| Skip to content | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#start-of-content |
|
| https://patch-diff.githubusercontent.com/ |
|
Sign in
| https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2Fpython2014%2Fawesome-deep-learning |
| GitHub CopilotWrite better code with AI | https://github.com/features/copilot |
| GitHub SparkBuild and deploy intelligent apps | https://github.com/features/spark |
| GitHub ModelsManage and compare prompts | https://github.com/features/models |
| MCP RegistryNewIntegrate external tools | https://github.com/mcp |
| ActionsAutomate any workflow | https://github.com/features/actions |
| CodespacesInstant dev environments | https://github.com/features/codespaces |
| IssuesPlan and track work | https://github.com/features/issues |
| Code ReviewManage code changes | https://github.com/features/code-review |
| GitHub Advanced SecurityFind and fix vulnerabilities | https://github.com/security/advanced-security |
| Code securitySecure your code as you build | https://github.com/security/advanced-security/code-security |
| Secret protectionStop leaks before they start | https://github.com/security/advanced-security/secret-protection |
| Why GitHub | https://github.com/why-github |
| Documentation | https://docs.github.com |
| Blog | https://github.blog |
| Changelog | https://github.blog/changelog |
| Marketplace | https://github.com/marketplace |
| View all features | https://github.com/features |
| Enterprises | https://github.com/enterprise |
| Small and medium teams | https://github.com/team |
| Startups | https://github.com/enterprise/startups |
| Nonprofits | https://github.com/solutions/industry/nonprofits |
| App Modernization | https://github.com/solutions/use-case/app-modernization |
| DevSecOps | https://github.com/solutions/use-case/devsecops |
| DevOps | https://github.com/solutions/use-case/devops |
| CI/CD | https://github.com/solutions/use-case/ci-cd |
| View all use cases | https://github.com/solutions/use-case |
| Healthcare | https://github.com/solutions/industry/healthcare |
| Financial services | https://github.com/solutions/industry/financial-services |
| Manufacturing | https://github.com/solutions/industry/manufacturing |
| Government | https://github.com/solutions/industry/government |
| View all industries | https://github.com/solutions/industry |
| View all solutions | https://github.com/solutions |
| AI | https://github.com/resources/articles?topic=ai |
| Software Development | https://github.com/resources/articles?topic=software-development |
| DevOps | https://github.com/resources/articles?topic=devops |
| Security | https://github.com/resources/articles?topic=security |
| View all topics | https://github.com/resources/articles |
| Customer stories | https://github.com/customer-stories |
| Events & webinars | https://github.com/resources/events |
| Ebooks & reports | https://github.com/resources/whitepapers |
| Business insights | https://github.com/solutions/executive-insights |
| GitHub Skills | https://skills.github.com |
| Documentation | https://docs.github.com |
| Customer support | https://support.github.com |
| Community forum | https://github.com/orgs/community/discussions |
| Trust center | https://github.com/trust-center |
| Partners | https://github.com/partners |
| GitHub SponsorsFund open source developers | https://github.com/sponsors |
| Security Lab | https://securitylab.github.com |
| Maintainer Community | https://maintainers.github.com |
| Accelerator | https://github.com/accelerator |
| Archive Program | https://archiveprogram.github.com |
| Topics | https://github.com/topics |
| Trending | https://github.com/trending |
| Collections | https://github.com/collections |
| Enterprise platformAI-powered developer platform | https://github.com/enterprise |
| GitHub Advanced SecurityEnterprise-grade security features | https://github.com/security/advanced-security |
| Copilot for BusinessEnterprise-grade AI features | https://github.com/features/copilot/copilot-business |
| Premium SupportEnterprise-grade 24/7 support | https://github.com/premium-support |
| Pricing | https://github.com/pricing |
| Search syntax tips | https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax |
| documentation | https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax |
|
Sign in
| https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2Fpython2014%2Fawesome-deep-learning |
|
Sign up
| https://patch-diff.githubusercontent.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=python2014%2Fawesome-deep-learning |
| Reload | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning |
| Reload | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning |
| Reload | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning |
|
python2014
| https://patch-diff.githubusercontent.com/python2014 |
| awesome-deep-learning | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning |
| ChristosChristofidis/awesome-deep-learning | https://patch-diff.githubusercontent.com/ChristosChristofidis/awesome-deep-learning |
|
Notifications
| https://patch-diff.githubusercontent.com/login?return_to=%2Fpython2014%2Fawesome-deep-learning |
|
Fork
0
| https://patch-diff.githubusercontent.com/login?return_to=%2Fpython2014%2Fawesome-deep-learning |
|
Star
0
| https://patch-diff.githubusercontent.com/login?return_to=%2Fpython2014%2Fawesome-deep-learning |
|
0
stars
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/stargazers |
|
6.3k
forks
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/forks |
|
Branches
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/branches |
|
Tags
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/tags |
|
Activity
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/activity |
|
Star
| https://patch-diff.githubusercontent.com/login?return_to=%2Fpython2014%2Fawesome-deep-learning |
|
Notifications
| https://patch-diff.githubusercontent.com/login?return_to=%2Fpython2014%2Fawesome-deep-learning |
|
Code
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning |
|
Pull requests
0
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/pulls |
|
Actions
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/actions |
|
Projects
0
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/projects |
|
Wiki
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/wiki |
|
Security
Uh oh!
There was an error while loading. Please reload this page.
