René's URL Explorer Experiment


Title: GitHub - jsYangCode/Recent_SLAM_Research: 跟踪SLAM前沿动态【周更】

Open Graph Title: GitHub - jsYangCode/Recent_SLAM_Research: 跟踪SLAM前沿动态【周更】

X Title: GitHub - jsYangCode/Recent_SLAM_Research: 跟踪SLAM前沿动态【周更】

Description: 跟踪SLAM前沿动态【周更】. Contribute to jsYangCode/Recent_SLAM_Research development by creating an account on GitHub.

Open Graph Description: 跟踪SLAM前沿动态【周更】. Contribute to jsYangCode/Recent_SLAM_Research development by creating an account on GitHub.

X Description: 跟踪SLAM前沿动态【周更】. Contribute to jsYangCode/Recent_SLAM_Research development by creating an account on GitHub.

Opengraph URL: https://github.com/jsYangCode/Recent_SLAM_Research

X: @github

direct link

Domain: patch-diff.githubusercontent.com

route-pattern/:user_id/:repository
route-controllerfiles
route-actiondisambiguate
fetch-noncev2:04489846-b350-25f8-78ba-2dbf79f5e5bc
current-catalog-service-hashf3abb0cc802f3d7b95fc8762b94bdcb13bf39634c40c357301c4aa1d67a256fb
request-idE412:2AE970:EFE058:14183AB:696EB7C3
html-safe-nonce7428b1659ab2d47a58b0f5510d097e93e36c1420f01762f2229c1d07eb99a561
visitor-payloadeyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJFNDEyOjJBRTk3MDpFRkUwNTg6MTQxODNBQjo2OTZFQjdDMyIsInZpc2l0b3JfaWQiOiIyOTQ1NTYwMjkwNzI5NTcyMjkxIiwicmVnaW9uX2VkZ2UiOiJpYWQiLCJyZWdpb25fcmVuZGVyIjoiaWFkIn0=
visitor-hmaccc72545d8a74bc1e5f73fedc7c0c7c8bdc3b80cd3f7cb6a2850ad7493b509c7f
hovercard-subject-tagrepository:178983112
github-keyboard-shortcutsrepository,copilot
google-site-verificationApib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I
octolytics-urlhttps://collector.github.com/github/collect
analytics-location//
fb:app_id1401488693436528
apple-itunes-appapp-id=1477376905, app-argument=https://github.com/jsYangCode/Recent_SLAM_Research
twitter:imagehttps://opengraph.githubassets.com/6283bfad455263076080576a5c006943198b63683fb62ad9ff4a36bd93fd3197/jsYangCode/Recent_SLAM_Research
twitter:cardsummary_large_image
og:imagehttps://opengraph.githubassets.com/6283bfad455263076080576a5c006943198b63683fb62ad9ff4a36bd93fd3197/jsYangCode/Recent_SLAM_Research
og:image:alt跟踪SLAM前沿动态【周更】. Contribute to jsYangCode/Recent_SLAM_Research development by creating an account on GitHub.
og:image:width1200
og:image:height600
og:site_nameGitHub
og:typeobject
hostnamegithub.com
expected-hostnamegithub.com
Noneb278ad162d35332b6de714dfb005de04386c4d92df6475522bef910f491a35ee
turbo-cache-controlno-preview
go-importgithub.com/jsYangCode/Recent_SLAM_Research git https://github.com/jsYangCode/Recent_SLAM_Research.git
octolytics-dimension-user_id34529308
octolytics-dimension-user_loginjsYangCode
octolytics-dimension-repository_id178983112
octolytics-dimension-repository_nwojsYangCode/Recent_SLAM_Research
octolytics-dimension-repository_publictrue
octolytics-dimension-repository_is_forktrue
octolytics-dimension-repository_parent_id148293790
octolytics-dimension-repository_parent_nwoYiChenCityU/Recent_SLAM_Research
octolytics-dimension-repository_network_root_id148293790
octolytics-dimension-repository_network_root_nwoYiChenCityU/Recent_SLAM_Research
turbo-body-classeslogged-out env-production page-responsive
disable-turbofalse
browser-stats-urlhttps://api.github.com/_private/browser/stats
browser-errors-urlhttps://api.github.com/_private/browser/errors
release39aed5006635ab6f45e6b77d23e73b08a00272a3
ui-targetfull
theme-color#1e2327
color-schemelight dark

Links:

