Title: Commits · mbuguanewton/pythonNNexample · GitHub
Open Graph Title: Commits · mbuguanewton/pythonNNexample
X Title: Commits · mbuguanewton/pythonNNexample
Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates the exclusive OR function with two inputs and one output. - Commits · mbuguanewton/pythonNNexample
Open Graph Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th...
X Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th...
Opengraph URL: https://github.com/mbuguanewton/pythonNNexample
X: @github
Domain: patch-diff.githubusercontent.com
| route-pattern | /:user_id/:repository/graphs/commit-activity(.:format) |
| route-controller | graphs |
| route-action | commit_activity |
| fetch-nonce | v2:389042a5-aa9d-62c6-57e2-fa759bdcdbd5 |
| current-catalog-service-hash | b4d8436665c5448282b6f4eacc6394e6e8801de97cb226acdca9da20ae59be92 |
| request-id | AAC0:40A88:3872807:4D2751F:6980AFE4 |
| html-safe-nonce | 9158285346caf288a679f248457c9c031c70402bf20e86e5246eda22bc4beb2e |
| visitor-payload | eyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJBQUMwOjQwQTg4OjM4NzI4MDc6NEQyNzUxRjo2OTgwQUZFNCIsInZpc2l0b3JfaWQiOiI2NjAxMzk3NTg3OTI2ODg4NDIwIiwicmVnaW9uX2VkZ2UiOiJpYWQiLCJyZWdpb25fcmVuZGVyIjoiaWFkIn0= |
| visitor-hmac | 53a100e9b3a8a2df832d765598ed89b02ab9a77bee79d7d75244eb9049a4577d |
| hovercard-subject-tag | repository:116983239 |
| github-keyboard-shortcuts | repository,copilot |
| google-site-verification | Apib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I |
| octolytics-url | https://collector.github.com/github/collect |
| analytics-location | / |
| fb:app_id | 1401488693436528 |
| apple-itunes-app | app-id=1477376905, app-argument=https://github.com/mbuguanewton/pythonNNexample/graphs/commit-activity |
| twitter:image | https://opengraph.githubassets.com/28d805e4ec03aa6db90314b5925879f640b5c28251fa7c5ca2310047e7a8cd06/mbuguanewton/pythonNNexample |
| twitter:card | summary_large_image |
| og:image | https://opengraph.githubassets.com/28d805e4ec03aa6db90314b5925879f640b5c28251fa7c5ca2310047e7a8cd06/mbuguanewton/pythonNNexample |
| og:image:alt | Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th... |
| og:image:width | 1200 |
| og:image:height | 600 |
| og:site_name | GitHub |
| og:type | object |
| hostname | github.com |
| expected-hostname | github.com |
| None | d5070894b88d5cf03785c677c23c659b0431dfc2e6df2f35e35f2e0de9ceb94a |
| turbo-cache-control | no-cache |
| go-import | github.com/mbuguanewton/pythonNNexample git https://github.com/mbuguanewton/pythonNNexample.git |
| octolytics-dimension-user_id | 26478665 |
| octolytics-dimension-user_login | mbuguanewton |
| octolytics-dimension-repository_id | 116983239 |
| octolytics-dimension-repository_nwo | mbuguanewton/pythonNNexample |
| octolytics-dimension-repository_public | true |
| octolytics-dimension-repository_is_fork | true |
| octolytics-dimension-repository_parent_id | 70839196 |
| octolytics-dimension-repository_parent_nwo | stmorgan/pythonNNexample |
| octolytics-dimension-repository_network_root_id | 70839196 |
| octolytics-dimension-repository_network_root_nwo | stmorgan/pythonNNexample |
| turbo-body-classes | logged-out env-production page-responsive |
| disable-turbo | false |
| browser-stats-url | https://api.github.com/_private/browser/stats |
| browser-errors-url | https://api.github.com/_private/browser/errors |
| release | 821a5a2664fd1c2441fb3caded98e0f525bf913f |
| ui-target | full |
| theme-color | #1e2327 |
| color-scheme | light dark |
Links:
Viewport: width=device-width