646232396663336265363934643961386265663438632f362d466967757265322d312e706e67
[Paper]http://visual.cs.ucl.ac.uk/pubs/depthPrediction/http://visual.cs.ucl.ac.uk/pubs/depthPrediction/
[Code]https://github.com/mdfirman/voxlets
https://camo.githubusercontent.com/7d5636513b5cef92053c81758e67fc991ffc34c47dcc46dc341ebc31a25fa7c5/68747470733a2f2f692e7974696d672e636f6d2f76692f317779347932475744356f2f6d617872657364656661756c742e6a7067
[Paper]http://cvgl.stanford.edu/3d-r2n2/
[Code]https://github.com/chrischoy/3D-R2N2
https://camo.githubusercontent.com/08588a90b181ceb0d212ee89901d8ca919c68487b62b6c95ece53a72b5767f90/687474703a2f2f33642d72326e322e7374616e666f72642e6564752f696d67732f6f766572766965772e706e67
[Paper]https://eng.ucmerced.edu/people/jyang44/papers/nips16_ptn.pdf
https://camo.githubusercontent.com/676e31950b14c76208b1ebedd831a7e787c6677ecdb81ba0d985a154e909fc88/68747470733a2f2f73697465732e676f6f676c652e636f6d2f736974652f736b7977616c6b65727978632f5f2f727372632f313438313130343539363233382f70657273706563746976655f7472616e73666f726d65725f6e6574732f6e6574776f726b5f617263682e706e67
[Paper]https://arxiv.org/pdf/1603.08637.pdf
https://camo.githubusercontent.com/6a2938989537682a707c7519b5908b2899ea64c5268c35c92c762d381b73bde4/68747470733a2f2f726f686974676972646861722e6769746875622e696f2f47656e657261746976655072656469637461626c65566f78656c732f6173736574732f7765627465617365722e6a7067
[Paper]https://arxiv.org/pdf/1610.07584.pdf
https://camo.githubusercontent.com/c8c072145030b5df55542e6c43be8f43c1dc491ec242b97a645730409e807bdd/687474703a2f2f336467616e2e637361696c2e6d69742e6564752f696d616765732f6d6f64656c2e6a7067
[Paper]https://arxiv.org/pdf/1612.05872.pdf
https://camo.githubusercontent.com/ee5786e63243e57aa4186dfd5e103c56547090dc5c94ed7f6f74f25b69cf045b/68747470733a2f2f6169322d73322d7075626c69632e73332e616d617a6f6e6177732e636f6d2f666967757265732f323031362d31312d30382f653738353732656565663862393637646563343230303133633635613636383434383763313362322f322d466967757265322d312e706e67
[Paper]https://arxiv.org/pdf/1607.00662.pdf
https://camo.githubusercontent.com/632640bd666df35c67619624beca0eb999f8ce3e2994c56644a9c0ccd00f8477/68747470733a2f2f61647269616e636f6c7965722e66696c65732e776f726470726573732e636f6d2f323031362f31322f756e737570657276697365642d33642d6669672d31302e6a7065673f773d363030
[Paper]https://arxiv.org/pdf/1608.04236.pdf
[Code]https://github.com/ajbrock/Generative-and-Discriminative-Voxel-Modeling
https://camo.githubusercontent.com/978bce4c47ac39a2ec991d636e856f3199e48138b3417d799ed88aee4fb88c34/687474703a2f2f6461766964737475747a2e64652f776f726470726573732f77702d636f6e74656e742f75706c6f6164732f323031372f30322f62726f636b5f7661652e706e67
[Paper]https://shubhtuls.github.io/drc/
https://camo.githubusercontent.com/ec9f487fbb4c784074df8b3bd7d47d49753b2b4fe02546942012d2db49b8fc67/68747470733a2f2f736875626874756c732e6769746875622e696f2f6472632f7265736f75726365732f696d616765732f74656173657243686169722e706e67
[Paper]http://openaccess.thecvf.com/content_cvpr_2017/papers/Soltani_Synthesizing_3D_Shapes_CVPR_2017_paper.pdf
[Code]https://github.com/Amir-Arsalan/Synthesize3DviaDepthOrSil
https://camo.githubusercontent.com/391a213dd3c4dc3d8239453ec511513c7e5bebce8d2c386d7bd3b5624dceb0e1/68747470733a2f2f6a69616a756e77752e636f6d2f696d616765732f73706f746c696768745f33647661652e6a7067
[Paper]https://arxiv.org/pdf/1612.00101.pdf
[Code]https://github.com/angeladai/cnncomplete
https://camo.githubusercontent.com/be42016e38d17714a35e0cdeb6e76a507dc85961d5006a6f7e197d17e6d419f4/687474703a2f2f67726170686963732e7374616e666f72642e6564752f70726f6a656374732f636e6e636f6d706c6574652f7465617365722e6a7067
[Paper]https://arxiv.org/pdf/1703.09438.pdf
[Code]https://github.com/lmb-freiburg/ogn
https://camo.githubusercontent.com/02a0d22a1d7f52a8526f599ca88fb4bf45d15f7ad619629b8142818fe988dc0e/68747470733a2f2f6169322d73322d7075626c69632e73332e616d617a6f6e6177732e636f6d2f666967757265732f323031362d31312d30382f366332613239326262303138613837343263626230626263356532336464306134353466666533612f322d466967757265322d312e706e67
[Paper]https://arxiv.org/pdf/1704.00710.pdf
https://camo.githubusercontent.com/d9b7b913fe59912b7dcb2c723df17824d60e0a2362cde9056a3fc24ff4b10094/687474703a2f2f626169722e6265726b656c65792e6564752f626c6f672f6173736574732f6873702f696d6167655f322e706e67
[Paper]https://arxiv.org/pdf/1704.01047.pdf
[Code]https://github.com/griegler/octnetfusion
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/OctNetFusion-%20Learning%20Depth%20Fusion%20from%20Data.jpeg
[Paper]http://ai.stanford.edu/~haosu/papers/SI2PC_arxiv_submit.pdf
[Code]https://github.com/fanhqme/PointSetGeneration
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/A%20Point%20Set%20Generation%20Network%20for%203D%20Object%20Reconstruction%20from%20a%20Single%20Image%20(2017).jpeg
[Paper]https://arxiv.org/pdf/1707.02392.pdf
[Code]https://github.com/optas/latent_3d_points
https://github.com/optas/latent_3d_points/blob/master/doc/images/teaser.jpg
[Paper]https://arxiv.org/pdf/1707.06267.pdf
https://camo.githubusercontent.com/a057c252921229abf7bc22f9061c66b40e709c3ac72ea620737188a97b51efcc/687474703a2f2f6d676164656c68612e6d652f737070632f6669672f61627374726163742e706e67
[Paper]https://arxiv.org/pdf/1710.04954.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/PCPNET%20Learning%20Local%20Shape%20Properties%20from%20Raw%20Point%20Clouds%20(2017).jpeg
[Paper]http://www.cs.unc.edu/~eunbyung/tvsn/
[Code]https://github.com/silverbottlep/tvsn
https://camo.githubusercontent.com/162377782572007a6eaff037c253198a76be1f12f1f3ab85b3f0597be411266f/68747470733a2f2f656e672e75636d65726365642e6564752f70656f706c652f6a79616e6734342f706963732f766965775f73796e7468657369732e676966