Skip to contenthttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#start-of-content
https://patch-diff.githubusercontent.com/
Sign in https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2FjsYangCode%2FRecent_SLAM_Research
GitHub CopilotWrite better code with AIhttps://github.com/features/copilot
GitHub SparkBuild and deploy intelligent appshttps://github.com/features/spark
GitHub ModelsManage and compare promptshttps://github.com/features/models
MCP RegistryNewIntegrate external toolshttps://github.com/mcp
ActionsAutomate any workflowhttps://github.com/features/actions
CodespacesInstant dev environmentshttps://github.com/features/codespaces
IssuesPlan and track workhttps://github.com/features/issues
Code ReviewManage code changeshttps://github.com/features/code-review
GitHub Advanced SecurityFind and fix vulnerabilitieshttps://github.com/security/advanced-security
Code securitySecure your code as you buildhttps://github.com/security/advanced-security/code-security
Secret protectionStop leaks before they starthttps://github.com/security/advanced-security/secret-protection
Why GitHubhttps://github.com/why-github
Documentationhttps://docs.github.com
Bloghttps://github.blog
Changeloghttps://github.blog/changelog
Marketplacehttps://github.com/marketplace
View all featureshttps://github.com/features
Enterpriseshttps://github.com/enterprise
Small and medium teamshttps://github.com/team
Startupshttps://github.com/enterprise/startups
Nonprofitshttps://github.com/solutions/industry/nonprofits
App Modernizationhttps://github.com/solutions/use-case/app-modernization
DevSecOpshttps://github.com/solutions/use-case/devsecops
DevOpshttps://github.com/solutions/use-case/devops
CI/CDhttps://github.com/solutions/use-case/ci-cd
View all use caseshttps://github.com/solutions/use-case
Healthcarehttps://github.com/solutions/industry/healthcare
Financial serviceshttps://github.com/solutions/industry/financial-services
Manufacturinghttps://github.com/solutions/industry/manufacturing
Governmenthttps://github.com/solutions/industry/government
View all industrieshttps://github.com/solutions/industry
View all solutionshttps://github.com/solutions
AIhttps://github.com/resources/articles?topic=ai
Software Developmenthttps://github.com/resources/articles?topic=software-development
DevOpshttps://github.com/resources/articles?topic=devops
Securityhttps://github.com/resources/articles?topic=security
View all topicshttps://github.com/resources/articles
Customer storieshttps://github.com/customer-stories
Events & webinarshttps://github.com/resources/events
Ebooks & reportshttps://github.com/resources/whitepapers
Business insightshttps://github.com/solutions/executive-insights
GitHub Skillshttps://skills.github.com
Documentationhttps://docs.github.com
Customer supporthttps://support.github.com
Community forumhttps://github.com/orgs/community/discussions
Trust centerhttps://github.com/trust-center
Partnershttps://github.com/partners
GitHub SponsorsFund open source developershttps://github.com/sponsors
Security Labhttps://securitylab.github.com
Maintainer Communityhttps://maintainers.github.com
Acceleratorhttps://github.com/accelerator
Archive Programhttps://archiveprogram.github.com
Topicshttps://github.com/topics
Trendinghttps://github.com/trending
Collectionshttps://github.com/collections
Enterprise platformAI-powered developer platformhttps://github.com/enterprise
GitHub Advanced SecurityEnterprise-grade security featureshttps://github.com/security/advanced-security
Copilot for BusinessEnterprise-grade AI featureshttps://github.com/features/copilot/copilot-business
Premium SupportEnterprise-grade 24/7 supporthttps://github.com/premium-support
Pricinghttps://github.com/pricing
Search syntax tipshttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
documentationhttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
Sign in https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2FjsYangCode%2FRecent_SLAM_Research
Sign up https://patch-diff.githubusercontent.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=jsYangCode%2FRecent_SLAM_Research
Reloadhttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research
Reloadhttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research
Reloadhttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research
jsYangCode https://patch-diff.githubusercontent.com/jsYangCode
Recent_SLAM_Researchhttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research
YiChenCityU/Recent_SLAM_Researchhttps://patch-diff.githubusercontent.com/YiChenCityU/Recent_SLAM_Research
Notifications https://patch-diff.githubusercontent.com/login?return_to=%2FjsYangCode%2FRecent_SLAM_Research
Fork 0 https://patch-diff.githubusercontent.com/login?return_to=%2FjsYangCode%2FRecent_SLAM_Research
Star 0 https://patch-diff.githubusercontent.com/login?return_to=%2FjsYangCode%2FRecent_SLAM_Research
0 stars https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/stargazers
726 forks https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/forks
Branches https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/branches
Tags https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/tags
Activity https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/activity
Star https://patch-diff.githubusercontent.com/login?return_to=%2FjsYangCode%2FRecent_SLAM_Research
Notifications https://patch-diff.githubusercontent.com/login?return_to=%2FjsYangCode%2FRecent_SLAM_Research
Code https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research
Pull requests 0 https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/pulls
Actions https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/actions
Projects 0 https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/projects
Security Uh oh! There was an error while loading. Please reload this page. https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/security
Please reload this pagehttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research
Insights https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/pulse
Code https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research
Pull requests https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/pulls
Actions https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/actions
Projects https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/projects
Security https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/security
Insights https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/pulse
Brancheshttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/branches
Tagshttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/tags
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/branches
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/tags
71 Commitshttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/commits/master/
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/commits/master/
README.mdhttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/blob/master/README.md
README.mdhttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/blob/master/README.md
SLAM能力图.pnghttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/blob/master/SLAM%E8%83%BD%E5%8A%9B%E5%9B%BE.png
SLAM能力图.pnghttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/blob/master/SLAM%E8%83%BD%E5%8A%9B%E5%9B%BE.png
READMEhttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#recent_slam_research
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#预警这是广告位
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#1如果你是hr欢迎开issue贴上招聘广告
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#2如果你是攻城狮欢迎开issue求职
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#3机器人独角兽企业长期招聘算法工程师有意微信sinnature
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#slam-能力图
https://github.com/YiChenCityU/Recent_SLAM_Research/blob/master/SLAM%E8%83%BD%E5%8A%9B%E5%9B%BE.png
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#战斗吧
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#visual-slam
Extrinsic 6DoF Calibration of a Radar – LiDAR – Camera System Enhanced by Radar Cross Section Estimates Evaluationhttps://sci-hub.tw/https://www.sciencedirect.com/science/article/pii/S0921889018301994
