Title: Network Graph · rahuldecoded/pythonNNexample · GitHub
Open Graph Title: Network Graph · rahuldecoded/pythonNNexample
X Title: Network Graph · rahuldecoded/pythonNNexample
Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates the exclusive OR function with two inputs and one output. - Network Graph · rahuldecoded/pythonNNexample
Open Graph Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th...
X Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th...
Opengraph URL: https://github.com/rahuldecoded/pythonNNexample
X: @github
Domain: patch-diff.githubusercontent.com
| route-pattern | /:user_id/:repository/network(.:format) |
| route-controller | network |
| route-action | show |
| fetch-nonce | v2:90a59c9c-6726-1bc1-ff3d-0a0624aefe2f |
| current-catalog-service-hash | b4d8436665c5448282b6f4eacc6394e6e8801de97cb226acdca9da20ae59be92 |
| request-id | A090:175A9E:1A97084:22D2D0E:6982D2DE |
| html-safe-nonce | c7a70274696c823250e5fcf304d44a629a1297f4c18c2ac68f743f565eb2f9b8 |
| visitor-payload | eyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJBMDkwOjE3NUE5RToxQTk3MDg0OjIyRDJEMEU6Njk4MkQyREUiLCJ2aXNpdG9yX2lkIjoiNTI1OTQxNTM0NjY4NjkwNzEwMiIsInJlZ2lvbl9lZGdlIjoiaWFkIiwicmVnaW9uX3JlbmRlciI6ImlhZCJ9 |
| visitor-hmac | ec2e46c309978564fb63253a9b8c506ca399cc5315e27570156a988a34c8b42f |
| hovercard-subject-tag | repository:80283974 |
| github-keyboard-shortcuts | repository,network-graph,copilot |
| google-site-verification | Apib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I |
| octolytics-url | https://collector.github.com/github/collect |
| analytics-location | / |
| fb:app_id | 1401488693436528 |
| apple-itunes-app | app-id=1477376905, app-argument=https://github.com/rahuldecoded/pythonNNexample/network |
| twitter:image | https://opengraph.githubassets.com/eacd2e164c99fe1297e9a2ff72be1f96f55cdecd205d243811ebc81f08c006af/rahuldecoded/pythonNNexample |
| twitter:card | summary_large_image |
| og:image | https://opengraph.githubassets.com/eacd2e164c99fe1297e9a2ff72be1f96f55cdecd205d243811ebc81f08c006af/rahuldecoded/pythonNNexample |
| og:image:alt | Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th... |
| og:image:width | 1200 |
| og:image:height | 600 |
| og:site_name | GitHub |
| og:type | object |
| hostname | github.com |
| expected-hostname | github.com |
| None | c6741528aa4d4ba81c57bbff8f8cc0de0e9115cb2993431dc9dac8d489f7b4ee |
| turbo-cache-control | no-preview |
| go-import | github.com/rahuldecoded/pythonNNexample git https://github.com/rahuldecoded/pythonNNexample.git |
| octolytics-dimension-user_id | 15686569 |
| octolytics-dimension-user_login | rahuldecoded |
| octolytics-dimension-repository_id | 80283974 |
| octolytics-dimension-repository_nwo | rahuldecoded/pythonNNexample |
| octolytics-dimension-repository_public | true |
| octolytics-dimension-repository_is_fork | true |
| octolytics-dimension-repository_parent_id | 70839196 |
| octolytics-dimension-repository_parent_nwo | stmorgan/pythonNNexample |
| octolytics-dimension-repository_network_root_id | 70839196 |
| octolytics-dimension-repository_network_root_nwo | stmorgan/pythonNNexample |
| turbo-body-classes | logged-out env-production page-responsive |
| disable-turbo | false |
| browser-stats-url | https://api.github.com/_private/browser/stats |
| browser-errors-url | https://api.github.com/_private/browser/errors |
| release | df2a3cea9cc9adaf422cd462f5351935c407af4d |
| ui-target | full |
| theme-color | #1e2327 |
| color-scheme | light dark |
Links:
Viewport: width=device-width