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/security |
| Please reload this page | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning |
|
Insights
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/pulse |
|
Code
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning |
|
Pull requests
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/pulls |
|
Actions
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/actions |
|
Projects
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/projects |
|
Wiki
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/wiki |
|
Security
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/security |
|
Insights
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/pulse |
| Branches | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/branches |
| Tags | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/tags |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/branches |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/tags |
| 263 Commits | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/commits/master/ |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/commits/master/ |
| README.md | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/blob/master/README.md |
| README.md | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/blob/master/README.md |
| README | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning |
| https://github.com/sindresorhus/awesome |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#awesome-deep-learning- |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#table-of-contents |
| Free Online Books | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#free-online-books |
| Courses | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#courses |
| Videos and Lectures | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#videos-and-lectures |
| Papers | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#papers |
| Tutorials | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#tutorials |
| Researchers | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#researchers |
| WebSites | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#websites |
| Datasets | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#datasets |
| Frameworks | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#frameworks |
| Miscellaneous | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#miscellaneous |
| Contributing | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#contributing |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#free-online-books |
| Deep Learning | http://www.iro.umontreal.ca/~bengioy/dlbook/ |
| Neural Networks and Deep Learning | http://neuralnetworksanddeeplearning.com/ |
| Deep Learning | http://research.microsoft.com/pubs/209355/DeepLearning-NowPublishing-Vol7-SIG-039.pdf |
| Deep Learning Tutorial | http://deeplearning.net/tutorial/deeplearning.pdf |
| neuraltalk | https://github.com/karpathy/neuraltalk |
| An introduction to genetic algorithms | https://svn-d1.mpi-inf.mpg.de/AG1/MultiCoreLab/papers/ebook-fuzzy-mitchell-99.pdf |
| Artificial Intelligence: A Modern Approach | http://aima.cs.berkeley.edu/ |
| Deep Learning in Neural Networks: An Overview | http://arxiv.org/pdf/1404.7828v4.pdf |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#courses |
| Machine Learning - Stanford | https://class.coursera.org/ml-005 |
| Machine Learning - Caltech | http://work.caltech.edu/lectures.html |
| Machine Learning - Carnegie Mellon | http://www.cs.cmu.edu/~tom/10701_sp11/lectures.shtml |
| Neural Networks for Machine Learning | https://class.coursera.org/neuralnets-2012-001 |
| Neural networks class | https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH |
| Deep Learning Course | http://cilvr.cs.nyu.edu/doku.php?id=deeplearning:slides:start |
| A.I - Berkeley | https://courses.edx.org/courses/BerkeleyX/CS188x_1/1T2013/courseware/ |
| A.I - MIT | http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/ |
| Vision and learning - computers and brains | http://web.mit.edu/course/other/i2course/www/vision_and_learning_fall_2013.html |
| Convolutional Neural Networks for Visual Recognition - Stanford | http://vision.stanford.edu/teaching/cs231n/syllabus_winter2015.html |
| Convolutional Neural Networks for Visual Recognition - Stanford | http://vision.stanford.edu/teaching/cs231n/syllabus.html |
| Deep Learning for Natural Language Processing - Stanford | http://cs224d.stanford.edu/ |
| Neural Networks - usherbrooke | http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html |
| Machine Learning - Oxford | https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/ |
| Deep Learning - Nvidia | https://developer.nvidia.com/deep-learning-courses |
| Graduate Summer School: Deep Learning, Feature Learning | https://www.youtube.com/playlist?list=PLHyI3Fbmv0SdzMHAy0aN59oYnLy5vyyTA |
| Deep Learning - Udacity/Google | https://www.udacity.com/course/deep-learning--ud730 |
| Deep Learning - UWaterloo | https://www.youtube.com/playlist?list=PLehuLRPyt1Hyi78UOkMPWCGRxGcA9NVOE |
| Statistical Machine Learning - CMU | https://www.youtube.com/watch?v=azaLcvuql_g&list=PLjbUi5mgii6BWEUZf7He6nowWvGne_Y8r |
| Deep Learning Course | https://www.college-de-france.fr/site/en-yann-lecun/course-2015-2016.htm |
| Bay area DL school | http://www.bayareadlschool.org/ |
| Designing, Visualizing and Understanding Deep Neural Networks-UC Berkeley | https://www.youtube.com/playlist?list=PLkFD6_40KJIxopmdJF_CLNqG3QuDFHQUm |
| UVA Deep Learning Course | http://uvadlc.github.io |
| MIT 6.S094: Deep Learning for Self-Driving Cars | http://selfdrivingcars.mit.edu/ |