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#112-2018-12-16-extrinsic-6dof-calibration-of-a-radar--lidar--camera-system-enhanced-by-radar-cross-section-estimates-evaluation-相机激光毫米波雷达外参估计
Visual-Based SLAM Configurations for Cooperative Multi-UAV Systems with a Lead Agent: An Observability-Based Approachhttps://www.ncbi.nlm.nih.gov/pubmed/30513949
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#111-2018-12-16-visual-based-slam-configurations-for-cooperative-multi-uav-systems-with-a-lead-agent-an-observability-based-approach
Robust Visual-Inertial State Estimation with Multiple Odometries and Efficient Mapping on an MAV with Ultra-Wide FOV Stereo Visionhttps://elib.dlr.de/122805/1/IROS2018_multi_VO_elib.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#110-2018-12-16-robust-visual-inertial-state-estimation-with-multiple-odometries-and-efficient-mapping-on-an-mav-with-ultra-wide-fov-stereo-vision-鱼眼相机产生的四对虚拟双目vio
Flying on point clouds: Online trajectory generation and autonomous navigation for quadrotors in cluttered environmentshttp://sci-hub.tw/10.1002/rob.21842
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#109-2018-12-11-flying-on-point-clouds-online-trajectory-generation-and-autonomous-navigation-for-quadrotors-in-cluttered-environments
CubemapSLAM: A Piecewise-Pinhole Monocular Fisheye SLAM Systemhttps://arxiv.org/pdf/1811.12633.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#108-2018-12-11-cubemapslam-a-piecewise-pinhole-monocular-fisheye-slam-system--鱼眼镜头slam
HOOFR SLAM System: An Embedded Vision SLAM Algorithm and Its Hardware-Software Mapping-Based Intelligent Vehicles Applicationshttp://sci-hub.tw/10.1109/tits.2018.2881556
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#107-2018-12-11-hoofr-slam-system-an-embedded-vision-slam-algorithm-and-its-hardware-software-mapping-based-intelligent-vehicles-applications
PoseFusion: Dense RGB-D SLAM in Dynamic Human Environmentshttps://hal.archives-ouvertes.fr/hal-01893144/document
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#106-2018-12-10-posefusion-dense-rgb-d-slam-in-dynamic-human-environments-解决动态人体
Depth from Motion for Smartphone ARhttp://delivery.acm.org/10.1145/3280000/3275041/a193-valentin.pdf?ip=203.166.220.2&id=3275041&acc=OPEN&key=4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E6D218144511F3437&__acm__=1544188110_8a4090e366f371eb54025ed793523da9
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#105-2018-12-07-depth-from-motion-for-smartphone-ar-google-单目深度估计效果很好
Stereo Visual-Inertial SLAM With Points and Lineshttps://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8533332
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#104-2018-12-06-stereo-visual-inertial-slam-with-points-and-lines-双目imu加点线
SLAM method: reconstruction and modeling of environment with moving objects using an RGBD camerahttp://ceur-ws.org/Vol-2254/10000274.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#103-2018-12-05-slam-method-reconstruction-and-modeling-of-environment-with-moving-objects-using-an-rgbd-camera去除动态物体
VINS-MKF: A Tightly-Coupled Multi-Keyframe Visual-Inertial Odometry for Accurate and Robust State Estimationhttps://www.mdpi.com/1424-8220/18/11/4036
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#102-2018-11-26-vins-mkf-a-tightly-coupled-multi-keyframe-visual-inertial-odometry-for-accurate-and-robust-state-estimation多目vins
Fast and accurate visual odometry from a monocular camerahttp://sci-hub.tw/10.1007/s11704-018-6600-8
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#101-2018-11-26-fast-and-accurate-visual-odometry-from-a-monocular-camera
Semi-independent Stereo Visual Odometry for Different Field of View Camerashttps://hal-upec-upem.archives-ouvertes.fr/hal-01912878/document
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#100-2018-11-22-semi-independent-stereo-visual-odometry-for-different-field-of-view-cameras
Spherical-Model-Based SLAM on Full-View Images for Indoor Environmentshttps://www.mdpi.com/2076-3417/8/11/2268
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#99-2018-11-22-spherical-model-based-slam-on-full-view-images-for-indoor-environments-大广角视觉slam
DynaSLAM: Tracking, Mapping and Inpainting in Dynamic Sceneshttps://arxiv.org/pdf/1806.05620.pdf
代码https://github.com/BertaBescos/DynaSLAM
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#98-2018-11-18-dynaslam-tracking-mapping-and-inpainting-in-dynamic-scenesfcn-辅助动态场景slam代码
EMoVI-SLAM: Embedded Monocular Visual Inertial SLAM with Scale Update for Large Scale Mapping and Localizationhttp://sci-hub.tw/https://ieeexplore.ieee.org/document/8525794
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#97-2018-11-18-emovi-slam-embedded-monocular-visual-inertial-slam-with-scale-update-for-large-scale-mapping-and-localization-ukf-做融合效果比vins好
Optimization-based Legged Odometry and Sensor Fusion for Legged Robot Continuous Localizationhttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/blob/master/sci-hub.tw/10.1016/j.robot.2018.10.013
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#96-2018-11-16-optimization-based-legged-odometry-and-sensor-fusion-for-legged-robot-continuous-localization-足腿式机器人slam
RGB-D SLAM in Dynamic Environments Using Points Correlationshttps://arxiv.org/pdf/1811.03217.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#95-2018-11-16-rgb-d-slam-in-dynamic-environments-using-points-correlations-解决动态物体影响
Semi-Semantic Line-Cluster Assisted Monocular SLAM for Indoor Environmentshttps://arxiv.org/pdf/1811.01592.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#94-2018-11-13-semi-semantic-line-cluster-assisted-monocular-slam-for-indoor-environments
Evaluation of Lightweight Local Descriptors for Level Ground Navigation with Monocular SLAMhttp://sci-hub.tw/10.1007/978-3-030-03341-5_29
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#93-2018-11-12-evaluation-of-lightweight-local-descriptors-for-level-ground-navigation-with-monocular-slam对比不同描述子对slam影响
Incremental Feature Forest for Real-Time SLAM on Mobile Deviceshttp://sci-hub.tw/10.1007/978-3-030-03398-9_37
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#92-2018-11-12-incremental-feature-forest-for-real-time-slam-on-mobile-devices
Structure-aware SLAM with planes and lines in man-made environmenhttps://sci-hub.tw/https://www.sciencedirect.com/science/article/pii/S0167865518308663
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#91-2018-11-12-structure-aware-slam-with-planes-and-lines-in-man-made-environmen
A review on graph optimization and algorithmic frameworkshttps://hal.archives-ouvertes.fr/hal-01901499/file/LATEX1.PDF
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#90-2018-11-12-a-review-on-graph-optimization-and-algorithmic-frameworks
Non-iterative RGB-D-inertial odometryhttps://arxiv.org/pdf/1710.05502.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#89-2018-11-06-non-iterative-rgb-d-inertial-odometry轻量型融合
Dense RGB-D-Inertial SLAM with Map Deformationshttps://www.doc.ic.ac.uk/~sleutene/publications/IROS2017_Laidlow.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#88-2018-11-06-dense-rgb-d-inertial-slam-with-map-deformations-rgbd-与imu融合
Autonomous flight with robust visual odometry under dynamic lighting conditionshttp://sci-hub.tw/10.1007/s10514-018-9816-4
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#87-2018-11-06-autonomous-flight-with-robust-visual-odometry-under-dynamic-lighting-conditions很少见到韩国人做的slam好像基本不开源这个光照鲁棒性方法就无从验证了
RTAB‐Map as an open‐source lidar and visual simultaneous localization and mapping library for large‐scale and long‐term online operationhttp://sci-hub.tw/10.1002/rob.21831
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#86-2018-11-06-rtabmap-as-an-opensource-lidar-and-visual-simultaneous-localization-and-mapping-library-for-largescale-and-longterm-online-operation-rtab-map有更新增加laser-odom
Mobile Robot Localisation and Navigation Using LEGO NXT and Ultrasonic Sensorhttps://arxiv.org/pdf/1810.08816.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#85-2018-10-29-mobile-robot-localisation-and-navigation-using-lego-nxt-and-ultrasonic-sensor-仅仅是好玩
