| Skip to content | https://patch-diff.githubusercontent.com/interpretml/interpret#start-of-content |
|
| https://patch-diff.githubusercontent.com/ |
|
Sign in
| https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2Finterpretml%2Finterpret |
| GitHub CopilotWrite better code with AI | https://github.com/features/copilot |
| GitHub SparkBuild and deploy intelligent apps | https://github.com/features/spark |
| GitHub ModelsManage and compare prompts | https://github.com/features/models |
| MCP RegistryNewIntegrate external tools | https://github.com/mcp |
| ActionsAutomate any workflow | https://github.com/features/actions |
| CodespacesInstant dev environments | https://github.com/features/codespaces |
| IssuesPlan and track work | https://github.com/features/issues |
| Code ReviewManage code changes | https://github.com/features/code-review |
| GitHub Advanced SecurityFind and fix vulnerabilities | https://github.com/security/advanced-security |
| Code securitySecure your code as you build | https://github.com/security/advanced-security/code-security |
| Secret protectionStop leaks before they start | https://github.com/security/advanced-security/secret-protection |
| Why GitHub | https://github.com/why-github |
| Documentation | https://docs.github.com |
| Blog | https://github.blog |
| Changelog | https://github.blog/changelog |
| Marketplace | https://github.com/marketplace |
| View all features | https://github.com/features |
| Enterprises | https://github.com/enterprise |
| Small and medium teams | https://github.com/team |
| Startups | https://github.com/enterprise/startups |
| Nonprofits | https://github.com/solutions/industry/nonprofits |
| App Modernization | https://github.com/solutions/use-case/app-modernization |
| DevSecOps | https://github.com/solutions/use-case/devsecops |
| DevOps | https://github.com/solutions/use-case/devops |
| CI/CD | https://github.com/solutions/use-case/ci-cd |
| View all use cases | https://github.com/solutions/use-case |
| Healthcare | https://github.com/solutions/industry/healthcare |
| Financial services | https://github.com/solutions/industry/financial-services |
| Manufacturing | https://github.com/solutions/industry/manufacturing |
| Government | https://github.com/solutions/industry/government |
| View all industries | https://github.com/solutions/industry |
| View all solutions | https://github.com/solutions |
| AI | https://github.com/resources/articles?topic=ai |
| Software Development | https://github.com/resources/articles?topic=software-development |
| DevOps | https://github.com/resources/articles?topic=devops |
| Security | https://github.com/resources/articles?topic=security |
| View all topics | https://github.com/resources/articles |
| Customer stories | https://github.com/customer-stories |
| Events & webinars | https://github.com/resources/events |
| Ebooks & reports | https://github.com/resources/whitepapers |
| Business insights | https://github.com/solutions/executive-insights |
| GitHub Skills | https://skills.github.com |
| Documentation | https://docs.github.com |
| Customer support | https://support.github.com |
| Community forum | https://github.com/orgs/community/discussions |
| Trust center | https://github.com/trust-center |
| Partners | https://github.com/partners |
| GitHub SponsorsFund open source developers | https://github.com/sponsors |
| Security Lab | https://securitylab.github.com |
| Maintainer Community | https://maintainers.github.com |
| Accelerator | https://github.com/accelerator |
| Archive Program | https://archiveprogram.github.com |
| Topics | https://github.com/topics |
| Trending | https://github.com/trending |
| Collections | https://github.com/collections |
| Enterprise platformAI-powered developer platform | https://github.com/enterprise |
| GitHub Advanced SecurityEnterprise-grade security features | https://github.com/security/advanced-security |
| Copilot for BusinessEnterprise-grade AI features | https://github.com/features/copilot/copilot-business |
| Premium SupportEnterprise-grade 24/7 support | https://github.com/premium-support |
| Pricing | https://github.com/pricing |
| Search syntax tips | https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax |
| documentation | https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax |
|
Sign in
| https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2Finterpretml%2Finterpret |
|
Sign up
| https://patch-diff.githubusercontent.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=interpretml%2Finterpret |
| Reload | https://patch-diff.githubusercontent.com/interpretml/interpret |
| Reload | https://patch-diff.githubusercontent.com/interpretml/interpret |
| Reload | https://patch-diff.githubusercontent.com/interpretml/interpret |
|
interpretml
| https://patch-diff.githubusercontent.com/interpretml |