| MIT 6.S191: Introduction to Deep Learning | http://introtodeeplearning.com/ |
| Berkeley CS 294: Deep Reinforcement Learning | http://rll.berkeley.edu/deeprlcourse/ |
| Keras in Motion video course | https://www.manning.com/livevideo/keras-in-motion |
| Practical Deep Learning For Coders | http://course.fast.ai/ |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#videos-and-lectures |
| How To Create A Mind | https://www.youtube.com/watch?v=RIkxVci-R4k |
| Deep Learning, Self-Taught Learning and Unsupervised Feature Learning | https://www.youtube.com/watch?v=n1ViNeWhC24 |
| Recent Developments in Deep Learning | https://www.youtube.com/watch?v=vShMxxqtDDs&index=3&list=PL78U8qQHXgrhP9aZraxTT5-X1RccTcUYT |
| The Unreasonable Effectiveness of Deep Learning | https://www.youtube.com/watch?v=sc-KbuZqGkI |
| Deep Learning of Representations | https://www.youtube.com/watch?v=4xsVFLnHC_0 |
| Principles of Hierarchical Temporal Memory | https://www.youtube.com/watch?v=6ufPpZDmPKA |
| Machine Learning Discussion Group - Deep Learning w/ Stanford AI Lab | https://www.youtube.com/watch?v=2QJi0ArLq7s&list=PL78U8qQHXgrhP9aZraxTT5-X1RccTcUYT |
| Making Sense of the World with Deep Learning | http://vimeo.com/80821560 |
| Demystifying Unsupervised Feature Learning | https://www.youtube.com/watch?v=wZfVBwOO0-k |
| Visual Perception with Deep Learning | https://www.youtube.com/watch?v=3boKlkPBckA |
| The Next Generation of Neural Networks | https://www.youtube.com/watch?v=AyzOUbkUf3M |
| The wonderful and terrifying implications of computers that can learn | http://www.ted.com/talks/jeremy_howard_the_wonderful_and_terrifying_implications_of_computers_that_can_learn |
| Unsupervised Deep Learning - Stanford | http://web.stanford.edu/class/cs294a/handouts.html |
| Natural Language Processing | http://web.stanford.edu/class/cs224n/handouts/ |
| A beginners Guide to Deep Neural Networks | http://googleresearch.blogspot.com/2015/09/a-beginners-guide-to-deep-neural.html |
| Deep Learning: Intelligence from Big Data | https://www.youtube.com/watch?v=czLI3oLDe8M |
| Introduction to Artificial Neural Networks and Deep Learning | https://www.youtube.com/watch?v=FoO8qDB8gUU |
| NIPS 2016 lecture and workshop videos | https://nips.cc/Conferences/2016/Schedule |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#papers |
| here | https://github.com/terryum/awesome-deep-learning-papers |
| ImageNet Classification with Deep Convolutional Neural Networks | http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf |
| Using Very Deep Autoencoders for Content Based Image Retrieval | http://www.cs.toronto.edu/~hinton/absps/esann-deep-final.pdf |
| Learning Deep Architectures for AI | http://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf |
| CMU’s list of papers | http://deeplearning.cs.cmu.edu/ |
| Neural Networks for Named Entity Recognition | http://nlp.stanford.edu/~socherr/pa4_ner.pdf |
| zip | http://nlp.stanford.edu/~socherr/pa4-ner.zip |
| Training tricks by YB | http://www.iro.umontreal.ca/~bengioy/papers/YB-tricks.pdf |
| Geoff Hinton's reading list (all papers) | http://www.cs.toronto.edu/~hinton/deeprefs.html |
| Supervised Sequence Labelling with Recurrent Neural Networks | http://www.cs.toronto.edu/~graves/preprint.pdf |
| Statistical Language Models based on Neural Networks | http://www.fit.vutbr.cz/~imikolov/rnnlm/thesis.pdf |
| Training Recurrent Neural Networks | http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf |
| Recursive Deep Learning for Natural Language Processing and Computer Vision | http://nlp.stanford.edu/~socherr/thesis.pdf |
| Bi-directional RNN | http://www.di.ufpe.br/~fnj/RNA/bibliografia/BRNN.pdf |
| LSTM | http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf |
| GRU - Gated Recurrent Unit | http://arxiv.org/pdf/1406.1078v3.pdf |
| GFRNN | http://arxiv.org/pdf/1502.02367v3.pdf |
| . | http://jmlr.org/proceedings/papers/v37/chung15.pdf |
| . | http://jmlr.org/proceedings/papers/v37/chung15-supp.pdf |
| LSTM: A Search Space Odyssey | http://arxiv.org/pdf/1503.04069v1.pdf |
| A Critical Review of Recurrent Neural Networks for Sequence Learning | http://arxiv.org/pdf/1506.00019v1.pdf |
| Visualizing and Understanding Recurrent Networks | http://arxiv.org/pdf/1506.02078v1.pdf |
| Wojciech Zaremba, Ilya Sutskever, An Empirical Exploration of Recurrent Network Architectures | http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf |
| Recurrent Neural Network based Language Model | http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf |
| Extensions of Recurrent Neural Network Language Model | http://www.fit.vutbr.cz/research/groups/speech/publi/2011/mikolov_icassp2011_5528.pdf |
| Recurrent Neural Network based Language Modeling in Meeting Recognition | http://www.fit.vutbr.cz/~imikolov/rnnlm/ApplicationOfRNNinMeetingRecognition_IS2011.pdf |
| Deep Neural Networks for Acoustic Modeling in Speech Recognition | http://cs224d.stanford.edu/papers/maas_paper.pdf |
| Speech Recognition with Deep Recurrent Neural Networks | http://www.cs.toronto.edu/~fritz/absps/RNN13.pdf |
| Reinforcement Learning Neural Turing Machines | http://arxiv.org/pdf/1505.00521v1 |
| Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation | http://arxiv.org/pdf/1406.1078v3.pdf |
| Google - Sequence to Sequence Learning with Neural Networks | http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf |
| Memory Networks | http://arxiv.org/pdf/1410.3916v10 |
| Policy Learning with Continuous Memory States for Partially Observed Robotic Control | http://arxiv.org/pdf/1507.01273v1 |