RaD-VIO: Rangefinder-aided Downward Visual-Inertial Odometryhttps://arxiv.org/pdf/1810.08704.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#84-2018-10-29-rad-vio-rangefinder-aided-downward-visual-inertial-odometry-卡尔曼不死
Dynamic objects elimination in SLAM based on image fusionhttp://sci-hub.tw/https://linkinghub.elsevier.com/retrieve/pii/S0167865518308523
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#83-2018-10-29-dynamic-objects-elimination-in-slam-based-on-image-fusion-去除动态物体
Distributed stereo vision‐based 6D localization and mapping for multi‐robot teamshttps://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21812
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#82-2018-10-24-distributed-stereo-visionbased-6d-localization-and-mapping-for-multirobot-teams
Multi-scale Direct Sparse Visual Odometry for Large-Scale Natural Environmenthttps://ieeexplore.ieee.org/abstract/document/8490959
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#81-2018-10-20-multi-scale-direct-sparse-visual-odometry-for-large-scale-natural-environment-把不同远近的pixel分开来用
Combining 2D to 2D and 3D to 2D Point Correspondences for Stereo Visual Odometryhttp://www.scitepress.org/Papers/2018/66236/66236.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#80-2018-10-20-combining-2d-to-2d-and-3d-to-2d-point-correspondences-for-stereo-visual-odometry
StructVIO : Visual-inertial Odometry with Structural Regularity of Man-made Environmentshttps://arxiv.org/pdf/1810.06796.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#79-2018-10-20-structvio--visual-inertial-odometry-with-structural-regularity-of-man-made-environments-加line特征
RGB-D Inertial Odometry for Indoor Robot via Keyframe-based Nonlinear Optimizationhttps://ieeexplore.ieee.org/abstract/document/8484687
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#78-2018-10-17-rgb-d-inertial-odometry-for-indoor-robot-via-keyframe-based-nonlinear-optimization
A Combined RGB and Depth Descriptor for SLAM with Humanoidshttps://www.hrl.uni-bonn.de/papers/sheikh18iros.pdf
代码还未公布https://github.com/ferasha/DLab
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#77-2018-10-17-a-combined-rgb-and-depth-descriptor-for-slam-with-humanoids-结合rgb与深度的描述子代码还未公布
Analysis of the Impact of Field of View on WideAngle Cameras in SLAMhttp://www.diva-portal.org/smash/get/diva2:1253260/FULLTEXT01.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#76-2018-10-15-analysis-of-the-impact-of-field-of-view-on-wideangle-cameras-in-slam-一篇分析视场角对slam影响的硕士论文
Direct Depth SLAM: Sparse Geometric Feature Enhanced Direct Depth SLAM System for Low-Texture Environmentshttps://www.mdpi.com/1424-8220/18/10/3339/htm
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#75-2018-10-15-direct-depth-slam-sparse-geometric-feature-enhanced-direct-depth-slam-system-for-low-texture-environments-只用深度图的slam
SE(2)-Constrained Visual Inertial Fusion for Ground Vehicleshttp://sci-hub.tw/10.1109/jsen.2018.2873055
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#74-2018-10-11-se2-constrained-visual-inertial-fusion-for-ground-vehicles-贡献this-paper-proposed-a-new-visual-inertial-fusion-framework-for-ground-vehicles-based-on-an-se2-constrained-pose-parameterization
A Structureless Approach for Visual Odometryhttps://ywseo.github.io/files/structureless-approach-vo-iv-18.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#73-2018-10-11-a-structureless-approach-for-visual-odometry-三点改进-1-the-complexity-of-our-solution-is-lower-than-those-of-the-state-of-the-art-methods-2-no-extra-matrix-operations-required-to-eliminate-map-points-3-no-need-guesses-on-map-points-initial-locations
Illumination Robust Monocular Direct Visual Odometry for Outdoor Environment Mappinghttps://hal.archives-ouvertes.fr/hal-01876700/document
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#72-2018-10-09-illumination-robust-monocular-direct-visual-odometry-for-outdoor-environment-mapping-增强室外光照鲁棒性
Review of Wheeled Mobile Robots’ Navigation Problems and Application Prospects in Agriculturehttps://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8456505
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#71-2018-10-08-review-of-wheeled-mobile-robots-navigation-problems-and-application-prospects-in-agriculture-路径规划review
Visual Multimodal Odometry: Robust Visual Odometry in Harsh Environmentshttps://ieeexplore.ieee.org/abstract/document/8468653
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#70-2018-09-28-visual-multimodal-odometry-robust-visual-odometry-in-harsh-environments
Real-time Graph-Based 3D Reconstruction of Sparse Feature Environments for Mobile Robot Applicationshttps://ieeexplore.ieee.org/abstract/document/8468658
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#69-2018-09-28-real-time-graph-based-3d-reconstruction-of-sparse-feature-environments-for-mobile-robot-applications
Linear SLAM: Linearising the SLAM Problems using Submap Joining https://arxiv.org/pdf/1809.06967.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#68-2018-09-26-linear-slam-linearising-the-slam-problems-using-submap-joining--创建大地图有代码在openslam上但是没找到
Gaze Selection for Enhanced Visual Odometry During Navigationhttp://www.cim.mcgill.ca/~mrl/pubs/travism/travis_manderson_crv2018.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#67-2018-09-26-gaze-selection-for-enhanced-visual-odometry-during-navigation-控制机器人眼球看向特征点多的地方
GPU-accelerated feature tracking for 3D reconstructionhttp://sci-hub.tw/http://www.sciencedirect.com/science/article/pii/S003039921831096X
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#66-2018-09-26-gpu-accelerated-feature-tracking-for-3d-reconstruction-gpu-加速
Navion: A 2mW Fully Integrated Real-Time Visual-Inertial Odometry Accelerator for Autonomous Navigation of Nano Droneshttps://arxiv.org/pdf/1809.05780.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#65-2018-09-25-navion-a-2mw-fully-integrated-real-time-visual-inertial-odometry-accelerator-for-autonomous-navigation-of-nano-drones-能耗更小的vio系统
Project AutoVision: Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Camera Systemhttps://arxiv.org/pdf/1809.05477.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#64-2018-09-25-project-autovision-localization-and-3d-scene-perception-for-an-autonomous-vehicle-with-a-multi-camera-system
Efficient 2D-3D Matching for Multi-Camera Visual Localizationhttps://arxiv.org/pdf/1809.06445.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#63-2018-09-17-efficient-2d-3d-matching-for-multi-camera-visual-localization-已有地图时做定位
DSVO: Direct Stereo Visual Odometryhttps://irvlab.dl.umn.edu/sites/g/files/pua3056/f/dsvo_paper.pdf
代码在此https://github.com/jiawei-mo/dsvo
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#62-2018-09-17-dsvo-direct-stereo-visual-odometry没有双目的matching另一个摄像头的作用是优化尺度代码在此
Unsupervised Learning of Monocular Depth Estimation and Visual Odometry with Deep Feature Reconstructionhttps://arxiv.org/pdf/1803.03893.pdf
代码在此https://github.com/Huangying-Zhan/Depth-VO-Feat
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#61-cvpr-2018-unsupervised-learning-of-monocular-depth-estimation-and-visual-odometry-with-deep-feature-reconstruction-ian-reid出品代码在此
InLoc: Indoor Visual Localization with Dense Matching and View Synthesishttps://arxiv.org/pdf/1803.10368v2.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#60-cvpr-2018-inloc-indoor-visual-localization-with-dense-matching-and-view-synthesis-已知3dmap做定位
Polarimetric Dense Monocular SLAMhttps://www.cs.sfu.ca/~pingtan/Papers/cvpr18_pdms.pdf
传感器原理http://thinklucid.cn/tech-briefs/polarization-explained-sony-polarized-sensor/
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#59-cvpr-2018-polarimetric-dense-monocular-slam-偏振光传感器slam传感器原理
Semantic Visual Localizationhttps://arxiv.org/pdf/1712.05773.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#58-cvpr-2018-semantic-visual-localization
CodeSLAM — Learning a Compact, Optimisable Representation for Dense Visual SLAMhttps://arxiv.org/pdf/1804.00874v1.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#57-cvpr-2018-codeslam--learning-a-compact-optimisable-representation-for-dense-visual-slam
Fast Monte-Carlo Localization on Aerial Vehicles usingApproximate Continuous Belief Representationshttps://arxiv.org/pdf/1712.05507v3.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#56-cvpr-2018-fast-monte-carlo-localization-on-aerial-vehicles-usingapproximate-continuous-belief-representations-粒子滤波viusalimu