| interpret | https://patch-diff.githubusercontent.com/interpretml/interpret |
|
Notifications
| https://patch-diff.githubusercontent.com/login?return_to=%2Finterpretml%2Finterpret |
|
Fork
771
| https://patch-diff.githubusercontent.com/login?return_to=%2Finterpretml%2Finterpret |
|
Star
6.8k
| https://patch-diff.githubusercontent.com/login?return_to=%2Finterpretml%2Finterpret |
| interpret.ml/docs | https://interpret.ml/docs |
|
MIT license
| https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/LICENSE |
|
6.8k
stars
| https://patch-diff.githubusercontent.com/interpretml/interpret/stargazers |
|
771
forks
| https://patch-diff.githubusercontent.com/interpretml/interpret/forks |
|
Branches
| https://patch-diff.githubusercontent.com/interpretml/interpret/branches |
|
Tags
| https://patch-diff.githubusercontent.com/interpretml/interpret/tags |
|
Activity
| https://patch-diff.githubusercontent.com/interpretml/interpret/activity |
|
Star
| https://patch-diff.githubusercontent.com/login?return_to=%2Finterpretml%2Finterpret |
|
Notifications
| https://patch-diff.githubusercontent.com/login?return_to=%2Finterpretml%2Finterpret |
|
Code
| https://patch-diff.githubusercontent.com/interpretml/interpret |
|
Issues
106
| https://patch-diff.githubusercontent.com/interpretml/interpret/issues |
|
Pull requests
4
| https://patch-diff.githubusercontent.com/interpretml/interpret/pulls |
|
Actions
| https://patch-diff.githubusercontent.com/interpretml/interpret/actions |
|
Security
0
| https://patch-diff.githubusercontent.com/interpretml/interpret/security |
|
Insights
| https://patch-diff.githubusercontent.com/interpretml/interpret/pulse |
|
Code
| https://patch-diff.githubusercontent.com/interpretml/interpret |
|
Issues
| https://patch-diff.githubusercontent.com/interpretml/interpret/issues |
|
Pull requests
| https://patch-diff.githubusercontent.com/interpretml/interpret/pulls |
|
Actions
| https://patch-diff.githubusercontent.com/interpretml/interpret/actions |
|
Security
| https://patch-diff.githubusercontent.com/interpretml/interpret/security |
|
Insights
| https://patch-diff.githubusercontent.com/interpretml/interpret/pulse |
| Branches | https://patch-diff.githubusercontent.com/interpretml/interpret/branches |
| Tags | https://patch-diff.githubusercontent.com/interpretml/interpret/tags |
| https://patch-diff.githubusercontent.com/interpretml/interpret/branches |
| https://patch-diff.githubusercontent.com/interpretml/interpret/tags |
| 3,781 Commits | https://patch-diff.githubusercontent.com/interpretml/interpret/commits/main/ |
| https://patch-diff.githubusercontent.com/interpretml/interpret/commits/main/ |
| .github/workflows | https://patch-diff.githubusercontent.com/interpretml/interpret/tree/main/.github/workflows |
| .github/workflows | https://patch-diff.githubusercontent.com/interpretml/interpret/tree/main/.github/workflows |
| R | https://patch-diff.githubusercontent.com/interpretml/interpret/tree/main/R |
| R | https://patch-diff.githubusercontent.com/interpretml/interpret/tree/main/R |
| docs | https://patch-diff.githubusercontent.com/interpretml/interpret/tree/main/docs |
| docs | https://patch-diff.githubusercontent.com/interpretml/interpret/tree/main/docs |
| python | https://patch-diff.githubusercontent.com/interpretml/interpret/tree/main/python |
| python | https://patch-diff.githubusercontent.com/interpretml/interpret/tree/main/python |
| scripts | https://patch-diff.githubusercontent.com/interpretml/interpret/tree/main/scripts |
| scripts | https://patch-diff.githubusercontent.com/interpretml/interpret/tree/main/scripts |
| shared | https://patch-diff.githubusercontent.com/interpretml/interpret/tree/main/shared |
| shared | https://patch-diff.githubusercontent.com/interpretml/interpret/tree/main/shared |
| .gitattributes | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/.gitattributes |
| .gitattributes | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/.gitattributes |
| .gitignore | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/.gitignore |
| .gitignore | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/.gitignore |
| .pre-commit-config.yaml | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/.pre-commit-config.yaml |
| .pre-commit-config.yaml | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/.pre-commit-config.yaml |
| ACKNOWLEDGEMENTS.md | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/ACKNOWLEDGEMENTS.md |
| ACKNOWLEDGEMENTS.md | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/ACKNOWLEDGEMENTS.md |
| CHANGELOG.md | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/CHANGELOG.md |
| CHANGELOG.md | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/CHANGELOG.md |
| CONTRIBUTING.md | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/CONTRIBUTING.md |
