Title: Contributors to liangwei85/pythonNNexample · GitHub
Open Graph Title: Contributors to liangwei85/pythonNNexample
X Title: Contributors to liangwei85/pythonNNexample
Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates the exclusive OR function with two inputs and one output. - Contributors to liangwei85/pythonNNexample
Open Graph Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th...
X Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th...
Opengraph URL: https://github.com/liangwei85/pythonNNexample
X: @github
Domain: patch-diff.githubusercontent.com
| route-pattern | /:user_id/:repository/graphs/contributors(.:format) |
| route-controller | repos_insights_contributors |
| route-action | index |
| fetch-nonce | v2:f95ab36d-3f13-81cb-8830-e2221f0c16ef |
| current-catalog-service-hash | b4d8436665c5448282b6f4eacc6394e6e8801de97cb226acdca9da20ae59be92 |
| request-id | BE16:3F5F3:17237D0:1DD40BC:697FCFDC |
| html-safe-nonce | 2066e9f7c300c7622fadfd1850be78dacb31aad9558a3cce5b068d1140ecb360 |
| visitor-payload | eyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJCRTE2OjNGNUYzOjE3MjM3RDA6MURENDBCQzo2OTdGQ0ZEQyIsInZpc2l0b3JfaWQiOiIyOTAyNzkxMjg4NjE0OTUyNjAiLCJyZWdpb25fZWRnZSI6ImlhZCIsInJlZ2lvbl9yZW5kZXIiOiJpYWQifQ== |
| visitor-hmac | 1e2148b3c733cf403022c86c93f82cc96b026efe5d1d18a03d7279f3cca52a3e |
| hovercard-subject-tag | repository:94002485 |
| github-keyboard-shortcuts | repository,copilot |
| google-site-verification | Apib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I |
| octolytics-url | https://collector.github.com/github/collect |
| analytics-location | / |
| fb:app_id | 1401488693436528 |
| apple-itunes-app | app-id=1477376905, app-argument=https://github.com/liangwei85/pythonNNexample/graphs/contributors |
| twitter:image | https://opengraph.githubassets.com/5176c8a63f9cd477378ec2a2cbbbf662693e76c0b6edba3d9e611f93810decfa/liangwei85/pythonNNexample |
| twitter:card | summary_large_image |
| og:image | https://opengraph.githubassets.com/5176c8a63f9cd477378ec2a2cbbbf662693e76c0b6edba3d9e611f93810decfa/liangwei85/pythonNNexample |
| og:image:alt | Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th... |
| og:image:width | 1200 |
| og:image:height | 600 |
| og:site_name | GitHub |
| og:type | object |
| hostname | github.com |
| expected-hostname | github.com |
| None | 60279d4097367e16897439d16d6bbe4180663db828c666eeed2656988ffe59f6 |
| turbo-cache-control | no-cache |
| go-import | github.com/liangwei85/pythonNNexample git https://github.com/liangwei85/pythonNNexample.git |
| octolytics-dimension-user_id | 12084344 |
| octolytics-dimension-user_login | liangwei85 |
| octolytics-dimension-repository_id | 94002485 |
| octolytics-dimension-repository_nwo | liangwei85/pythonNNexample |
| octolytics-dimension-repository_public | true |
| octolytics-dimension-repository_is_fork | true |
| octolytics-dimension-repository_parent_id | 70839196 |
| octolytics-dimension-repository_parent_nwo | stmorgan/pythonNNexample |
| octolytics-dimension-repository_network_root_id | 70839196 |
| octolytics-dimension-repository_network_root_nwo | stmorgan/pythonNNexample |
| turbo-body-classes | logged-out env-production page-responsive |
| disable-turbo | false |
| browser-stats-url | https://api.github.com/_private/browser/stats |
| browser-errors-url | https://api.github.com/_private/browser/errors |
| release | 7c85641c598ad130c74f7bcc27f58575cac69551 |
| ui-target | full |
| theme-color | #1e2327 |
| color-scheme | light dark |
Links:
Viewport: width=device-width