Title: Network Graph · nagarjunCode/pythonNNexample · GitHub
Open Graph Title: Network Graph · nagarjunCode/pythonNNexample
X Title: Network Graph · nagarjunCode/pythonNNexample
Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates the exclusive OR function with two inputs and one output. - Network Graph · nagarjunCode/pythonNNexample
Open Graph Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th...
X Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th...
Opengraph URL: https://github.com/nagarjunCode/pythonNNexample
X: @github
Domain: patch-diff.githubusercontent.com
| route-pattern | /:user_id/:repository/network(.:format) |
| route-controller | network |
| route-action | show |
| fetch-nonce | v2:0cd56f69-21f9-af4e-6dbd-b6d460f99a38 |
| current-catalog-service-hash | b4d8436665c5448282b6f4eacc6394e6e8801de97cb226acdca9da20ae59be92 |
| request-id | DA82:A6B60:1A837C6:22B658D:6982C77E |
| html-safe-nonce | 39b585c251ae40f88b776f9ec76f138d24cd03fe4c1dbeb5f6befcdb3c75fa82 |
| visitor-payload | eyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJEQTgyOkE2QjYwOjFBODM3QzY6MjJCNjU4RDo2OTgyQzc3RSIsInZpc2l0b3JfaWQiOiIyNTk0NjQ4MTg2OTAzNzc1MTAyIiwicmVnaW9uX2VkZ2UiOiJpYWQiLCJyZWdpb25fcmVuZGVyIjoiaWFkIn0= |
| visitor-hmac | 5e3c6c4d27bf6dbc95273419029bad3bec8e4fce5a67b8efeb27d73910344170 |
| hovercard-subject-tag | repository:101182247 |
| github-keyboard-shortcuts | repository,network-graph,copilot |
| google-site-verification | Apib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I |
| octolytics-url | https://collector.github.com/github/collect |
| analytics-location | / |
| fb:app_id | 1401488693436528 |
| apple-itunes-app | app-id=1477376905, app-argument=https://github.com/nagarjunCode/pythonNNexample/network |
| twitter:image | https://opengraph.githubassets.com/3c5367f259d9078c21f2cd806c8e06ae6c54f08b0f1aae1bdc34818f62c6ec83/nagarjunCode/pythonNNexample |
| twitter:card | summary_large_image |
| og:image | https://opengraph.githubassets.com/3c5367f259d9078c21f2cd806c8e06ae6c54f08b0f1aae1bdc34818f62c6ec83/nagarjunCode/pythonNNexample |
| og:image:alt | Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th... |
| og:image:width | 1200 |
| og:image:height | 600 |
| og:site_name | GitHub |
| og:type | object |
| hostname | github.com |
| expected-hostname | github.com |
| None | c6741528aa4d4ba81c57bbff8f8cc0de0e9115cb2993431dc9dac8d489f7b4ee |
| turbo-cache-control | no-preview |
| go-import | github.com/nagarjunCode/pythonNNexample git https://github.com/nagarjunCode/pythonNNexample.git |
| octolytics-dimension-user_id | 24871212 |
| octolytics-dimension-user_login | nagarjunCode |
| octolytics-dimension-repository_id | 101182247 |
| octolytics-dimension-repository_nwo | nagarjunCode/pythonNNexample |
| octolytics-dimension-repository_public | true |
| octolytics-dimension-repository_is_fork | true |
| octolytics-dimension-repository_parent_id | 70839196 |
| octolytics-dimension-repository_parent_nwo | stmorgan/pythonNNexample |
| octolytics-dimension-repository_network_root_id | 70839196 |
| octolytics-dimension-repository_network_root_nwo | stmorgan/pythonNNexample |
| turbo-body-classes | logged-out env-production page-responsive |
| disable-turbo | false |
| browser-stats-url | https://api.github.com/_private/browser/stats |
| browser-errors-url | https://api.github.com/_private/browser/errors |
| release | df2a3cea9cc9adaf422cd462f5351935c407af4d |
| ui-target | full |
| theme-color | #1e2327 |
| color-scheme | light dark |
Links:
Viewport: width=device-width