Title: GitHub - learner-python-R/LawCrimeMining: Law Crime Mining Based on Corpus build and content analysis by NLP methods. 基于领域语料库构建与NLP方法的裁判文书与犯罪案例文本挖掘项目
Open Graph Title: GitHub - learner-python-R/LawCrimeMining: Law Crime Mining Based on Corpus build and content analysis by NLP methods. 基于领域语料库构建与NLP方法的裁判文书与犯罪案例文本挖掘项目
X Title: GitHub - learner-python-R/LawCrimeMining: Law Crime Mining Based on Corpus build and content analysis by NLP methods. 基于领域语料库构建与NLP方法的裁判文书与犯罪案例文本挖掘项目
Description: Law Crime Mining Based on Corpus build and content analysis by NLP methods. 基于领域语料库构建与NLP方法的裁判文书与犯罪案例文本挖掘项目 - learner-python-R/LawCrimeMining
Open Graph Description: Law Crime Mining Based on Corpus build and content analysis by NLP methods. 基于领域语料库构建与NLP方法的裁判文书与犯罪案例文本挖掘项目 - learner-python-R/LawCrimeMining
X Description: Law Crime Mining Based on Corpus build and content analysis by NLP methods. 基于领域语料库构建与NLP方法的裁判文书与犯罪案例文本挖掘项目 - learner-python-R/LawCrimeMining
Mail addresses
lhy_in_blcu@126.com
Opengraph URL: https://github.com/learner-python-R/LawCrimeMining
X: @github
Domain: patch-diff.githubusercontent.com
| route-pattern | /:user_id/:repository |
| route-controller | files |
| route-action | disambiguate |
| fetch-nonce | v2:3e725eb2-7a70-e763-64a8-2f992cb5fb9f |
| current-catalog-service-hash | f3abb0cc802f3d7b95fc8762b94bdcb13bf39634c40c357301c4aa1d67a256fb |
| request-id | 8932:19E64D:17618CC:20320EF:6971E975 |
| html-safe-nonce | 2df96d0600663a98476829802401389e8faa45d7415c52124612d9f4d755235f |
| visitor-payload | eyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiI4OTMyOjE5RTY0RDoxNzYxOENDOjIwMzIwRUY6Njk3MUU5NzUiLCJ2aXNpdG9yX2lkIjoiMjY3Mzc2ODAzNDMyMDExNjA4NSIsInJlZ2lvbl9lZGdlIjoiaWFkIiwicmVnaW9uX3JlbmRlciI6ImlhZCJ9 |
| visitor-hmac | ec6b078118bde0f83b0f1a5730aa892fe82c35221d386bf7e13828bd3737d365 |
| hovercard-subject-tag | repository:226517477 |
| github-keyboard-shortcuts | repository,copilot |
| google-site-verification | Apib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I |
| octolytics-url | https://collector.github.com/github/collect |
| analytics-location | / |
| fb:app_id | 1401488693436528 |
| apple-itunes-app | app-id=1477376905, app-argument=https://github.com/learner-python-R/LawCrimeMining |
| twitter:image | https://opengraph.githubassets.com/92f818300bee4971ced49da2402dd741bd0b1036807da42614cf223cd324116b/learner-python-R/LawCrimeMining |
| twitter:card | summary_large_image |
| og:image | https://opengraph.githubassets.com/92f818300bee4971ced49da2402dd741bd0b1036807da42614cf223cd324116b/learner-python-R/LawCrimeMining |
| og:image:alt | Law Crime Mining Based on Corpus build and content analysis by NLP methods. 基于领域语料库构建与NLP方法的裁判文书与犯罪案例文本挖掘项目 - learner-python-R/LawCrimeMining |
| og:image:width | 1200 |
| og:image:height | 600 |
| og:site_name | GitHub |
| og:type | object |
| hostname | github.com |
| expected-hostname | github.com |
| None | 683712716975b3393656edf09255a1d488d0e68ab7b9ac97e40ecf40036f696c |
| turbo-cache-control | no-preview |
| go-import | github.com/learner-python-R/LawCrimeMining git https://github.com/learner-python-R/LawCrimeMining.git |
| octolytics-dimension-user_id | 16961593 |
| octolytics-dimension-user_login | learner-python-R |
| octolytics-dimension-repository_id | 226517477 |
| octolytics-dimension-repository_nwo | learner-python-R/LawCrimeMining |
| octolytics-dimension-repository_public | true |
| octolytics-dimension-repository_is_fork | true |
| octolytics-dimension-repository_parent_id | 143990118 |
| octolytics-dimension-repository_parent_nwo | liuhuanyong/LawCrimeMining |
| octolytics-dimension-repository_network_root_id | 143990118 |
| octolytics-dimension-repository_network_root_nwo | liuhuanyong/LawCrimeMining |
| turbo-body-classes | logged-out env-production page-responsive |
| disable-turbo | false |
| browser-stats-url | https://api.github.com/_private/browser/stats |
| browser-errors-url | https://api.github.com/_private/browser/errors |
| release | ed99da4e2de688dd1056894c1eccd4c82c6bbbfe |
| ui-target | full |
| theme-color | #1e2327 |
| color-scheme | light dark |
Links:
Viewport: width=device-width