[Paper]http://static.ijcai.org/proceedings-2017/0404.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Tag%20Disentangled%20Generative%20Adversarial%20Networks%20for%20Object%20Image%20Re-rendering.jpeg
[Paper]http://people.cs.umass.edu/~zlun/papers/SketchModeling/
[Code]https://github.com/happylun/SketchModeling
https://camo.githubusercontent.com/d290e965fade5c08f7277913f43bcd9c1b0e008d32a42acd71436f19272c9726/68747470733a2f2f70656f706c652e63732e756d6173732e6564752f7e7a6c756e2f7061706572732f536b657463684d6f64656c696e672f536b657463684d6f64656c696e675f7465617365722e706e67
[Paper]https://arxiv.org/pdf/1706.05170.pdf
https://camo.githubusercontent.com/857c94d1ccdc77f4c200f850c4df967ecc7220201c1b29494e36702a73bb040f/68747470733a2f2f7062732e7477696d672e636f6d2f6d656469612f444373504b4c71586f414542642d562e6a7067
[Paper]https://arxiv.org/pdf/1705.10904.pdf
[Code]https://github.com/jgwak/McRecon
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Weakly%20supervised%203D%20Reconstruction%20with%20Adversarial%20Constraint%20(2017).jpeg
[Paper]https://arxiv.org/pdf/1703.04079.pdf
https://camo.githubusercontent.com/71714220f29705b539f790b7b51f6dde42ca07c57437f966eb754af867eb40f5/68747470733a2f2f336461646570742e636f6d2f77702d636f6e74656e742f75706c6f6164732f323031372f30372f53637265656e73686f742d66726f6d2d323031372d30372d32362d3134353532312d65313530313037373533393732332e706e67
[Paper]http://kevinkaixu.net/projects/grass.html
[Code]https://github.com/junli-lj/grass
[code]https://github.com/kevin-kaixu/grass_pytorch
https://camo.githubusercontent.com/80ef4fd5312b8e5eab9c10e90b5dc9bbfa5a2e8203dae963754514075bf744cc/687474703a2f2f6b6576696e6b616978752e6e65742f70726f6a656374732f67726173732f7465617365722e6a7067
[Paper]https://arxiv.org/pdf/1708.01648.pdf
[code]https://github.com/zouchuhang/3D-PRNN
https://github.com/zouchuhang/3D-PRNN/blob/master/figs/teasor.jpg
[Paper]http://hiroharu-kato.com/projects_en/neural_renderer.html
[Code]https://github.com/hiroharu-kato/neural_renderer.git
https://camo.githubusercontent.com/982f526daac68323d75ad109b14b9ad0d4f8d945aadc97a411a9d92d9eb87ae1/68747470733a2f2f7062732e7477696d672e636f6d2f6d656469612f4450536d2d3448576b414170455a642e6a7067
[Paper]https://arxiv.org/pdf/1710.06104.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Core55.png
[Code]https://github.com/maxorange/pix2vox
https://github.com/maxorange/pix2vox/blob/master/img/sample.gif
[Paper]https://arxiv.org/pdf/1707.08390.pdf
https://camo.githubusercontent.com/48b93492e44e8aaeefab051d425c8035f9008c59886221e1c2087942aaa9c42a/68747470733a2f2f61727869762d73616e6974792d73616e6974792d70726f64756374696f6e2e73332e616d617a6f6e6177732e636f6d2f72656e6465722d6f75747075742f33313633312f78312e706e67
[Paper]http://marrnet.csail.mit.edu/
https://camo.githubusercontent.com/3fc05ca88e9ee66eda3cce5b00a291ba8976c7e005ca1941628767b4262f2906/687474703a2f2f6d6172726e65742e637361696c2e6d69742e6564752f696d616765732f6d6f64656c2e6a7067
[Paper]http://bair.berkeley.edu/blog/2017/09/05/unified-3d/
https://camo.githubusercontent.com/0e24c89233f7365f6ba69f8da0fa61da89120004456fd11bdd178979ebb4058c/687474703a2f2f626169722e6265726b656c65792e6564752f7374617469632f626c6f672f756e69666965642d33642f4e6574776f726b2e706e67
[Paper]http://3dmatch.cs.princeton.edu/
https://camo.githubusercontent.com/6ad9238a643496deb3008271a56ceb14d3b7e5cbabf4623af696e7a1eede3419/687474703a2f2f33646d617463682e63732e7072696e6365746f6e2e6564752f696d672f6f766572766965772e6a7067
[Paper]https://ieeexplore.ieee.org/document/8265323/
https://github.com/frankhjwx/3D-Machine-Learning/blob/master/imgs/Scaling%20CNN%20Reconstruction.png
[Paper]https://arxiv.org/pdf/1708.01841.pdf
https://camo.githubusercontent.com/335a4834f34f211da19b9171078adb745f39d78a218d83d83bea4637c84046c0/68747470733a2f2f6d6873756e672e6769746875622e696f2f6173736574732f696d616765732f636f6d706c656d656e742d6d652f6669677572655f322e706e67
[Paper]https://arxiv.org/pdf/1801.06761.pdf
[Code]https://github.com/yulequan/PU-Net
https://camo.githubusercontent.com/b80c7f287fb14b672d5fbd56de103e847ff3074773b9316990c4f8826a7478fe/687474703a2f2f6170707372762e6373652e6375686b2e6564752e686b2f7e6c7179752f696e646578706963732f50752d4e65742e706e67
[Paper]https://shubhtuls.github.io/mvcSnP/
https://camo.githubusercontent.com/b5ef05fd32c7d748a72c355b237e1b7fbad86c709b52800fb93e2d0279a64303/68747470733a2f2f736875626874756c732e6769746875622e696f2f6d7663536e502f7265736f75726365732f696d616765732f7465617365722e706e67
[Paper]http://ci2cv.net/media/papers/WACV18.pdf
https://camo.githubusercontent.com/920206a3f181bcff3e6eb5a01435d5f9ee35a789087bf0c2fb0b3ef9d3f3f7fc/68747470733a2f2f6368656e687375616e6c696e2e6269746275636b65742e696f2f696d616765732f72702f7230362e706e67
[Paper]https://chenhsuanlin.bitbucket.io/3D-point-cloud-generation/
https://camo.githubusercontent.com/9ac3571ef30ca1e6e81e47b6bf58dd94b5400c280fb55a70bfeb6762503e6e9c/68747470733a2f2f6368656e687375616e6c696e2e6269746275636b65742e696f2f696d616765732f72702f7230352e706e67
[Paper]https://github.com/nywang16/Pixel2Mesh
https://camo.githubusercontent.com/63156051fe60360f69aaa252e7c2a32707e5e43f231515baa6f48534a8529f40/68747470733a2f2f7777772e67726f756e6461692e636f6d2f6d656469612f61727869765f70726f6a656374732f3138383931312f78322e706e672e37353078305f7137355f63726f702e706e67
[Paper]http://imagine.enpc.fr/~groueixt/atlasnet/
[Code]https://github.com/ThibaultGROUEIX/AtlasNet