| Microsoft - Jointly Modeling Embedding and Translation to Bridge Video and Language | http://arxiv.org/pdf/1505.01861v1.pdf |
| Neural Turing Machines | http://arxiv.org/pdf/1410.5401v2.pdf |
| Ask Me Anything: Dynamic Memory Networks for Natural Language Processing | http://arxiv.org/pdf/1506.07285v1.pdf |
| Mastering the Game of Go with Deep Neural Networks and Tree Search | http://www.nature.com/nature/journal/v529/n7587/pdf/nature16961.pdf |
| Batch Normalization | https://arxiv.org/abs/1502.03167 |
| Residual Learning | https://arxiv.org/pdf/1512.03385v1.pdf |
| Image-to-Image Translation with Conditional Adversarial Networks | https://arxiv.org/pdf/1611.07004v1.pdf |
| Berkeley AI Research (BAIR) Laboratory | https://arxiv.org/pdf/1611.07004v1.pdf |
| MobileNets by Google | https://arxiv.org/abs/1704.04861 |
| Cross Audio-Visual Recognition in the Wild Using Deep Learning | https://arxiv.org/abs/1706.05739 |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#tutorials |
| UFLDL Tutorial 1 | http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial |
| UFLDL Tutorial 2 | http://ufldl.stanford.edu/tutorial/supervised/LinearRegression/ |
| Deep Learning for NLP (without Magic) | http://www.socher.org/index.php/DeepLearningTutorial/DeepLearningTutorial |
| A Deep Learning Tutorial: From Perceptrons to Deep Networks | http://www.toptal.com/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks |
| Deep Learning from the Bottom up | http://www.metacademy.org/roadmaps/rgrosse/deep_learning |
| Theano Tutorial | http://deeplearning.net/tutorial/deeplearning.pdf |
| Neural Networks for Matlab | http://uk.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf |
| Using convolutional neural nets to detect facial keypoints tutorial | http://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-facial-keypoints-tutorial/ |
| Torch7 Tutorials | https://github.com/clementfarabet/ipam-tutorials/tree/master/th_tutorials |
| The Best Machine Learning Tutorials On The Web | https://github.com/josephmisiti/machine-learning-module |
| VGG Convolutional Neural Networks Practical | http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html |
| TensorFlow tutorials | https://github.com/nlintz/TensorFlow-Tutorials |
| More TensorFlow tutorials | https://github.com/pkmital/tensorflow_tutorials |
| TensorFlow Python Notebooks | https://github.com/aymericdamien/TensorFlow-Examples |
| Keras and Lasagne Deep Learning Tutorials | https://github.com/Vict0rSch/deep_learning |
| Classification on raw time series in TensorFlow with a LSTM RNN | https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition |
| Using convolutional neural nets to detect facial keypoints tutorial | http://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-facial-keypoints-tutorial/ |
| TensorFlow-World | https://github.com/astorfi/TensorFlow-World |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#researchers |
| Aaron Courville | http://aaroncourville.wordpress.com |
| Abdel-rahman Mohamed | http://www.cs.toronto.edu/~asamir/ |
| Adam Coates | http://cs.stanford.edu/~acoates/ |
| Alex Acero | http://research.microsoft.com/en-us/people/alexac/ |
| Alex Krizhevsky | http://www.cs.utoronto.ca/~kriz/index.html |
| Alexander Ilin | http://users.ics.aalto.fi/alexilin/ |
| Amos Storkey | http://homepages.inf.ed.ac.uk/amos/ |
| Andrej Karpathy | http://cs.stanford.edu/~karpathy/ |
| Andrew M. Saxe | http://www.stanford.edu/~asaxe/ |
| Andrew Ng | http://www.cs.stanford.edu/people/ang/ |
| Andrew W. Senior | http://research.google.com/pubs/author37792.html |
| Andriy Mnih | http://www.gatsby.ucl.ac.uk/~amnih/ |
| Ayse Naz Erkan | http://www.cs.nyu.edu/~naz/ |
| Benjamin Schrauwen | http://reslab.elis.ugent.be/benjamin |
| Bernardete Ribeiro | https://www.cisuc.uc.pt/people/show/2020 |
| Bo David Chen | http://vision.caltech.edu/~bchen3/Site/Bo_David_Chen.html |
| Boureau Y-Lan | http://cs.nyu.edu/~ylan/ |
| Brian Kingsbury | http://researcher.watson.ibm.com/researcher/view.php?person=us-bedk |
| Christopher Manning | http://nlp.stanford.edu/~manning/ |
| Clement Farabet | http://www.clement.farabet.net/ |
| Dan Claudiu Cireșan | http://www.idsia.ch/~ciresan/ |
| David Reichert | http://serre-lab.clps.brown.edu/person/david-reichert/ |
| Derek Rose | http://mil.engr.utk.edu/nmil/member/5.html |
| Dong Yu | http://research.microsoft.com/en-us/people/dongyu/default.aspx |
| Drausin Wulsin | http://www.seas.upenn.edu/~wulsin/ |
| Erik M. Schmidt | http://music.ece.drexel.edu/people/eschmidt |
| Eugenio Culurciello | https://engineering.purdue.edu/BME/People/viewPersonById?resource_id=71333 |
| Frank Seide | http://research.microsoft.com/en-us/people/fseide/ |
| Galen Andrew | http://homes.cs.washington.edu/~galen/ |
| Geoffrey Hinton | http://www.cs.toronto.edu/~hinton/ |
| George Dahl | http://www.cs.toronto.edu/~gdahl/ |
| Graham Taylor | http://www.uoguelph.ca/~gwtaylor/ |
| Grégoire Montavon | http://gregoire.montavon.name/ |
| Guido Francisco Montúfar | http://personal-homepages.mis.mpg.de/montufar/ |
| Guillaume Desjardins | http://brainlogging.wordpress.com/ |
| Hannes Schulz | http://www.ais.uni-bonn.de/~schulz/ |
| Hélène Paugam-Moisy | http://www.lri.fr/~hpaugam/ |
| Honglak Lee | http://web.eecs.umich.edu/~honglak/ |
| Hugo Larochelle | http://www.dmi.usherb.ca/~larocheh/index_en.html |
| Ilya Sutskever | http://www.cs.toronto.edu/~ilya/ |
| Itamar Arel | http://mil.engr.utk.edu/nmil/member/2.html |
| James Martens | http://www.cs.toronto.edu/~jmartens/ |
| Jason Morton | http://www.jasonmorton.com/ |
| Jason Weston | http://www.thespermwhale.com/jaseweston/ |
| Jeff Dean | http://research.google.com/pubs/jeff.html |