ICE-BA: Incremental, Consistent and Efficient Bundle Adjustment for Visual-Inertial SLAMhttp://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_ICE-BA_Incremental_Consistent_CVPR_2018_paper.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#55-cvpr-2018-ice-ba-incremental-consistent-and-efficient-bundle-adjustment-for-visual-inertial-slam新的优化库
Benchmarking 6DOF Outdoor Visual Localization in Changing Conditionshttps://arxiv.org/pdf/1707.09092v3.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#54-cvpr-2018-benchmarking-6dof-outdoor-visual-localization-in-changing-conditions-针对于场景变化较大时例如四季变换的slam数据集
Online Initialization and Automatic Camera-IMU Extrinsic Calibration for Monocular Visual-Inertial SLAMhttps://ieeexplore.ieee.org/document/8460206/
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#53-icra-2018-online-initialization-and-automatic-camera-imu-extrinsic-calibration-for-monocular-visual-inertial-slam-单目imu自动标定老铁知道比vins好在哪里么
Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraintshttps://ieeexplore.ieee.org/document/8463163/
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#52-icra-2018-semi-dense-visual-inertial-odometry-and-mapping-for-quadrotors-with-swap-constraints
Assigning Visual Words to Places for Loop Closure Detectionhttps://sci-hub.tw/https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8461146
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#51-icra-2018-assigning-visual-words-to-places-for-loop-closure-detection-使用gng-clustering-algorithm
Online Safe Trajectory Generation for Quadrotors Using Fast Marching Method and Bernstein Basis Polynomialhttps://ieeexplore.ieee.org/document/8462878/
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#50-icra-2018-online-safe-trajectory-generation-for-quadrotors-using-fast-marching-method-and-bernstein-basis-polynomial-沈老师连续两篇路径规划
Trajectory Replanning for Quadrotors Using Kinodynamic Search and Elastic Optimizationhttps://sci-hub.tw/https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8463188
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#49-icra-2018-trajectory-replanning-for-quadrotors-using-kinodynamic-search-and-elastic-optimization
Feature-constrained Active Visual SLAM for Mobile Robot Navigationhttps://sci-hub.tw/https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8460721
代码在此https://github.com/XinkeAE/Active-ORB-SLAM2
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#48-icra-2018-feature-constrained-active-visual-slam-for-mobile-robot-navigation路径规划时候考虑特征点数量代码在此
A Monocular SLAM System Leveraging Structural Regularity in Manhattan Worldhttps://sci-hub.tw/https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8463165
原理与codehttp://cvrs.whu.edu.cn/projects/Struct-PL-SLAM/
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#47-icra-2018-a-monocular-slam-system-leveraging-structural-regularity-in-manhattan-world国内慢慢也有实验室开源了原理与code
Monocular Visual Odometry Scale Recovery using Geometrical Constrainthttp://sci-hub.tw/https://ieeexplore.ieee.org/document/8462902
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#46-icra-2018-monocular-visual-odometry-scale-recovery-using-geometrical-constraint
Detection and Resolution of Motion Conflict in Visual Inertial Odometryhttps://sci-hub.tw/https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8460870
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#45-icra-2018-detection-and-resolution-of-motion-conflict-in-visual-inertial-odometry-解决视觉与imu估计值之间冲突问题
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#----------eccv-2018都无代码可惜----------
Realtime Time Synchronized Event-based Stereohttp://openaccess.thecvf.com/content_ECCV_2018/papers/Alex_Zhu_Realtime_Time_Synchronized_ECCV_2018_paper.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#44-2018-09-14-realtime-time-synchronized-event-based-stereo-双目事件相机第一家吧
Stereo relative pose from line and point feature tripletshttp://openaccess.thecvf.com/content_ECCV_2018/papers/Alexander_Vakhitov_Stereo_relative_pose_ECCV_2018_paper.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#43-2018-09-14-stereo-relative-pose-from-line-and-point-feature-triplets-点线结合但是匹配的是三帧图像
Fast and Accurate Camera Covariance Computation for Large 3D Reconstructionhttp://openaccess.thecvf.com/content_ECCV_2018/papers/Michal_Polic_Fast_and_Precise_ECCV_2018_paper.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#42-2018-09-14-fast-and-accurate-camera-covariance-computation-for-large-3d-reconstruction-以数学为切入点难懂
Structure-from-Motion-Aware PatchMatch for Adaptive Optical Flow Estimationhttp://openaccess.thecvf.com/content_ECCV_2018/papers/Daniel_Maurer_Structure-from-Motion-Aware_PatchMatch_for_ECCV_2018_paper.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#41-2018-09-14-structure-from-motion-aware-patchmatch-for-adaptive-optical-flow-estimation-三维重建方向
Stereo Vision-based Semantic 3D Object and Ego-motion Tracking for Autonomous Drivinghttp://openaccess.thecvf.com/content_ECCV_2018/papers/Peiliang_LI_Stereo_Vision-based_Semantic_ECCV_2018_paper.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#40-2018-09-14-stereo-vision-based-semantic-3d-object-and-ego-motion-tracking-for-autonomous-driving-沈老师出品既估计相机位姿也估计物体位置对动态物体鲁棒
Scale-Awareness of Light Field Camera based Visual Odometryhttp://openaccess.thecvf.com/content_ECCV_2018/papers/Niclas_Zeller_Scale-Awareness_of_Light_ECCV_2018_paper.pdf
光场相机https://www.zhihu.com/question/20511442/answer/24066624
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#39-2018-09-14-scale-awareness-of-light-field-camera-based-visual-odometry-传感器特殊使用光场相机
Semantically Aware Urban 3D Reconstruction with Plane-Based Regularizationhttp://openaccess.thecvf.com/content_ECCV_2018/papers/Thomas_Holzmann_Semantically_Aware_Urban_ECCV_2018_paper.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#38-2018-09-14-semantically-aware-urban-3d-reconstruction-with-plane-based-regularization-最近都很喜欢加平面信息做slam
VSO: Visual Semantic Odometryhttp://openaccess.thecvf.com/content_ECCV_2018/papers/Konstantinos-Nektarios_Lianos_VSO_Visual_Semantic_ECCV_2018_paper.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#37-2018-09-14-vso-visual-semantic-odometry-题目越短文章越牛逼
Direct Sparse Odometry with Rolling Shutterhttp://openaccess.thecvf.com/content_ECCV_2018/papers/David_Schubert_Direct_Sparse_Odometry_ECCV_2018_paper.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#36-2018-09-14-direct-sparse-odometry-with-rolling-shutter-同样是cremers出品看题目就知道了
Modeling Varying Camera-IMU Time Offset in Optimization-Based Visual-Inertial Odometryhttp://openaccess.thecvf.com/content_ECCV_2018/papers/Yonggen_Ling_Modeling_Varying_Camera-IMU_ECCV_2018_paper.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#35-2018-09-14-modeling-varying-camera-imu-time-offset-in-optimization-based-visual-inertial-odometry-科大沈老师门生根叔出品解决了卷帘快门问题加速imu预积分以及使初始化更鲁棒ar界梦寐以求的算法可惜没代码
Deep Virtual Stereo Odometry:Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometryhttp://openaccess.thecvf.com/content_ECCV_2018/papers/Nan_Yang_Deep_Virtual_Stereo_ECCV_2018_paper.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#34-2018-09-14-deep-virtual-stereo-odometryleveraging-deep-depth-prediction-for-monocular-direct-sparse-odometry--cremers出品用单目深度估计dso
Good Line Cutting: towards Accurate Pose Tracking of Line-assisted VO/VSLAMhttp://openaccess.thecvf.com/content_ECCV_2018/papers/Yipu_Zhao_Good_Line_Cutting_ECCV_2018_paper.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#33-2018-09-14-good-line-cutting-towards-accurate-pose-tracking-of-line-assisted-vovslam-对于线特征提取线内信息最多的一段做slam声称对低纹理运动模糊鲁棒
Linear RGB-D SLAM for Planar Environmentshttp://openaccess.thecvf.com/content_ECCV_2018/papers/Pyojin_Kim_Linear_RGB-D_SLAM_ECCV_2018_paper.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#32-2018-09-14-linear-rgb-d-slam-for-planar-environments-卡尔曼滤波估计位姿与平面特征
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#----------eccv-2018-----------
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#31-2018-09-10-monocular-object-and-plane-slam-in-structured-environments-约束中加入识别的物体与平面