https://camo.githubusercontent.com/0704cdd834d8c51f9d2c8423d16575b823ecec6c19e0a037fb542dcde6315bf3/687474703a2f2f696d6167696e652e656e70632e66722f7e67726f75656978742f61746c61736e65742f696d67732f7465617365722e736d616c6c2e706e67
[Paper]http://www.cvlibs.net/publications/Liao2018CVPR.pdf
https://github.com/frankhjwx/3D-Machine-Learning/blob/master/imgs/Deep%20Marching%20Cubes.png
[Paper]https://arxiv.org/pdf/1804.06375v1.pdf
https://github.com/syb7573330/im2avatar/blob/master/misc/demo_teaser.png
[Paper]https://akanazawa.github.io/cmr/
https://camo.githubusercontent.com/5db33f9944f1ea7633ba079494c21400fb678b8dfc10693da7dd249183d48d0c/68747470733a2f2f616b616e617a6177612e6769746875622e696f2f636d722f7265736f75726365732f696d616765732f7465617365722e706e67
[Paper]https://arxiv.org/pdf/1712.08290.pdf
https://camo.githubusercontent.com/34e481db8faacb60a0c9c7f74a8fca7d7634fb7829ff4be24aab9862b424003a/68747470733a2f2f7062732e7477696d672e636f6d2f6d656469612f44522d5267626155384145796a65572e6a7067
[Paper]http://text2shape.stanford.edu/
https://camo.githubusercontent.com/a391fb5b1ffd858e20c93eed1f52a491aa7b39c40fb5bc635ce271dc3a699826/687474703a2f2f746578743273686170652e7374616e666f72642e6564752f666967757265732f70756c6c2e706e67
[Paper]https://arxiv.org/abs/1802.09987
[Code]https://github.com/EdwardSmith1884/Multi-View-Silhouette-and-Depth-Decomposition-for-High-Resolution-3D-Object-Representation
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/blob/master/imgs/decomposition_new.png
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Multi-View%20Silhouette%20and%20Depth%20Decomposition%20for%20High%20Resolution%203D%20Object%20Representation.png
[Paper]https://arxiv.org/abs/1804.06032
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/blob/master/imgs/pixels-voxels-views-rgb2mesh.png
[Paper]https://deepmind.com/blog/neural-scene-representation-and-rendering/
https://camo.githubusercontent.com/62510ed23bbcbe71df90ad4f9c094ed41bce0c9804cb1fa762f0668a7411f8a0/687474703a2f2f7777772e6172696d6f72636f732e636f6d2f7374617469632f696d616765732f7075626c69636174696f6e5f696d616765732f67716e5f696d6167652e706e67
[Paper]https://arxiv.org/pdf/1804.05469.pdf
https://camo.githubusercontent.com/4e449556825d11af3eb5762090c1d480be485c0174c1837cb7141da4e708068f/68747470733a2f2f6b6576696e6b616978752e6e65742f696d616765732f7075626c69636174696f6e732f6e69755f6376707231382e6a7067
[Paper]https://arxiv.org/pdf/1712.07262.pdf
https://camo.githubusercontent.com/eb22781424d6e02581f4c6bbb65daeccc056e3521f4f39e1288e020ca611460d/687474703a2f2f73696d6261666f72726573742e6769746875622e696f2f6669672f466f6c64696e674e65742e6a7067
[Paper]http://pix3d.csail.mit.edu/
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Pix3D%20-%20Dataset%20and%20Methods%20for%20Single-Image%203D%20Shape%20Modeling%20(2018%20CVPR).png
[Paper]http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/1128.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/3D-RCNN-%20Instance-level%203D%20Object%20Reconstruction%20via%20Render-and-Compare%20(2018%20CVPR).jpeg
[Paper]https://arxiv.org/pdf/1804.10975.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Matryoshka%20Networks-%20Predicting%203D%20Geometry%20via%20Nested%20Shape%20Layers%20(2018%20CVPR).jpeg
[Paper]https://arxiv.org/pdf/1712.00268v1.pdf
https://camo.githubusercontent.com/ab2a05baf94a438fb343a07b9b08cd5a74704acc6cbbd9df52881e1edd04ad9b/68747470733a2f2f6f726c6974616e792e6769746875622e696f2f4f4c5f66696c65732f7368617065436f6d702e706e67
[Paper]http://vcc.szu.edu.cn/research/2018/G2L
[Code]https://github.com/Hao-HUST/G2LGAN
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Global-to-Local%20Generative%20Model%20for%203D%20Shapes.jpg
[Paper]https://bit.ly/alignet
[Code]https://github.com/ranahanocka/ALIGNet/
https://github.com/ranahanocka/ALIGNet/blob/master/docs/rep.png
[Paper]http://openaccess.thecvf.com/content_cvpr_2018/papers/Le_PointGrid_A_Deep_CVPR_2018_paper.pdf
[Code]https://github.com/trucleduc/PointGrid
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/PointGrid-%20A%20Deep%20Network%20for%203D%20Shape%20Understanding%20(2018).jpeg
[Paper]https://xjqi.github.io/GAL.pdf
https://camo.githubusercontent.com/8b0393512bc832e2ae6c0e7f9e3e1bd7aded3bb17525ea1312b3271e597a2e8b/68747470733a2f2f6d656469612e737072696e6765726e61747572652e636f6d2f6f726967696e616c2f737072696e6765722d7374617469632f696d6167652f63687025334131302e313030372532463937382d332d3033302d30313233372d335f34392f4d656469614f626a656374732f3437343231335f315f456e5f34395f466967325f48544d4c2e676966
[Paper]https://papers.nips.cc/paper/7297-visual-object-networks-image-generation-with-disentangled-3d-representations.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Visual%20Object%20Networks-%20Image%20Generation%20with%20Disentangled%203D%20Representation%20(2018).jpeg
[Paper]http://shape2prog.csail.mit.edu/
https://camo.githubusercontent.com/a0ca49e79a3ae0612065f451b0eee0d078da1077c345bde6717c0a8c9315dc57/687474703a2f2f73686170653270726f672e637361696c2e6d69742e6564752f73686170655f66696c65732f7465617365722e6a7067
[Paper]https://arxiv.org/pdf/1901.05103.pdf
https://camo.githubusercontent.com/8f9e7a6e37327f3dcbb4617b094d08eb71e0d949ab8220515483b9c6fbb4e518/68747470733a2f2f7062732e7477696d672e636f6d2f6d656469612f44784661572d6d553841456f3977632e6a7067
[Paper]http://hiroharu-kato.com/projects_en/view_prior_learning.html
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Learning%20View%20Priors%20for%20Single-view%203D%20Reconstruction.png
[Paper]https://arxiv.org/abs/1907.10250
[Code]https://github.com/nitinagarwal/QuadricLoss
https://camo.githubusercontent.com/4119d59ea9836fbaa85a10e4f4223b4486223613f01c7fc140560d77b80baadd/68747470733a2f2f7777772e6963732e7563692e6564752f7e6167617277616c2f626d76635f323031392e706e67