| Jiquan Mgiam | http://cs.stanford.edu/~jngiam/ |
| Joseph Turian | http://www-etud.iro.umontreal.ca/~turian/ |
| Joshua Matthew Susskind | http://aclab.ca/users/josh/index.html |
| Jürgen Schmidhuber | http://www.idsia.ch/~juergen/ |
| Justin A. Blanco | https://sites.google.com/site/blancousna/ |
| Koray Kavukcuoglu | http://koray.kavukcuoglu.org/ |
| KyungHyun Cho | http://users.ics.aalto.fi/kcho/ |
| Li Deng | http://research.microsoft.com/en-us/people/deng/ |
| Lucas Theis | http://www.kyb.tuebingen.mpg.de/nc/employee/details/lucas.html |
| Ludovic Arnold | http://ludovicarnold.altervista.org/home/ |
| Marc'Aurelio Ranzato | http://www.cs.nyu.edu/~ranzato/ |
| Martin Längkvist | http://aass.oru.se/~mlt/ |
| Misha Denil | http://mdenil.com/ |
| Mohammad Norouzi | http://www.cs.toronto.edu/~norouzi/ |
| Nando de Freitas | http://www.cs.ubc.ca/~nando/ |
| Navdeep Jaitly | http://www.cs.utoronto.ca/~ndjaitly/ |
| Nicolas Le Roux | http://nicolas.le-roux.name/ |
| Nitish Srivastava | http://www.cs.toronto.edu/~nitish/ |
| Noel Lopes | https://www.cisuc.uc.pt/people/show/2028 |
| Oriol Vinyals | http://www.cs.berkeley.edu/~vinyals/ |
| Pascal Vincent | http://www.iro.umontreal.ca/~vincentp |
| Patrick Nguyen | https://sites.google.com/site/drpngx/ |
| Pedro Domingos | http://homes.cs.washington.edu/~pedrod/ |
| Peggy Series | http://homepages.inf.ed.ac.uk/pseries/ |
| Pierre Sermanet | http://cs.nyu.edu/~sermanet |
| Piotr Mirowski | http://www.cs.nyu.edu/~mirowski/ |
| Quoc V. Le | http://ai.stanford.edu/~quocle/ |
| Reinhold Scherer | http://bci.tugraz.at/scherer/ |
| Richard Socher | http://www.socher.org/ |
| Rob Fergus | http://cs.nyu.edu/~fergus/pmwiki/pmwiki.php |
| Robert Coop | http://mil.engr.utk.edu/nmil/member/19.html |
| Robert Gens | http://homes.cs.washington.edu/~rcg/ |
| Roger Grosse | http://people.csail.mit.edu/rgrosse/ |
| Ronan Collobert | http://ronan.collobert.com/ |
| Ruslan Salakhutdinov | http://www.utstat.toronto.edu/~rsalakhu/ |
| Sebastian Gerwinn | http://www.kyb.tuebingen.mpg.de/nc/employee/details/sgerwinn.html |
| Stéphane Mallat | http://www.cmap.polytechnique.fr/~mallat/ |
| Sven Behnke | http://www.ais.uni-bonn.de/behnke/ |
| Tapani Raiko | http://users.ics.aalto.fi/praiko/ |
| Tara Sainath | https://sites.google.com/site/tsainath/ |
| Tijmen Tieleman | http://www.cs.toronto.edu/~tijmen/ |
| Tom Karnowski | http://mil.engr.utk.edu/nmil/member/36.html |
| Tomáš Mikolov | https://research.facebook.com/tomas-mikolov |
| Ueli Meier | http://www.idsia.ch/~meier/ |
| Vincent Vanhoucke | http://vincent.vanhoucke.com |
| Volodymyr Mnih | http://www.cs.toronto.edu/~vmnih/ |
| Yann LeCun | http://yann.lecun.com/ |
| Yichuan Tang | http://www.cs.toronto.edu/~tang/ |
| Yoshua Bengio | http://www.iro.umontreal.ca/~bengioy/yoshua_en/index.html |
| Yotaro Kubo | http://yota.ro/ |
| Youzhi (Will) Zou | http://ai.stanford.edu/~wzou |
| Fei-Fei Li | http://vision.stanford.edu/feifeili |
| Ian Goodfellow | https://research.google.com/pubs/105214.html |
| Robert Laganière | http://www.site.uottawa.ca/~laganier/ |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#websites |
| deeplearning.net | http://deeplearning.net/ |
| deeplearning.stanford.edu | http://deeplearning.stanford.edu/ |
| nlp.stanford.edu | http://nlp.stanford.edu/ |
| ai-junkie.com | http://www.ai-junkie.com/ann/evolved/nnt1.html |
| cs.brown.edu/research/ai | http://cs.brown.edu/research/ai/ |
| eecs.umich.edu/ai | http://www.eecs.umich.edu/ai/ |
| cs.utexas.edu/users/ai-lab | http://www.cs.utexas.edu/users/ai-lab/ |
| cs.washington.edu/research/ai | http://www.cs.washington.edu/research/ai/ |
| aiai.ed.ac.uk | http://www.aiai.ed.ac.uk/ |
| www-aig.jpl.nasa.gov | http://www-aig.jpl.nasa.gov/ |
| csail.mit.edu | http://www.csail.mit.edu/ |
| cgi.cse.unsw.edu.au/~aishare | http://cgi.cse.unsw.edu.au/~aishare/ |
| cs.rochester.edu/research/ai | http://www.cs.rochester.edu/research/ai/ |
| ai.sri.com | http://www.ai.sri.com/ |
| isi.edu/AI/isd.htm | http://www.isi.edu/AI/isd.htm |
| nrl.navy.mil/itd/aic | http://www.nrl.navy.mil/itd/aic/ |
| hips.seas.harvard.edu | http://hips.seas.harvard.edu/ |
| AI Weekly | http://aiweekly.co |
| stat.ucla.edu | http://www.stat.ucla.edu/~junhua.mao/m-RNN.html |
| deeplearning.cs.toronto.edu | http://deeplearning.cs.toronto.edu/i2t |
| jeffdonahue.com/lrcn/ | http://jeffdonahue.com/lrcn/ |
| visualqa.org | http://www.visualqa.org/ |
| www.mpi-inf.mpg.de/departments/computer-vision... | https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/ |
| Deep Learning News | http://news.startup.ml/ |
| Machine Learning is Fun! Adam Geitgey's Blog | https://medium.com/@ageitgey/ |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#datasets |
| MNIST | http://yann.lecun.com/exdb/mnist/ |
| Google House Numbers | http://ufldl.stanford.edu/housenumbers/ |
| CIFAR-10 and CIFAR-100 | http://www.cs.toronto.edu/~kriz/cifar.html |
| IMAGENET | http://www.image-net.org/ |
| Tiny Images | http://groups.csail.mit.edu/vision/TinyImages/ |
| Flickr Data | https://yahooresearch.tumblr.com/post/89783581601/one-hundred-million-creative-commons-flickr-images |
| Berkeley Segmentation Dataset 500 | http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ |
| UC Irvine Machine Learning Repository | http://archive.ics.uci.edu/ml/ |
| Flickr 8k | http://nlp.cs.illinois.edu/HockenmaierGroup/Framing_Image_Description/KCCA.html |
| Flickr 30k | http://shannon.cs.illinois.edu/DenotationGraph/ |
| Microsoft COCO | http://mscoco.org/home/ |
| VQA | http://www.visualqa.org/ |
| Image QA | http://www.cs.toronto.edu/~mren/imageqa/data/cocoqa/ |