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#30-dovo-mixed-visual-odometry-based-on-direct-method-and-orb-feature-通过特征点个数判断用直接法与光流法交替使用
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#29-ufsm_vo-stereo-odometry-based-on-uniformly-feature-selection-and-strictly-correspondence-matching-创新度一般
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#28-a-review-of-visual-inertial-simultaneous-localization-and-mapping-from-filtering-based-and-optimization-based-perspectives-vinslam-综述
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#27-a-loop-closure-detection-algorithm-in-dynamic-scene-动态环境下回环检测
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#26-directional-grid-maps-modeling-multimodal-angular-uncertainty-in-dynamic-environments
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#25-grid-map-guided-indoor-3d-reconstruction-for-mobile-robots-with-rgb-d-sensors
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#24-robustness-improvement-of-long-range-landmark-tracking-for-mobile-robots
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#23-lightweight-visual-odometry-for-autonomous-mobile-robots
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#22-enhanced-visual-loop-closing-for-laser-based-slam
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#21-a-fast-stereo-visual-inertial-odometry-for-mavs
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#20-low-cost-multiple-mav-slam-using-open-source-software
https://sites.google.com/view/pcr-prohttps://sites.google.com/view/pcr-pro
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#19-pcr-pro-3d-sparse-and-different-scale-point-clouds-registration-and-robust-estimation-of-information-matrix-for-pose-graph-slam-httpssitesgooglecomviewpcr-pro
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#18-comparison-of-two-different-objective-functions-in-2d-point-feature-slam
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#17-pose-estimation-with-dual-quaternions-and-iterative-closest-point
https://github.com/pamela-project/slambench2https://github.com/pamela-project/slambench2
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#16-slambench2-multi-objective-head-to-head-benchmarking-for-visual-slam-httpsgithubcompamela-projectslambench2
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#15-estimating-metric-poses-of-dynamic-objects-using-monocular-visual-inertial-fusion
https://github.com/uzh-rpg/dslam_openhttps://github.com/uzh-rpg/dslam_open
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#14-data-efficient-decentralized-visual-slam--httpsgithubcomuzh-rpgdslam_open
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#13-direct-sparse-visual-inertial-odometry-using-dynamic-marginalization
https://gitlab.com/srrg-software/srrg_mprhttps://gitlab.com/srrg-software/srrg_mpr
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#12-a-general-framework-for-flexible-multi-cue-photometric-point-cloud-registration--httpsgitlabcomsrrg-softwaresrrg_mpr
ProSLAM: Graph SLAM from a Programmer's Perspectivehttps://arxiv.org/pdf/1709.04377.pdf
https://gitlab.com/srrg-software/srrg_proslam/tree/masterhttps://gitlab.com/srrg-software/srrg_proslam/tree/master
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#11-proslam-graph-slam-from-a-programmers-perspective-改变数据结构计算资源更少httpsgitlabcomsrrg-softwaresrrg_proslamtreemaster
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#10-ds-ptam-distributed-stereo-parallel-tracking-and-mapping-slam-system
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#9-a-robust-and-accurate-simultaneous-localization-and-mapping-system-for-rgb-d-cameras
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#8-online-photometric-calibration-of-auto-exposure-video-for-realtime-visual-odometry-and-slam-对于光照变化很鲁棒
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#7-direct-sparse-odometry-with-rolling-shutter
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#6-online-temporal-calibration-for-monocular-visual-inertial-systems
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#5-pl-vio-tightly-coupled-monocular-visualinertial-odometry-using-point-and-line-features
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#4-gaoxiang-ldso-direct-sparse-odometry-with-loop-closure--带有回环检测的dso
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#3-multicol-slam---a-modular-real-time-multi-camera-slam-system
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#2-loosely-coupled-semi-direct-monocular-slam
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#1-absolute-orientation-and-localization-estimation-from-an-omnidirectional-image
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#路径规划导航
Fast UAV Trajectory Optimization using Bilevel Optimization with Analytical Gradientshttps://arxiv.org/pdf/1811.10753.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#6-2018-12-03-fast-uav-trajectory-optimization-using-bilevel-optimization-with-analytical-gradients
Safe Local Exploration for Replanning in Cluttered Unknown Environments for Micro-Aerial Vehicleshttps://arxiv.org/abs/1710.00604
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#5-2018-11-13-safe-local-exploration-for-replanning-in-cluttered-unknown-environments-for-micro-aerial-vehicles
Sparse 3D Topological Graphs for Micro-Aerial Vehicle Planninghttps://arxiv.org/abs/1803.04345
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#4-2018-11-13-sparse-3d-topological-graphs-for-micro-aerial-vehicle-planning
Autonomous navigation using visual sparse maphttps://project.inria.fr/ppniv18/files/2018/10/paper17.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#3-2018-11-12-autonomous-navigation-using-visual-sparse-map
Global UGV Path Planning on Point Cloud Maps Created by UAV https://sci-hub.tw/https://ieeexplore.ieee.org/abstract/document/8492584
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#2-2018-10-24-global-ugv-path-planning-on-point-cloud-maps-created-by-uav-
Path Planning for Mobile Agents Using a Genetic Algorithm with a Direction Guided Factorhttps://www.mdpi.com/2079-9292/7/10/212/htm
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#1-2018-10-08-path-planning-for-mobile-agents-using-a-genetic-algorithm-with-a-direction-guided-factor
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#基础工具-basic-tools
An Iterative Nonlinear Filter Using Variational Bayesian Optimizationhttps://www.mdpi.com/1424-8220/18/12/4222
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#25-2018-12-10-an-iterative-nonlinear-filter-using-variational-bayesian-optimization
Two-pass K Nearest Neighbor Search for Feature Trackinghttps://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8528423
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#24-2018-12-07-two-pass-k-nearest-neighbor-search-for-feature-tracking-增强的knn特征匹配方法
RLDB: Robust Local Difference Binary Descriptor with Integrated Learning-based Optimizationhttp://itiis.org/digital-library/manuscript/2126
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#23-2018-11-22-rldb-robust-local-difference-binary-descriptor-with-integrated-learning-based-optimization
A FAST-BRISK Feature Detector with Depth Informationhttp://sci-hub.tw/https://www.mdpi.com/1424-8220/18/11/3908
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#22-2018-11-22-a-fast-brisk-feature-detector-with-depth-information-融合深度的特征点提取方法
Second-Order Semi-Global Stereo Matching Algorithm Based on Slanted Plane Iterative Optimizationhttps://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8497046
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#21-2018-11-12-second-order-semi-global-stereo-matching-algorithm-based-on-slanted-plane-iterative-optimization
Try to Start It! The Challenge of Reusing Code in Robotics Researchhttp://sci-hub.tw/10.1109/lra.2018.2878604
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#20-2018-11-12-try-to-start-it-the-challenge-of-reusing-code-in-robotics-research
Accurate Sparse Feature Regression Forest Learning for Real-Time Camera Relocalizationhttps://ieeexplore.ieee.org/abstract/document/8491017
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#19-2018-10-20-accurate-sparse-feature-regression-forest-learning-for-real-time-camera-relocalization-机器学习与特征点的混合方法做重定位