[Paper]https://arxiv.org/abs/1811.07441
[Code]https://github.com/nschor/CompoNet
https://raw.githubusercontent.com/nschor/CompoNet/master/images/network_architecture.png
[Paper]https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/439/1285.pdf
[Code (TF)]https://github.com/anuragranj/coma
[Code (PyTorch)]https://github.com/pixelite1201/pytorch_coma/
[Code (PyTorch)]https://github.com/sw-gong/coma
CoMAhttps://coma.is.tue.mpg.de/
https://camo.githubusercontent.com/ea61a6f2df01d3b174206bf3cbaa8eb9dd4daedb929b87681a999af923f29e1d/68747470733a2f2f636f6d612e69732e7475652e6d70672e64652f75706c6f6164732f636b656469746f722f70696374757265732f39312f636f6e74656e745f636f6d615f66616365732e6a7067
[Paper]https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/509/paper_camera_ready.pdf
[Code]https://github.com/soubhiksanyal/RingNet
https://github.com/soubhiksanyal/RingNet/blob/master/gif/celeba_reconstruction.gif
[Paper]https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/510/paper_final.pdf
[Video]https://youtu.be/XceCxf_GyW4
[Code]https://github.com/TimoBolkart/voca
VOCAhttps://voca.is.tue.mpg.de/
https://github.com/TimoBolkart/voca/blob/master/gif/speech_driven_animation.gif
[Paper]https://arxiv.org/abs/1908.01210
[Site]https://nv-tlabs.github.io/DIB-R/
[Code]https://github.com/nv-tlabs/DIB-R
https://camo.githubusercontent.com/509e66a95fec168d7bde081524a6eeb3a62c30b0d629d6f5e58afc916ac69786/68747470733a2f2f6e762d746c6162732e6769746875622e696f2f4449422d522f666967757265732f6d6f64656c32612d322e706e67
[Paper]https://arxiv.org/abs/1904.01786
[Code]https://github.com/ShichenLiu/SoftRas
https://raw.githubusercontent.com/ShichenLiu/SoftRas/master/data/media/teaser/teaser.png
[Project]http://www.matthewtancik.com/nerf
[Paper]https://arxiv.org/abs/2003.08934
[Code]https://github.com/bmild/nerf
https://camo.githubusercontent.com/b48c1aa978af157be5b81d9e96a6451cef1683dd00dfd832c804cffa9cbb82d5/68747470733a2f2f75706c6f6164732d73736c2e776562666c6f772e636f6d2f3531653064373364383364303662616137613030303030662f3565373030656636303637623433383231656435323736385f706970656c696e655f776562736974652d30312d702d3830302e706e67
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#texturematerial-analysis-and-synthesis
[Paper]https://arxiv.org/pdf/1505.07376.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Texture%20Synthesis%20Using%20Convolutional%20Neural%20Networks.jpeg
[Paper]https://mediatech.aalto.fi/publications/graphics/TwoShotSVBRDF/
https://camo.githubusercontent.com/6bb06cdb0c5aadb4782de2dcb7982e1feb056a231c4767701ec91e390036eda9/68747470733a2f2f6d65646961746563682e61616c746f2e66692f7075626c69636174696f6e732f67726170686963732f54776f53686f745356425244462f7465617365722e706e67
[Paper]https://mediatech.aalto.fi/publications/graphics/NeuralSVBRDF/
https://camo.githubusercontent.com/1bd7eaebaa259b3c28d3851a3f99822415ece5641d070e28dba648f18a3c8063/68747470733a2f2f6d65646961746563682e61616c746f2e66692f7075626c69636174696f6e732f67726170686963732f4e657572616c5356425244462f7465617365722e706e67
[Paper]http://msraig.info/~sanet/sanet.htm
https://camo.githubusercontent.com/4ef6fd3dc1dc60d019fe28d53d3b23a3f878c040fba5a53809a6572f68154c4b/687474703a2f2f6d73726169672e696e666f2f7e73616e65742f7465617365722e6a7067
[Paper]https://wxs.ca/research/multiscale-neural-synthesis/
https://camo.githubusercontent.com/540b5fdab51c61e2b855e0e05539e8a84ebbc0b987191b3c2eb57124cdd4fafc/68747470733a2f2f7778732e63612f72657365617263682f6d756c74697363616c652d6e657572616c2d73796e7468657369732f6d756c74697363616c652d6772616d2d6d6172626c652e6a7067
[Paper]https://homes.cs.washington.edu/~krematas/Publications/reflectance-natural-illumination.pdf
https://camo.githubusercontent.com/2762893a17d170a9465fbae6c7a36edb04ef22c0877a995dba161b748893eb24/687474703a2f2f7777772e766973696f6e2e65652e6574687a2e63682f7e67656f72676f75732f696d616765732f7470616d6931375f746561736572322e706e67
[Paper]https://arxiv.org/pdf/1710.08313.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Joint%20Material%20and%20Illumination%20Estimation%20from%20Photo%20Sets%20in%20the%20Wild.jpeg
[Paper]https://arxiv.org/pdf/1611.09325v2.pdf
https://camo.githubusercontent.com/f0b6e20c6d704018f02642fe1f5138e9d4d7a31a5ca22d70cd3ffb6d48fb8d4b/68747470733a2f2f686f6d65732e63732e77617368696e67746f6e2e6564752f7e6b72656d617461732f6d795f696d616765732f61727869763136625f7465617365722e6a7067
[Paper]https://arxiv.org/pdf/1706.02823.pdf
https://camo.githubusercontent.com/0b50e579035eafe4d5aa9c0b6818533f4940ceabfb2555522417f5c40f09ca89/687474703a2f2f7465787475726567616e2e6579652e6761746563682e6564752f696d672f70617065725f6669677572652e706e67
[Paper]https://users.cg.tuwien.ac.at/zsolnai/gfx/gaussian-material-synthesis/
https://camo.githubusercontent.com/6f163b1d4405d026ed0e392b03d082130710fa1f5c0b2f141b17ea94082ce7a6/68747470733a2f2f692e7974696d672e636f6d2f76692f564d327973436e443947412f6d617872657364656661756c742e6a7067
[Paper]http://vcc.szu.edu.cn/research/2018/TexSyn
https://github.com/jessemelpolio/non-stationary_texture_syn/blob/master/imgs/teaser.png
[Paper]https://arxiv.org/pdf/1804.08020.pdf
https://user-images.githubusercontent.com/12434910/39275366-e18c7c1c-4899-11e8-8e61-05072618bbce.PNG
[Paper]https://gvv.mpi-inf.mpg.de/projects/LIME/
https://camo.githubusercontent.com/8838dc2ce56e8c004ddd7c1349c1a25c51c1c70f62107f8171d06c9b3848c8ab/68747470733a2f2f7765622e7374616e666f72642e6564752f7e7a6f6c6c686f65662f7061706572732f4356505231385f4d6174657269616c2f7465617365722e706e67