| AT&T Laboratories Cambridge face database | http://www.uk.research.att.com/facedatabase.html |
| AVHRR Pathfinder | http://xtreme.gsfc.nasa.gov |
| Air Freight | http://www.anc.ed.ac.uk/~amos/afreightdata.html |
| Amsterdam Library of Object Images | http://www.science.uva.nl/~aloi/ |
| Annotated face, hand, cardiac & meat images | http://www.imm.dtu.dk/~aam/ |
| Image Analysis and Computer Graphics | http://www.imm.dtu.dk/image/ |
| Brown University Stimuli | http://www.cog.brown.edu/~tarr/stimuli.html |
| CAVIAR video sequences of mall and public space behavior | http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/ |
| Machine Vision Unit | http://www.ipab.inf.ed.ac.uk/mvu/ |
| CCITT Fax standard images | http://www.cs.waikato.ac.nz/~singlis/ccitt.html |
| CMU CIL's Stereo Data with Ground Truth | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/blob/master/cil-ster.html |
| CMU PIE Database | http://www.ri.cmu.edu/projects/project_418.html |
| CMU VASC Image Database | http://www.ius.cs.cmu.edu/idb/ |
| Caltech Image Database | http://www.vision.caltech.edu/html-files/archive.html |
| Columbia-Utrecht Reflectance and Texture Database | http://www.cs.columbia.edu/CAVE/curet/ |
| Computational Colour Constancy Data | http://www.cs.sfu.ca/~colour/data/index.html |
| Computational Vision Lab | http://www.cs.sfu.ca/~colour/ |
| Content-based image retrieval database | http://www.cs.washington.edu/research/imagedatabase/groundtruth/ |
| Efficient Content-based Retrieval Group | http://www.cs.washington.edu/research/imagedatabase/ |
| Densely Sampled View Spheres | http://ls7-www.cs.uni-dortmund.de/~peters/pages/research/modeladaptsys/modeladaptsys_vba_rov.html |
| Computer Science VII (Graphical Systems) | http://ls7-www.cs.uni-dortmund.de/ |
| Digital Embryos | https://web-beta.archive.org/web/20011216051535/vision.psych.umn.edu/www/kersten-lab/demos/digitalembryo.html |
| Univerity of Minnesota Vision Lab | http://vision.psych.umn.edu/www/kersten-lab/kersten-lab.html |
| El Salvador Atlas of Gastrointestinal VideoEndoscopy | http://www.gastrointestinalatlas.com |
| FG-NET Facial Aging Database | http://sting.cycollege.ac.cy/~alanitis/fgnetaging/index.htm |
| FVC2000 Fingerprint Databases | http://bias.csr.unibo.it/fvc2000/ |
| Biometric Systems Lab | http://bias.csr.unibo.it/research/biolab |
| Face and Gesture images and image sequences | http://www.fg-net.org |
| German Fingerspelling Database | http://www-i6.informatik.rwth-aachen.de/~dreuw/database.html |
| Language Processing and Pattern Recognition | http://www-i6.informatik.rwth-aachen.de/ |
| Groningen Natural Image Database | http://hlab.phys.rug.nl/archive.html |
| ICG Testhouse sequence | http://www.icg.tu-graz.ac.at/~schindler/Data |
| Institute of Computer Graphics and Vision | http://www.icg.tu-graz.ac.at |
| IEN Image Library | http://www.ien.it/is/vislib/ |
| INRIA's Syntim images database | http://www-rocq.inria.fr/~tarel/syntim/images.html |
| INRIA | http://www.inria.fr/ |
| INRIA's Syntim stereo databases | http://www-rocq.inria.fr/~tarel/syntim/paires.html |
| Image Analysis Laboratory | http://www.ece.ncsu.edu/imaging/Archives/ImageDataBase/index.html |
| Image Analysis Laboratory | http://www.ece.ncsu.edu/imaging |
| Image Database | http://www.prip.tuwien.ac.at/prip/image.html |
| JAFFE Facial Expression Image Database | http://www.mis.atr.co.jp/~mlyons/jaffe.html |
| ATR Research, Kyoto, Japan | http://www.mic.atr.co.jp/ |
| MIT Vision Texture | http://www-white.media.mit.edu/vismod/imagery/VisionTexture/vistex.html |
| Machine Vision | http://vision.cse.psu.edu/book/testbed/images/ |
| Mammography Image Databases | http://marathon.csee.usf.edu/Mammography/Database.html |
| Middlebury Stereo Data Sets with Ground Truth | http://www.middlebury.edu/stereo/data.html |
| Middlebury Stereo Vision Research Page | http://www.middlebury.edu/stereo |
| Modis Airborne simulator, Gallery and data set | http://ltpwww.gsfc.nasa.gov/MODIS/MAS/ |
| NLM HyperDoc Visible Human Project | http://www.nlm.nih.gov/research/visible/visible_human.html |
| National Design Repository | http://www.designrepository.org |
| Geometric & Intelligent Computing Laboratory | http://gicl.mcs.drexel.edu |
| OSU (MSU) 3D Object Model Database | http://eewww.eng.ohio-state.edu/~flynn/3DDB/Models/ |
| OSU (MSU/WSU) Range Image Database | http://eewww.eng.ohio-state.edu/~flynn/3DDB/RID/ |
| OSU/SAMPL Database: Range Images, 3D Models, Stills, Motion Sequences | http://sampl.eng.ohio-state.edu/~sampl/database.htm |
| Signal Analysis and Machine Perception Laboratory | http://sampl.eng.ohio-state.edu |
| Otago Optical Flow Evaluation Sequences | http://www.cs.otago.ac.nz/research/vision/Research/OpticalFlow/opticalflow.html |
| Vision Research Group | http://www.cs.otago.ac.nz/research/vision/index.html |
| LIMSI-CNRS/CHM/IMM/vision | http://www.limsi.fr/Recherche/IMM/PageIMM.html |
| LIMSI-CNRS | http://www.limsi.fr/ |
| Photometric 3D Surface Texture Database | http://www.taurusstudio.net/research/pmtexdb/index.htm |
| SEQUENCES FOR OPTICAL FLOW ANALYSIS (SOFA) | http://www.cee.hw.ac.uk/~mtc/sofa |
| Computer Vision Group | http://www.cee.hw.ac.uk/~mtc/research.html |
| Sequences for Flow Based Reconstruction | http://www.nada.kth.se/~zucch/CAMERA/PUB/seq.html |
| Stereo Images with Ground Truth Disparity and Occlusion | http://www-dbv.cs.uni-bonn.de/stereo_data/ |
| Stuttgart Range Image Database | http://range.informatik.uni-stuttgart.de |
| Department Image Understanding | http://www.informatik.uni-stuttgart.de/ipvr/bv/bv_home_engl.html |