Four- and Seven-Point Relative Camera Pose from Oriented Featureshttps://ieeexplore.ieee.org/abstract/document/8490972
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#18-2018-10-20-four--and-seven-point-relative-camera-pose-from-oriented-features-利用特征点方向信息计算相对位姿
An improved SIFT algorithm based on adaptive fractional differentialhttp://sci-hub.tw/10.1007/s12652-018-1055-1
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#17-2018-10-08-an-improved-sift-algorithm-based-on-adaptive-fractional-differential
A Tutorial on Quantitative Trajectory Evaluationfor Visual(-Inertial) Odometryhttp://rpg.ifi.uzh.ch/docs/IROS18_Zhang.pdf
代码在此https://github.com/uzh-rpg/rpg_trajectory_evaluation
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#16-2018-10-08-a-tutorial-on-quantitative-trajectory-evaluationfor-visual-inertial-odometry-slam-误差专门评测方法终于有大佬说清楚了代码在此
A Review of Solutions for Perspective-n-Point Problem in Camera Pose Estimationhttp://iopscience.iop.org/article/10.1088/1742-6596/1087/5/052009/pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#15-2018-10-08-a-review-of-solutions-for-perspective-n-point-problem-in-camera-pose-estimation-pnp-方法对比
A Versatile Method for Depth Data Error Estimation in RGB-D Sensorshttp://scholar.google.com.hk/scholar_url?url=http://www.mdpi.com/1424-8220/18/9/3122/pdf&hl=zh-CN&sa=X&d=12129107753992395518&scisig=AAGBfm0q9zuCD6ER7bvEAxqrxPkqLMWukw&nossl=1&oi=scholaralrt&hist=3Pwx2kMAAAAJ:9829349442900101321:AAGBfm3Ah2enR6Y-2I_2pUfaBiohQzvJcw
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#14-2018-09-25-a-versatile-method-for-depth-data-error-estimation-in-rgb-d-sensors-判断rgbd深度信息准确性的方法
Lambda Twist: An Accurate Fast Robust Perspective Three Point (P3P) Solver.http://openaccess.thecvf.com/content_ECCV_2018/papers/Mikael_Persson_Lambda_Twist_An_ECCV_2018_paper.pdf
代码https://github.com/midjji/lambdatwist-p3p
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#13-2018-09-25-lambda-twist-an-accurate-fast-robust-perspective-three-point-p3p-solver-更快更准的p3p方法代码
Adding Cues to Binary Feature Descriptors for Visual Place Recognitionhttps://arxiv.org/pdf/1809.06690.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#12-2018-09-18-adding-cues-to-binary-feature-descriptors-for-visual-place-recognition
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#11-an-improved-ransac-algorithm-for-simultaneous-localization-and-mapping
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#10-baidu-apollo-auto-calibration-system---an-industry-level-data-driven-and-learning-based-vehicle-longitude-dynamic-calibrating-algorithm
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#9res-q-robust-outlier-detection-algorithm-for-fundamental-matrix-estimation
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#8fast-and-robust-local-feature-extraction-for-3d-reconstruction
https://gitlab.com/srrg-software/srrg_g2o_chordal_pluginhttps://gitlab.com/srrg-software/srrg_g2o_chordal_plugin
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#7matrix-difference-in-pose-graph-optimization-httpsgitlabcomsrrg-softwaresrrg_g2o_chordal_plugin
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#6-nonlinear-distortion-calibration-of-an-optical-flow-sensor-for-monocular-visual-odometry
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#5-five-point-algorithm-an-efficient-cloud-based-fpga-implementation
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#4-sc-ransac-spatial-consistency-on-ransac
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#3towards-a-deep-insight-into-landmark-based-visual-place-recognition-methodology-and-practice
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#2-in-defense-of-relative-multi-view-geometry
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#1-matchbench-an-evaluation-of-feature-matchers
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#视觉激光融合-fusion-of-visual-and-laser
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#3-laser-visual-inertial-odometry-and-mapping-with-high-robustness-and-low-drift1
https://www.youtube.com/watch?v=peXrP374MVIhttps://www.youtube.com/watch?v=peXrP374MVI
https://github.com/zlaskar/Robust-Loop-Closureshttps://github.com/zlaskar/Robust-Loop-Closures
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#2-robust-loop-closures-for-scene-reconstruction-by-combining-odometry-and-visual-correspondences-rgbdodometry-做回环检测httpswwwyoutubecomwatchvpexrp374mvi-httpsgithubcomzlaskarrobust-loop-closures
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#1scale-correct-monocular-visual-odometry-using-a-lidar-altimeter
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#三维重建-3d-reconstruction
Mobile-based 3D Reconstruction of Building Environment https://repozitorium.omikk.bme.hu/bitstream/handle/10890/5798/CCC2018-136.pdf?sequence=1
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#11-2018-12-16-mobile-based-3d-reconstruction-of-building-environment-
Fast and Accurate Reconstruction of Pan-Tilt RGB-D Scans via Axis Bound Registrationhttps://arxiv.org/pdf/1812.00240.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#10-2018-12-11-fast-and-accurate-reconstruction-of-pan-tilt-rgb-d-scans-via-axis-bound-registration
Accurate, dense and shading-aware multi-view stereo reconstruction using metaheuritic optimizationhttp://sci-hub.tw/10.1007/s11042-018-6904-6
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#92018-11-28-accurate-dense-and-shading-aware-multi-view-stereo-reconstruction-using-metaheuritic-optimization
BundleFusion: Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integrationhttps://arxiv.org/pdf/1604.01093.pdf
深度学习+三维重建,有代码https://github.com/niessner/BundleFusion
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#82018-10-19-bundlefusion-real-time-globally-consistent-3d-reconstruction-using-on-the-fly-surface-re-integration深度学习三维重建有代码
Building Dense Reflectance Maps of Indoor Environments using an RGB-D Camerahttp://ais.informatik.uni-freiburg.de/publications/papers/krawez18iros.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#72018-09-17-building-dense-reflectance-maps-of-indoor-environments-using-an-rgb-d-camera-去除光源条件对重建的影响
Real-time High-accuracy Three-Dimensional Reconstruction with Consumer RGB-D Camerashttp://sci-hub.tw/10.1145/3182157
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#62018-09-15-real-time-high-accuracy-three-dimensional-reconstruction-with-consumer-rgb-d-cameras加入了uncertaintyawareand-local-to-global-rgb-d-bundle-adjustment-strategy
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#5object-pose-estimation-from-monocular-image-using-multi-view-keypoint-correspondence
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#4depth-super-resolution-meets-uncalibrated-photometric-stereo-低分辨率depth不同光照下同一视角高分辨率rbg--高分辨率深度图
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#3-robust-3d-surface-reconstruction-in-real-time-with-localization-sensor
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#2-echofusion-tracking-and-reconstruction-of-objects-in-4d-freehand-ultrasound-imaging-without-external-trackers
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#1-psdf-fusion-probabilistic-signed-distance-function-for-on-the-fly-3d-data-fusion-and-scene-reconstruction
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#深度学习dlslam
Inferring Point Clouds from Single Monocular Images by Depth Intermediationhttps://arxiv.org/pdf/1812.01402.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#33-2018-12-11-inferring-point-clouds-from-single-monocular-images-by-depth-intermediation
BA-Net: Dense Bundle Adjustment Networkhttps://arxiv.org/pdf/1806.04807.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#32-2018-12-10-ba-net-dense-bundle-adjustment-network
Matching Features without Descriptors: Implicitly Matched Interest Points (IMIPs)https://arxiv.org/pdf/1811.10681.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#31-2018-12-06-matching-features-without-descriptors-implicitly-matched-interest-points-imipsdavide-scaramuzza-michael-bloesch-发表不需要描述子使用cnn就能匹配特征点方法
DeepMapping: Unsupervised Map Estimation From Multiple Point Cloudshttps://arxiv.org/pdf/1811.11397.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#30-2018-12-06-deepmapping-unsupervised-map-estimation-from-multiple-point-clouds利用深度学习做激光点云匹配