[Paper]https://team.inria.fr/graphdeco/fr/projects/deep-materials/
https://camo.githubusercontent.com/488a7558219b3ff83e3678389cd83c8ed78d4bc8f90daa0ea10b49a671e86fa6/68747470733a2f2f7465616d2e696e7269612e66722f67726170686465636f2f66696c65732f323031382f30382f7465617365725f76302e706e67
[Paper]https://keunhong.com/publications/photoshape/
https://camo.githubusercontent.com/f0b0b5da787305b87a6cffc820ac8e8ea0c0a4b41f63b8f934791a0052753e70/68747470733a2f2f6b65756e686f6e672e636f6d2f7075626c69636174696f6e732f70686f746f73686170652f7465617365722e6a7067
[Paper]http://www.vovakim.com/papers/18_3DV_ShapeMatFeat.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Learning%20Material-Aware%20Local%20Descriptors%20for%203D%20Shapes%20(2018).jpeg
[Paper]http://geometry.cs.ucl.ac.uk/projects/2018/frankengan/
https://camo.githubusercontent.com/ed02b8aa6ecaf18c2732044463d241ff80851ed46b5b318240673db3e3823f47/687474703a2f2f67656f6d657472792e63732e75636c2e61632e756b2f70726f6a656374732f323031382f6672616e6b656e67616e2f70617065725f646f63732f7465617365722e6a7067
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#style-learning-and-transfer
[Paper]https://www.cs.sfu.ca/~haoz/pubs/xu_siga10_style.pdf
https://camo.githubusercontent.com/d7b060a8e165ab28a9cd26341814e6637ae97b107c6b52576f6cab8c54d18bea/68747470733a2f2f73697465732e676f6f676c652e636f6d2f736974652f6b6576696e6b616978752f5f2f727372632f313437323835323132333130362f7075626c69636174696f6e732f7374796c655f622e6a70673f6865696768743d3134352677696474683d343030
[Paper]https://hal.inria.fr/hal-00695903/file/GarmentTransfer.pdf
https://camo.githubusercontent.com/c97361456e1ad43314183916ddb1f2fe08d8e9c5060a17b951dc94c9b5646742/68747470733a2f2f68616c2e696e7269612e66722f68616c2d303036393539303376322f66696c652f30325f576f6d616e546f416c6c2e6a7067
[Paper]http://www.chongyangma.com/publications/st/index.html
https://camo.githubusercontent.com/3e72e2c397170bbee0c3a14b9242a12608609a5e1363f6ca839e58a7c0b69573/687474703a2f2f7777772e63686f6e6779616e676d612e636f6d2f7075626c69636174696f6e732f73742f323031345f73745f7465617365722e706e67
[Paper]http://people.cs.umass.edu/~zlun/papers/StyleSimilarity/StyleSimilarity.pdf
[Code]https://github.com/happylun/StyleSimilarity
https://camo.githubusercontent.com/c2dd97cc76c373c3c943c933603f9cfa207118c8ba28fe911528f097979166c3/68747470733a2f2f70656f706c652e63732e756d6173732e6564752f7e7a6c756e2f7061706572732f5374796c6553696d696c61726974792f5374796c6553696d696c61726974795f7465617365722e6a7067
[Paper]http://people.cs.umass.edu/~zlun/papers/StyleTransfer/StyleTransfer.pdf
[Code]https://github.com/happylun/StyleTransfer
https://camo.githubusercontent.com/8eab16de03460d2f612d995bdbc109285102efa86449bcbab574190ea24783fb/68747470733a2f2f70656f706c652e63732e756d6173732e6564752f7e7a6c756e2f7061706572732f5374796c655472616e736665722f5374796c655472616e736665725f7465617365722e6a7067
[Paper]http://ai.stanford.edu/~haosu/papers/siga16_texture_transfer_small.pdf
https://camo.githubusercontent.com/ac558ffa516b6e616066933e5f1550e10d41b5f18a8a4e3d443952ee22afdf03/687474703a2f2f67656f6d657472792e63732e75636c2e61632e756b2f70726f6a656374732f323031362f746578747572655f7472616e736665722f70617065725f646f63732f7465617365722e706e67
[Paper]http://surfacedetails.cs.princeton.edu/
https://camo.githubusercontent.com/fece0ca85172b0abbcb671e57bca04b0b0a8670b03dadf2eb1b6a68e7e310648/687474703a2f2f7375726661636564657461696c732e63732e7072696e6365746f6e2e6564752f696d616765732f7465617365722e706e67
[Paper]http://people.scs.carleton.ca/~olivervankaick/pubs/style_elem.pdf
https://camo.githubusercontent.com/ade37e50dc2ef5dc14eac661c1fb55179f784ba329d0f04a34e1124ed629f688/687474703a2f2f73323031372e73696767726170682e6f72672f73697465732f64656661756c742f66696c65732f7374796c65732f6c617267652f7075626c69632f696d616765732f6576656e74732f633131382d653130302d7075626c6963696d6167655f302d69746f6b3d794f384f6567514f2e706e67
[Paper]http://hiroharu-kato.com/projects_en/neural_renderer.html
[Code]https://github.com/hiroharu-kato/neural_renderer.git
https://camo.githubusercontent.com/982f526daac68323d75ad109b14b9ad0d4f8d945aadc97a411a9d92d9eb87ae1/68747470733a2f2f7062732e7477696d672e636f6d2f6d656469612f4450536d2d3448576b414170455a642e6a7067
[Paper]http://vcc.szu.edu.cn/research/2018/AppMod
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Appearance%20Modeling%20via%20Proxy-to-Image%20Alignment.png
[Paper]http://bigvid.fudan.edu.cn/pixel2mesh/
https://camo.githubusercontent.com/0a11869ff2febd74464483cfd4797422c3d880c62a17f0d2af7cc0139fdb836a/68747470733a2f2f7062732e7477696d672e636f6d2f6d656469612f44614975456e6655304141716573412e6a7067
[Paper]http://geometrylearning.com/ausdt/
https://camo.githubusercontent.com/18879c3523fef879d31f92623689dcef9c8df2e5f6fd3cc612ee85d572cc9f4c/687474703a2f2f67656f6d657472796c6561726e696e672e636f6d2f61757364742f696d67732f7465617365722e706e67
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#scene-synthesisreconstruction
[Paper]http://people.sutd.edu.sg/~saikit/projects/furniture/index.html
https://camo.githubusercontent.com/9b3cf5244dc579275828bfd534e330467daf3624fe161ef419a94dce578d871c/68747470733a2f2f7777772e63732e756d622e6564752f7e637261696779752f696d672f7061706572732f6675726e69747572652e676966
[Paper]http://graphics.stanford.edu/~pmerrell/furnitureLayout.htm
https://camo.githubusercontent.com/cc174e6f52c06dc0b9e5e1e2d2789b2095f25856aa67958a6365572afb4a4f3a/687474703a2f2f7669732e6265726b656c65792e6564752f7061706572732f6675726e69747572654c61796f75742f6675726e69747572654269672e6a7067