| The AR Face Database | http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html |
| Purdue Robot Vision Lab | http://rvl.www.ecn.purdue.edu/RVL/ |
| The MIT-CSAIL Database of Objects and Scenes | http://web.mit.edu/torralba/www/database.html |
| The RVL SPEC-DB (SPECularity DataBase) | http://rvl1.ecn.purdue.edu/RVL/specularity_database/ |
| Robot Vision Laboratory | http://rvl1.ecn.purdue.edu/RVL/ |
| The Xm2vts database | http://xm2vtsdb.ee.surrey.ac.uk |
| Centre for Vision, Speech and Signal Processing | http://www.ee.surrey.ac.uk/Research/CVSSP |
| Traffic Image Sequences and 'Marbled Block' Sequence | http://i21www.ira.uka.de/image_sequences |
| IAKS/KOGS | http://i21www.ira.uka.de |
| U Oulu wood and knots database | http://www.ee.oulu.fi/~olli/Projects/Lumber.Grading.html |
| UCID - an Uncompressed Colour Image Database | http://vision.doc.ntu.ac.uk/datasets/UCID/ucid.html |
| UMass Vision Image Archive | http://vis-www.cs.umass.edu/~vislib/ |
| USF Range Image Data with Segmentation Ground Truth | http://marathon.csee.usf.edu/range/seg-comp/SegComp.html |
| University of Oulu Physics-based Face Database | http://www.ee.oulu.fi/research/imag/color/pbfd.html |
| Machine Vision and Media Processing Unit | http://www.ee.oulu.fi/mvmp/ |
| University of Oulu Texture Database | http://www.outex.oulu.fi |
| Machine Vision Group | http://www.ee.oulu.fi/mvg |
| View Sphere Database | http://www-prima.inrialpes.fr/Prima/hall/view_sphere.html |
| PRIMA, GRAVIR | http://www-prima.inrialpes.fr/Prima/ |
| Wiry Object Recognition Database | http://www.cs.cmu.edu/~owenc/word.htm |
| 3D Vision Group | http://www.cs.cmu.edu/0.000000E+003dvision/ |
| Yale Face Database | http://cvc.yale.edu/projects/yalefaces/yalefaces.html |
| Yale Face Database B | http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html |
| Center for Computational Vision and Control | http://cvc.yale.edu/ |
| DeepMind QA Corpus | https://github.com/deepmind/rc-data |
| Paper | http://arxiv.org/abs/1506.03340 |
| YouTube-8M Dataset | https://research.google.com/youtube8m/ |
| Open Images dataset | https://github.com/openimages/dataset |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#frameworks |
| Caffe | http://caffe.berkeleyvision.org/ |
| Torch7 | http://torch.ch/ |
| Theano | http://deeplearning.net/software/theano/ |
| cuda-convnet | https://code.google.com/p/cuda-convnet2/ |
| convetjs | https://github.com/karpathy/convnetjs |
| Ccv | http://libccv.org/doc/doc-convnet/ |
| NuPIC | http://numenta.org/nupic.html |
| DeepLearning4J | http://deeplearning4j.org/ |
| Brain | https://github.com/harthur/brain |
| DeepLearnToolbox | https://github.com/rasmusbergpalm/DeepLearnToolbox |
| Deepnet | https://github.com/nitishsrivastava/deepnet |
| Deeppy | https://github.com/andersbll/deeppy |
| JavaNN | https://github.com/ivan-vasilev/neuralnetworks |
| hebel | https://github.com/hannes-brt/hebel |
| Mocha.jl | https://github.com/pluskid/Mocha.jl |
| OpenDL | https://github.com/guoding83128/OpenDL |
| cuDNN | https://developer.nvidia.com/cuDNN |
| MGL | http://melisgl.github.io/mgl-pax-world/mgl-manual.html |
| Knet.jl | https://github.com/denizyuret/Knet.jl |
| Nvidia DIGITS - a web app based on Caffe | https://github.com/NVIDIA/DIGITS |
| Neon - Python based Deep Learning Framework | https://github.com/NervanaSystems/neon |
| Keras - Theano based Deep Learning Library | http://keras.io |
| Chainer - A flexible framework of neural networks for deep learning | http://chainer.org/ |
| RNNLM Toolkit | http://rnnlm.org/ |
| RNNLIB - A recurrent neural network library | http://sourceforge.net/p/rnnl/wiki/Home/ |
| char-rnn | https://github.com/karpathy/char-rnn |
| MatConvNet: CNNs for MATLAB | https://github.com/vlfeat/matconvnet |
| Minerva - a fast and flexible tool for deep learning on multi-GPU | https://github.com/dmlc/minerva |
| Brainstorm - Fast, flexible and fun neural networks. | https://github.com/IDSIA/brainstorm |
| Tensorflow - Open source software library for numerical computation using data flow graphs | https://github.com/tensorflow/tensorflow |
| DMTK - Microsoft Distributed Machine Learning Tookit | https://github.com/Microsoft/DMTK |
| Scikit Flow - Simplified interface for TensorFlow (mimicking Scikit Learn) | https://github.com/google/skflow |
| MXnet - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning framework | https://github.com/dmlc/mxnet/ |
| Veles - Samsung Distributed machine learning platform | https://github.com/Samsung/veles |
| Marvin - A Minimalist GPU-only N-Dimensional ConvNets Framework | https://github.com/PrincetonVision/marvin |
| Apache SINGA - A General Distributed Deep Learning Platform | http://singa.incubator.apache.org/ |
| DSSTNE - Amazon's library for building Deep Learning models | https://github.com/amznlabs/amazon-dsstne |
| SyntaxNet - Google's syntactic parser - A TensorFlow dependency library | https://github.com/tensorflow/models/tree/master/syntaxnet |
| mlpack - A scalable Machine Learning library | http://mlpack.org/ |
| Torchnet - Torch based Deep Learning Library | https://github.com/torchnet/torchnet |
| Paddle - PArallel Distributed Deep LEarning by Baidu | https://github.com/baidu/paddle |
| NeuPy - Theano based Python library for ANN and Deep Learning | http://neupy.com |
| Lasagne - a lightweight library to build and train neural networks in Theano | https://github.com/Lasagne/Lasagne |
| nolearn - wrappers and abstractions around existing neural network libraries, most notably Lasagne | https://github.com/dnouri/nolearn |
| Sonnet - a library for constructing neural networks by Google's DeepMind | https://github.com/deepmind/sonnet |