Loop Closure Detection with RGB-D Feature Pyramid Siamese Networkshttps://arxiv.org/pdf/1811.09938.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#29-2018-12-03-loop-closure-detection-with-rgb-d-feature-pyramid-siamese-networks
MagicVO: End-to-End Monocular Visual Odometry through Deep Bi-directional Recurrent Convolutional Neural Networkhttps://arxiv.org/pdf/1811.10964.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#28-2018-12-03-magicvo-end-to-end-monocular-visual-odometry-through-deep-bi-directional-recurrent-convolutional-neural-network端到端vo
Semantic Mapping with Simultaneous Object Detection and Localizationhttps://arxiv.org/pdf/1810.11525.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#27-2018-11-06-semantic-mapping-with-simultaneous-object-detection-and-localization
Real-Time RGB-D Camera Pose Estimation in Novel Scenes using a Relocalisation Cascadehttps://arxiv.org/pdf/1810.12163.pdf
随机森林做重定位https://github.com/torrvision/spaint
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#26-2018-11-06-real-time-rgb-d-camera-pose-estimation-in-novel-scenes-using-a-relocalisation-cascade随机森林做重定位
Anytime Stereo Image Depth Estimation on Mobile Deviceshttps://arxiv.org/pdf/1810.11408.pdf
代码https://github.com/mileyan/AnyNet
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#25-2018-11-06-anytime-stereo-image-depth-estimation-on-mobile-devices-代码
Reactive Obstacle Avoidance of Monocular Quadrotors with Online Adapted Depth Prediction Networkhttps://www.sciencedirect.com/science/article/pii/S0925231218312074
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#24-2018-10-20-reactive-obstacle-avoidance-of-monocular-quadrotors-with-online-adapted-depth-prediction-network线上自适应cnn估计深度
Scene Coordinate Regression with Angle-Based Reprojection Loss for Camera Relocalizationhttps://arxiv.org/pdf/1808.04999.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#23-2018-10-19-scene-coordinate-regression-with-angle-based-reprojection-loss-for-camera-relocalization同下合在一起读可以加强理解
DSAC - Differentiable RANSAC for Camera Localizationhttp://www.nowozin.net/sebastian/papers/brachmann2017dsac.pdf
代码https://github.com/cvlab-dresden/DSAC
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#22-2018-10-19-dsac---differentiable-ransac-for-camera-localization-深度学习重定位代码
PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalizationhttps://arxiv.org/pdf/1505.07427.pdf
代码https://github.com/alexgkendall/caffe-posenet
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#21-2018-10-19-posenet-a-convolutional-network-for-real-time-6-dof-camera-relocalization-深度学习重定位代码
Semantic-only Visual Odometry based on dense class-level segmentationhttps://hal.archives-ouvertes.fr/hal-01874544/document
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#20-2018-10-17-semantic-only-visual-odometry-based-on-dense-class-level-segmentation
Learning to Solve Nonlinear Least Squares for Dense Tracking and Mappinghttps://www.doc.ic.ac.uk/~sleutene/publications/Learning_to_Solve__ECCV_camera_ready.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#19-2018-10-15-learning-to-solve-nonlinear-least-squares-for-dense-tracking-and-mapping-andrew-j-davison-的-learned-optimizer
DS-SLAM: A Semantic Visual SLAM towards Dynamic Environmentshttps://arxiv.org/pdf/1809.08379.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#18-2018-10-09-ds-slam-a-semantic-visual-slam-towards-dynamic-environments
Real-Time Monocular Object-Model Aware Sparse SLAMhttps://arxiv.org/pdf/1809.09149.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#17-2018-10-09-real-time-monocular-object-model-aware-sparse-slam-ian-reid
Efficient Constellation-Based Map-Merging for Semantic SLAMhttps://arxiv.org/pdf/1809.09646.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#16-2018-10-08-efficient-constellation-based-map-merging-for-semantic-slam
Learning to Fly by MySelf:A Self-Supervised CNN-based Approach for Autonomous Navigationhttp://cas.ee.ic.ac.uk/people/alk15/files/IROS_2018_drone_nav.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#15-2018-10-08-learning-to-fly-by-myselfa-self-supervised-cnn-based-approach-for-autonomous-navigation
Semi-dense Stereo Matching using Dual CNNshttps://arxiv.org/pdf/1810.01369.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#14-2018-10-08-semi-dense-stereo-matching-using-dual-cnns深度估计
Deep Learning Based Semantic Labelling of 3D Point Cloudin Visual SLAM http://iopscience.iop.org/article/10.1088/1757-899X/428/1/012023/pdf
代码在此https://github.com/qixuxiang/orb-slam2_with_semantic_label
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#13-2018-10-08-deep-learning-based-semantic-labelling-of-3d-point-cloudin-visual-slam--slam-加上点云标签代码在此
CNN-SVO: Improving the Mapping in Semi-Direct Visual OdometryUsing Single-Image Depth Predictionhttps://arxiv.org/pdf/1810.01011.pdf
代码在此https://arxiv.org/pdf/1810.01011.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#12-2018-10-06-cnn-svo-improving-the-mapping-in-semi-direct-visual-odometryusing-single-image-depth-prediction-用cnn-减少深度估计误差-代码在此
An Orientation Factor for Object-Oriented SLAMhttps://arxiv.org/pdf/1809.06977.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#11-2018-09-26-an-orientation-factor-for-object-oriented-slam
A Variational Observation Model of 3D Object for Probabilistic Semantic SLAMhttps://arxiv.org/pdf/1809.05225.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#10-2018-09-25-a-variational-observation-model-of-3d-object-for-probabilistic-semantic-slam
GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networkshttps://arxiv.org/pdf/1809.05786.pdf
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#9-2018-09-25-ganvo-unsupervised-deep-monocular-visual-odometry-and-depth-estimation-with-generative-adversarial-networks
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#8-2018-07-25-deep-virtual-stereo-odometry-leveraging-deep-depth-prediction-for-monocular-direct-sparse-odometrytum-dldso大作
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#7-fusion-volumetric-object-level-slam
https://github.com/drmaj/UnDeepVOhttps://github.com/drmaj/UnDeepVO
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#6-undeepvo-monocular-visual-odometry-through-unsupervised-deep-learning-githubhttpsgithubcomdrmajundeepvo
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#5-learning-based-image-enhancement-for-visual-odometry-in-challenging-hdr-environments
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#4-graph-based-place-recognition-in-image-sequences-with-cnn-features
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#3-vso-visual-semantic-odometry
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#2-real-time-dense-monocular-slam-with-online-adapted-depth-prediction-network
https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#1-deeptam-deep-tracking-and-mapping
Readme https://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research#readme-ov-file
Please reload this pagehttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research
Activityhttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/activity
0 starshttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/stargazers
0 watchinghttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/watchers
0 forkshttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/forks
Report repository https://patch-diff.githubusercontent.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2FjsYangCode%2FRecent_SLAM_Research&report=jsYangCode+%28user%29
Releaseshttps://patch-diff.githubusercontent.com/jsYangCode/Recent_SLAM_Research/releases
Packages 0https://patch-diff.githubusercontent.com/users/jsYangCode/packages?repo_name=Recent_SLAM_Research
https://github.com
Termshttps://docs.github.com/site-policy/github-terms/github-terms-of-service
Privacyhttps://docs.github.com/site-policy/privacy-policies/github-privacy-statement
Securityhttps://github.com/security
Statushttps://www.githubstatus.com/
Communityhttps://github.community/
Docshttps://docs.github.com/
Contacthttps://support.github.com?tags=dotcom-footer

Viewport: width=device-width


URLs of crawlers that visited me.