[Paper]http://graphics.stanford.edu/~lfyg/owl.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Synthesizing%20Open%20Worlds%20with%20Constraints%20using%20Locally%20Annealed%20Reversible%20Jump%20MCMC%20(2012).jpeg
[Paper]http://graphics.stanford.edu/projects/scenesynth/
https://camo.githubusercontent.com/037ee1365746adba24d524fcfc4e19a04d49c15a528dc3ca7efc75add9355162/687474703a2f2f67726170686963732e7374616e666f72642e6564752f70726f6a656374732f7363656e6573796e74682f696d672f7465617365722e6a7067
[Paper]http://sweb.cityu.edu.hk/hongbofu/projects/sketch2scene_sig13/#.WWWge__ysb0
https://camo.githubusercontent.com/7472d789977693e5fa1d8b809bc6496af19aa6fb3f55731195ba2734d6698ca0/687474703a2f2f73756e7765696c756e2e6769746875622e696f2f696d616765732f70617065722f736b65746368327363656e655f7468756d622e6a7067
[Paper]https://www.cs.sfu.ca/~haoz/pubs/ma_siga16_action.pdf
https://camo.githubusercontent.com/feb194ab1f3d375774d4169d4e8721e0e1080bc0f714b48346e5fde7a9fb61a7/68747470733a2f2f6d6172756974782e6769746875622e696f2f70726f6a6563742f61646973652f7465617365722e6a7067
[Paper]https://www.cs.umb.edu/~craigyu/papers/clutterpalette.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/The%20Clutterpalette-%20An%20Interactive%20Tool%20for%20Detailing%20Indoor%20Scenes.png
[Paper]http://geometry.cs.ucl.ac.uk/projects/2016/relationship-templates/
https://camo.githubusercontent.com/86f7b57fc6f993e9a9e5e858719f5d8c8f1c2f3785ed1350b0227d59f239be22/687474703a2f2f67656f6d657472792e63732e75636c2e61632e756b2f70726f6a656374732f323031362f72656c6174696f6e736869702d74656d706c617465732f70617065725f646f63732f7465617365722e706e67
[Paper]http://homes.cs.washington.edu/~izadinia/im2cad.html
https://camo.githubusercontent.com/4d5af1f9117cdc80b7731a77a23fe7cf7ad2496923241bfe22c0ac70277cc763/687474703a2f2f692e696d6775722e636f6d2f4b68744f6575422e6a7067
[Paper]https://arxiv.org/pdf/1504.02437.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Predicting%20Complete%203D%20Models%20of%20Indoor%20Scenes.png
[Paper]https://arxiv.org/pdf/1710.09490.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Complete%203D%20Scene%20Parsing%20from%20Single%20RGBD%20Image.jpeg
[Paper]http://www.cse.wustl.edu/~chenliu/floorplan-transformation.html
[Code]https://github.com/art-programmer/FloorplanTransformation
https://camo.githubusercontent.com/4bdc79de3ebbea6249d0e212bb3030e171aaf1e07b0f9d044cc08622acdf6c50/68747470733a2f2f7777772e6373652e777573746c2e6564752f7e6368656e6c69752f666c6f6f72706c616e2d7472616e73666f726d6174696f6e2f7465617365722e706e67
[Blog]https://becominghuman.ai/3d-multi-object-gan-7b7cee4abf80
https://camo.githubusercontent.com/cdf976d689e7cd82833de89c891f4dc2899a4edf557ec2cdfcebc49cf91ee1f6/68747470733a2f2f63646e2d696d616765732d312e6d656469756d2e636f6d2f6d61782f313630302f312a4e636b573268666762486845503350385a355a4c6a512e706e67
[Paper]http://arts.buaa.edu.cn/projects/sa17/
https://camo.githubusercontent.com/ebaabbbf1f3ee8807b683a4247e1ffafede3cf8448ee2ba31232635bd5fa3100/68747470733a2f2f7361323031372e73696767726170682e6f72672f696d616765732f6576656e74732f633132312d6534352d7075626c6963696d6167652e6a7067
[Paper]https://publik.tuwien.ac.at/files/publik_262718.pdf
https://camo.githubusercontent.com/710d310f5792284484a051406b23b3a45519baa15954c47b99b411fef68b9ba6/687474703a2f2f7777772e70657465726b616e2e636f6d2f70696374757265732f746561736572712e6a7067
[Paper]https://arxiv.org/pdf/1703.00061.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/SceneSuggest%20-Context-driven%203D%20Scene%20Design%20(2017).png
[Paper]https://arxiv.org/pdf/1703.04699v1.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/A%20fully%20end-to-end%20deep%20learning%20approach%20for%20real-time%20simultaneous%203D%20reconstruction%20and%20material%20recognition%20(2017).png
[Paper]http://web.cs.ucla.edu/~syqi/publications/cvpr2018synthesis/cvpr2018synthesis.pdf
[Supplementary]http://web.cs.ucla.edu/~syqi/publications/cvpr2018synthesis/cvpr2018synthesis_supplementary.pdf
[Code]https://github.com/SiyuanQi/human-centric-scene-synthesis
https://camo.githubusercontent.com/c245dfd89fda3e0e530d91083e5e1a1fe475ab00113a416437f8d27305b9572e/687474703a2f2f7765622e63732e75636c612e6564752f7e737971692f7075626c69636174696f6e732f7468756d626e61696c732f637670723230313873796e7468657369732e676966
[Paper]https://arxiv.org/pdf/1804.00090.pdf
[Code]http://art-programmer.github.io/floornet.html
https://camo.githubusercontent.com/3d092295df57691f6366311c232c77379093012f7cc4bb9af60d0286572cfe66/687474703a2f2f6172742d70726f6772616d6d65722e6769746875622e696f2f666c6f6f726e65742f7465617365722e706e67
[Paper]https://arxiv.org/pdf/1712.10215.pdf
https://camo.githubusercontent.com/852865465ba96a15824d230f371fec40354de37bb5e01fecd797446a9a212e8a/68747470733a2f2f6e696573736e65726c61622e6f72672f7061706572732f323031382f337363616e636f6d706c6574652f7465617365722e6a7067
[Paper]https://kwang-ether.github.io/pdf/deepsynth.pdf
https://camo.githubusercontent.com/c1b3c12f5e590b09645578cbbd75129423e320013b1ac5d4ce405567c7bd0ff2/687474703a2f2f6d73617676612e6769746875622e696f2f66696c65732f6465657073796e74682e706e67
[Paper]https://arxiv.org/pdf/1704.00112.pdf
https://camo.githubusercontent.com/584abe4da15f56482d24177a7a5921caf2d83199f51c1840355603cf97706c09/68747470733a2f2f6d656469612e737072696e6765726e61747572652e636f6d2f6f726967696e616c2f737072696e6765722d7374617469632f696d6167652f61727425334131302e313030372532467331313236332d3031382d313130332d352f4d656469614f626a656374732f31313236335f323031385f313130335f466967355f48544d4c2e6a7067
[Paper]http://siyuanhuang.com/holistic_parsing/main.html