| PyTorch - Tensors and Dynamic neural networks in Python with strong GPU acceleration | https://github.com/pytorch/pytorch |
| CNTK - Microsoft Cognitive Toolkit | https://github.com/Microsoft/CNTK |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#miscellaneous |
| Google Plus - Deep Learning Community | https://plus.google.com/communities/112866381580457264725 |
| Caffe Webinar | http://on-demand-gtc.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=shelhamer&searchItems=&sessionTopic=&sessionEvent=4&sessionYear=2014&sessionFormat=&submit=&select=+ |
| 100 Best Github Resources in Github for DL | http://meta-guide.com/software-meta-guide/100-best-github-deep-learning/ |
| Word2Vec | https://code.google.com/p/word2vec/ |
| Caffe DockerFile | https://github.com/tleyden/docker/tree/master/caffe |
| TorontoDeepLEarning convnet | https://github.com/TorontoDeepLearning/convnet |
| gfx.js | https://github.com/clementfarabet/gfx.js |
| Torch7 Cheat sheet | https://github.com/torch/torch7/wiki/Cheatsheet |
| Misc from MIT's 'Advanced Natural Language Processing' course | http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-864-advanced-natural-language-processing-fall-2005/ |
| Misc from MIT's 'Machine Learning' course | http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/lecture-notes/ |
| Misc from MIT's 'Networks for Learning: Regression and Classification' course | http://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-520-a-networks-for-learning-regression-and-classification-spring-2001/ |
| Misc from MIT's 'Neural Coding and Perception of Sound' course | http://ocw.mit.edu/courses/health-sciences-and-technology/hst-723j-neural-coding-and-perception-of-sound-spring-2005/index.htm |
| Implementing a Distributed Deep Learning Network over Spark | http://www.datasciencecentral.com/profiles/blogs/implementing-a-distributed-deep-learning-network-over-spark |
| A chess AI that learns to play chess using deep learning. | https://github.com/erikbern/deep-pink |
| Reproducing the results of "Playing Atari with Deep Reinforcement Learning" by DeepMind | https://github.com/kristjankorjus/Replicating-DeepMind |
| Wiki2Vec. Getting Word2vec vectors for entities and word from Wikipedia Dumps | https://github.com/idio/wiki2vec |
| The original code from the DeepMind article + tweaks | https://github.com/kuz/DeepMind-Atari-Deep-Q-Learner |
| Google deepdream - Neural Network art | https://github.com/google/deepdream |
| An efficient, batched LSTM. | https://gist.github.com/karpathy/587454dc0146a6ae21fc |
| A recurrent neural network designed to generate classical music. | https://github.com/hexahedria/biaxial-rnn-music-composition |
| Memory Networks Implementations - Facebook | https://github.com/facebook/MemNN |
| Face recognition with Google's FaceNet deep neural network. | https://github.com/cmusatyalab/openface |
| Basic digit recognition neural network | https://github.com/joeledenberg/DigitRecognition |
| Emotion Recognition API Demo - Microsoft | https://www.projectoxford.ai/demo/emotion#detection |
| Proof of concept for loading Caffe models in TensorFlow | https://github.com/ethereon/caffe-tensorflow |
| YOLO: Real-Time Object Detection | http://pjreddie.com/darknet/yolo/#webcam |
| AlphaGo - A replication of DeepMind's 2016 Nature publication, "Mastering the game of Go with deep neural networks and tree search" | https://github.com/Rochester-NRT/AlphaGo |
| Machine Learning for Software Engineers | https://github.com/ZuzooVn/machine-learning-for-software-engineers |
| Machine Learning is Fun! | https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471#.oa4rzez3g |
| Siraj Raval's Deep Learning tutorials | https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A |
| Dockerface | https://github.com/natanielruiz/dockerface |
| Awesome Deep Learning Music | https://github.com/ybayle/awesome-deep-learning-music |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#contributing |
| pull request | https://github.com/ashara12/awesome-deeplearning/pulls |
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#license |
| http://creativecommons.org/publicdomain/zero/1.0/ |
| Christos Christofidis | https://linkedin.com/in/Christofidis |
|
Readme
| https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning#readme-ov-file |
| Please reload this page | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning |
|
Activity | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/activity |
|
Custom properties | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/custom-properties |
|
0
stars | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/stargazers |
|
1
watching | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/watchers |
|
0
forks | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/forks |
|
Report repository
| https://patch-diff.githubusercontent.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2Fpython2014%2Fawesome-deep-learning&report=python2014+%28user%29 |
| Releases | https://patch-diff.githubusercontent.com/python2014/awesome-deep-learning/releases |
| Packages
0 | https://patch-diff.githubusercontent.com/orgs/python2014/packages?repo_name=awesome-deep-learning |
|
| https://github.com |
| Terms | https://docs.github.com/site-policy/github-terms/github-terms-of-service |
| Privacy | https://docs.github.com/site-policy/privacy-policies/github-privacy-statement |
| Security | https://github.com/security |
| Status | https://www.githubstatus.com/ |
| Community | https://github.community/ |
| Docs | https://docs.github.com/ |
| Contact | https://support.github.com?tags=dotcom-footer |