https://camo.githubusercontent.com/0493cca790afb58ddb8a10e54d06533efa5428cae682a4d562f8370417479ddd/687474703a2f2f7765622e63732e75636c612e6564752f7e737971692f7075626c69636174696f6e732f7468756d626e61696c732f65636376323031387363656e652e706e67
[Paper]http://www.sfu.ca/~agadipat/publications/2018/T2S/project_page.html
https://camo.githubusercontent.com/e9716fbab1b687a01612a13c6769054386334d9edbca577a63d9e8129f8de365/687474703a2f2f7777772e7366752e63612f7e61676164697061742f7075626c69636174696f6e732f323031382f5432532f7465617365722e706e67
[Paper]https://arxiv.org/pdf/1808.02084.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Deep%20Generative%20Modeling%20for%20Scene%20Synthesis%20via%20Hybrid%20Representations%20(2018).jpeg
[Paper]https://arxiv.org/pdf/1807.09193.pdf
https://camo.githubusercontent.com/20a2e1ec8961d471f85298c509aaa6c9a2b968f625eecaf4e846bb9451224288/68747470733a2f2f7777772e67726f756e6461692e636f6d2f6d656469612f61727869765f70726f6a656374732f3337333530332f6e65775f706963732f7465617365726669672e6a70672e37353078305f7137355f63726f702e6a7067
[Paper]http://www.vovakim.com/papers/18_3DVOral_SeeThrough.pdf
https://camo.githubusercontent.com/07fdb2cc572d1faafe113d5fa1ae27837cb8cad041b16903cc3ec1198553c457/687474703a2f2f67656f6d657472792e63732e75636c2e61632e756b2f70726f6a656374732f323031382f7365657468726f7567682f70617065725f646f63732f726573756c745f706c6174652e706e67
[Paper]https://arxiv.org/pdf/1811.11187.pdf
[Code]https://github.com/skanti/Scan2CAD
https://camo.githubusercontent.com/b56999d9c61c57c5287e2f71a2a921b40a1e1c6f2a5b62104640a3f02c8cefc4/687474703a2f2f7777772e6e696573736e65726c61622e6f72672f7061706572732f323031392f357363616e326361642f7465617365722e6a7067
[Paper]https://arxiv.org/pdf/1811.10464.pdf
https://camo.githubusercontent.com/8adbcaf21b033e7b6b16f4577fb107dda201376868945b4a51b4719326979119/687474703a2f2f7777772e6e696573736e65726c61622e6f72672f7061706572732f323031392f347363616e326d6573682f7465617365722e6a7067
[Paper]https://arxiv.org/pdf/1904.12012.pdf
https://camo.githubusercontent.com/fb3355f14b5b928ef09550de0ae6d8594d7a11fc4ba5fc4f1e981e254f00431f/687474703a2f2f7777772e6e696573736e65726c61622e6f72672f7061706572732f323031392f7a317369632f7465617365722e6a7067
[Paper]https://arxiv.org/abs/1906.04201
https://camo.githubusercontent.com/6a33064a4779212e460f20d0fdf33e0997717d9d5a0c5319c8cba42e05371567/687474703a2f2f7777772e6e696573736e65726c61622e6f72672f7061706572732f323031392f7a32656e6432656e642f7465617365722e6a7067
https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#scene-understanding
[Paper]http://dhoiem.cs.illinois.edu/publications/iccv2009_hedau_indoor.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Recovering%20the%20Spatial%20Layout%20of%20Cluttered%20Rooms.png
[Paper]https://graphics.stanford.edu/~mdfisher/graphKernel.html
https://camo.githubusercontent.com/1e10d48d8f2274c98e0852d67c0411b95630f229af4ca9c1814992fdf3299f7c/68747470733a2f2f67726170686963732e7374616e666f72642e6564752f7e6d646669736865722f7061706572732f67726170684b65726e656c5465617365722e706e67
[Paper]http://cvgl.stanford.edu/projects/3dgp/
https://camo.githubusercontent.com/c710d5161444a66a5cb7c3164d8f4d5b9cf8beb4d52bb7b42a298e04e7b3e401/687474703a2f2f6376676c2e7374616e666f72642e6564752f70726f6a656374732f336467702f696d616765732f7469746c652e706e67
[Paper]http://kevinkaixu.net/projects/focal.html
https://camo.githubusercontent.com/e43d85d267327e400b94902836d5a6a1d3b202d167bbb0889de8ec15a2d6b83d/687474703a2f2f6b6576696e6b616978752e6e65742f70726f6a656374732f666f63616c2f6f7665726c617070696e675f636c7573746572732e6a7067
[Paper]http://graphics.stanford.edu/projects/scenegrok/
https://camo.githubusercontent.com/9f69845a730c5e65ea4b47a695c60fe7c492eab9e71c494329505f8441261a17/687474703a2f2f67726170686963732e7374616e666f72642e6564752f70726f6a656374732f7363656e6567726f6b2f7363656e6567726f6b2e706e67
[Paper]http://panocontext.cs.princeton.edu/
https://camo.githubusercontent.com/721c001a96deb80659bcbb23921ecab578d04e3100c07193f7082e0a73dc3acd/687474703a2f2f70616e6f636f6e746578742e63732e7072696e6365746f6e2e6564752f7465617365722e6a7067
[Paper]http://slazebni.cs.illinois.edu/publications/iccv15_informative.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Learning%20Informative%20Edge%20Maps%20for%20Indoor%20Scene%20Layout%20Prediction.png
[Paper]http://www.cs.toronto.edu/~fidler/projects/rent3D.html
https://camo.githubusercontent.com/54c2ef5d8635abe0de62ff6fc512854a28f272862a174b85fb24c2c92f6d3f94/687474703a2f2f7777772e63732e746f726f6e746f2e6564752f7e6669646c65722f70726f6a656374732f6c61796f75742d7265732e6a7067
[Paper]https://pdfs.semanticscholar.org/7024/a92186b81e6133dc779f497d06877b48d82b.pdf?_ga=2.54181869.497995160.1510977308-665742395.1510465328
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/A%20Coarse-to-Fine%20Indoor%20Layout%20Estimation%20(CFILE)%20Method%20(2016).png
[Paper]http://deeplayout.stanford.edu/
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/DeLay-Robust%20Spatial%20Layout%20Estimation%20for%20Cluttered%20Indoor%20Scenes.png
[Paper]http://buildingparser.stanford.edu/method.html
[Code]https://github.com/alexsax/2D-3D-Semantics
https://camo.githubusercontent.com/bf94811206fa8c19d18e231134eb1c7adf325e0a28ea8330e53f5c5634d02007/687474703a2f2f6275696c64696e677061727365722e7374616e666f72642e6564752f696d616765732f7465617365722e706e67
[Paper]http://3dinterpreter.csail.mit.edu/
[Code]https://github.com/jiajunwu/3dinn
https://camo.githubusercontent.com/89fccdea90eace40de58e5ee3b61e54f52b59d9e804388ca5ceef19af9cde6a8/687474703a2f2f3364696e7465727072657465722e637361696c2e6d69742e6564752f696d616765732f73706f746c696768745f3364696e6e5f6c617267652e6a7067
[Paper]http://www.cse.wustl.edu/~chenliu/floorplan-matching.html
https://camo.githubusercontent.com/33baae4112029df40a41e9dd2f37c499efafc0ec8f8c9eadebc410cdd0695320/687474703a2f2f6172742d70726f6772616d6d65722e6769746875622e696f2f666c6f6f72706c616e2d6d61746368696e672f7465617365722e706e67
[Paper]http://3dvision.princeton.edu/projects/2016/PBRS/
[Code]https://github.com/yindaz/pbrs
[Code]https://github.com/yindaz/surface_normal
[Code]https://github.com/fyu/dilation
[Code]https://github.com/s9xie/hed
https://camo.githubusercontent.com/ab3f896f7914757b7a3f238c8153ce666fdd0c190b781d15557299411d20a56f/68747470733a2f2f7062732e7477696d672e636f6d2f6d656469612f43305945524a4f584541413639784e2e6a7067
[Paper]https://arxiv.org/pdf/1703.06241.pdf
https://camo.githubusercontent.com/6765a5fa8779fd911d1c888ae730981098799aa7b5265ed50ca75d8d31b0fe19/68747470733a2f2f7062732e7477696d672e636f6d2f6d656469612f43375a3239477356304141534576522e6a7067
[Paper]http://rgbd.cs.princeton.edu/
https://camo.githubusercontent.com/ccb40c6cd7365f8c910aed28b48ae70afa348a7ca2d0bd28c77dd01b9aa016ae/687474703a2f2f726762642e63732e7072696e6365746f6e2e6564752f7465617365722e6a7067
[Paper]http://sscnet.cs.princeton.edu/
[Code]https://github.com/shurans/sscnet
https://camo.githubusercontent.com/c63ecf0cf351936230250850dc3a93950546c1da0e7acdb755e2a3216ea2ba3f/687474703a2f2f7373636e65742e63732e7072696e6365746f6e2e6564752f7465617365722e6a7067
[Paper]https://arxiv.org/pdf/1712.01812.pdf
[Code]https://shubhtuls.github.io/factored3d/
https://camo.githubusercontent.com/5acacd72f78ad4267a41650cf2f9cad893da17385fc0f7cfdcdb2e6be5ea2eae/68747470733a2f2f736875626874756c732e6769746875622e696f2f666163746f72656433642f7265736f75726365732f696d616765732f7465617365722e706e67
[Paper]https://arxiv.org/pdf/1803.08999.pdf
[Code]https://github.com/zouchuhang/LayoutNet
https://camo.githubusercontent.com/ea45785d1b17913c051aba97da9daa71f07b4e03af4760b1580ca88611730b53/687474703a2f2f70302e6966656e67696d672e636f6d2f706d6f702f323031382f303430342f413144304341453438313330433931384645363234464136303439354632333743363731373246365f73697a6536335f773739375f683735352e6a706567
[Paper]http://art-programmer.github.io/planenet/paper.pdf
[Code]http://art-programmer.github.io/planenet.html
https://camo.githubusercontent.com/73d3ec054221c6ddaf948c2713d48a80a051221078a8843109d2de832ea79e09/687474703a2f2f6172742d70726f6772616d6d65722e6769746875622e696f2f696d616765732f706c616e656e65742e706e67
[Paper]http://web.cs.ucdavis.edu/~yjlee/projects/cvpr2018.pdf
https://camo.githubusercontent.com/9e14dd7a79bd317424b3e5f9e799deb1ad24e00c6781b87225ea3f0c802fee12/68747470733a2f2f6a61736f6e3731382e6769746875622e696f2f70726f6a6563742f6376707231382f66696c65732f636f6e636570745f7069632e706e67
[Paper]http://bjornstenger.github.io/papers/xu_wacv2017.pdf
https://camo.githubusercontent.com/d0e8953e76cdd7a6f2553ecfaf4bb637f3e45fa36fecfa5c2fedda8e57de101d/68747470733a2f2f7777772e67726f756e6461692e636f6d2f6d656469612f61727869765f70726f6a656374732f35383932342f666967757265732f436f6d706172655f32622e706e67
[Paper]http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_Automatic_3D_Indoor_CVPR_2018_paper.pdf
https://github.com/timzhang642/3D-Machine-Learning/blob/master/imgs/Automatic%203D%20Indoor%20Scene%20Modeling%20from%20Single%20Panorama%20(2018%20CVPR).jpeg
[Paper]https://arxiv.org/pdf/1902.09777.pdf
[Code]https://github.com/svip-lab/PlanarReconstruction
https://github.com/svip-lab/PlanarReconstruction/blob/master/misc/pipeline.jpg
[Paper]http://3dsdn.csail.mit.edu/
[Code]https://github.com/svip-lab/PlanarReconstruction
https://camo.githubusercontent.com/d9cb0ec0f6e13a1f243ceca933cc956e3221019192437923615586bb28bb5df5/687474703a2f2f336473646e2e637361696c2e6d69742e6564752f696d616765732f7465617365722e706e67
[Paper]https://research.dshin.org/iccv19/multi-layer-depth/
https://camo.githubusercontent.com/6fc6d5e0fb034eb2d2ba450cfc9afbdee1559860d2128562e5f780b93a1638a1/68747470733a2f2f72657365617263682e647368696e2e6f72672f6963637631392f6d756c74692d6c617965722d64657074682f666967757265732f6f766572766965775f312e706e67
https://camo.githubusercontent.com/ee1686da65d88e62c957baee35bc648fc8c741a324c3c489f5d6733c3583c07f/68747470733a2f2f72657365617263682e647368696e2e6f72672f6963637631392f6d756c74692d6c617965722d64657074682f666967757265732f766f78656c697a6174696f6e30302e6a7067
Readme https://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning#readme-ov-file
Please reload this pagehttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning
Activityhttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/activity
0 starshttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/stargazers
0 watchinghttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/watchers
0 forkshttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/forks
Report repository https://patch-diff.githubusercontent.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2Fviewcode%2F3D-Machine-Learning&report=viewcode+%28user%29
Releaseshttps://patch-diff.githubusercontent.com/viewcode/3D-Machine-Learning/releases
Packages 0https://patch-diff.githubusercontent.com/users/viewcode/packages?repo_name=3D-Machine-Learning
https://github.com
Termshttps://docs.github.com/site-policy/github-terms/github-terms-of-service
Privacyhttps://docs.github.com/site-policy/privacy-policies/github-privacy-statement
Securityhttps://github.com/security
Statushttps://www.githubstatus.com/
Communityhttps://github.community/
Docshttps://docs.github.com/
Contacthttps://support.github.com?tags=dotcom-footer

Viewport: width=device-width


URLs of crawlers that visited me.