| CONTRIBUTING.md | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/CONTRIBUTING.md |
| GOVERNANCE.md | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/GOVERNANCE.md |
| GOVERNANCE.md | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/GOVERNANCE.md |
| LICENSE | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/LICENSE |
| LICENSE | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/LICENSE |
| MAINTAINERS.md | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/MAINTAINERS.md |
| MAINTAINERS.md | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/MAINTAINERS.md |
| README.md | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/README.md |
| README.md | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/README.md |
| build.bat | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/build.bat |
| build.bat | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/build.bat |
| build.sh | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/build.sh |
| build.sh | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/build.sh |
| codecov.yml | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/codecov.yml |
| codecov.yml | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/codecov.yml |
| lgtm.yml | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/lgtm.yml |
| lgtm.yml | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/lgtm.yml |
| ruff.toml | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/ruff.toml |
| ruff.toml | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/ruff.toml |
| README | https://patch-diff.githubusercontent.com/interpretml/interpret |
| Contributing | https://patch-diff.githubusercontent.com/interpretml/interpret |
| MIT license | https://patch-diff.githubusercontent.com/interpretml/interpret |
| https://patch-diff.githubusercontent.com/interpretml/interpret#interpretml |
| https://githubtocolab.com/interpretml/interpret/blob/develop/docs/interpret/python/examples/interpretable-classification.ipynb |
| https://mybinder.org/v2/gh/interpretml/interpret/develop?labpath=docs%2Finterpret%2Fpython%2Fexamples%2Finterpretable-classification.ipynb |
| https://camo.githubusercontent.com/97dfc8de53ae2e77c2f43a57024bf894fad49de0c9556c362942241343583a3c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f6c6963656e73652f696e746572707265746d6c2f696e746572707265742e7376673f7374796c653d666c61742d737175617265 |
| https://camo.githubusercontent.com/fbc06de67b07626f6fa16ca2fcab47cde7bf67a6d614c9f784f8fc572dc18fd9/68747470733a2f2f696d672e736869656c64732e696f2f707970692f707976657273696f6e732f696e746572707265742e7376673f7374796c653d666c61742d737175617265 |
| https://camo.githubusercontent.com/db0dc3514a355c1ec316f60959e8cf1ee7a03e326104b195314501cb7f8a0a56/68747470733a2f2f696d672e736869656c64732e696f2f707970692f762f696e746572707265742e7376673f7374796c653d666c61742d737175617265 |
| https://camo.githubusercontent.com/2db06bac390504b65f8ae16280d6df284775b497f5216836e163560f5cee2489/68747470733a2f2f696d672e736869656c64732e696f2f636f6e64612f762f636f6e64612d666f7267652f696e74657270726574 |
| https://github.com/interpretml/interpret/actions/workflows/ci.yml/badge.svg?branch=develop |
| https://codecov.io/github/interpretml/interpret |
| https://camo.githubusercontent.com/bd37a1992b307d9c5086145a8e2c268c4ecb6ee773c2aa4ab88ac36ba583a290/68747470733a2f2f696d672e736869656c64732e696f2f6d61696e74656e616e63652f7965732f323039393f7374796c653d666c61742d737175617265 |
| https://patch-diff.githubusercontent.com/interpretml/interpret#in-the-beginning-machines-learned-in-darkness-and-data-scientists-struggled-in-the-void-to-explain-them |
| https://patch-diff.githubusercontent.com/interpretml/interpret#let-there-be-light |
| https://github.com/interpretml/interpretml.github.io/blob/master/interpret-highlight.gif |
| https://patch-diff.githubusercontent.com/interpretml/interpret#installation |
| https://patch-diff.githubusercontent.com/interpretml/interpret#introducing-the-explainable-boosting-machine-ebm |
| * | https://patch-diff.githubusercontent.com/interpretml/interpret#citations |
| Notebook for reproducing table | https://nbviewer.jupyter.org/github/interpretml/interpret/blob/develop/docs/benchmarks/ebm-classification-comparison.ipynb |
| https://patch-diff.githubusercontent.com/interpretml/interpret#supported-techniques |
| Explainable Boosting | https://interpret.ml/docs/ebm.html |
| APLR | https://interpret.ml/docs/aplr.html |
| Decision Tree | https://interpret.ml/docs/dt.html |
| Decision Rule List | https://interpret.ml/docs/dr.html |
| Linear/Logistic Regression | https://interpret.ml/docs/lr.html |
| SHAP Kernel Explainer | https://interpret.ml/docs/shap.html |
| LIME | https://interpret.ml/docs/lime.html |
| Morris Sensitivity Analysis | https://interpret.ml/docs/msa.html |
| Partial Dependence | https://interpret.ml/docs/pdp.html |
| https://patch-diff.githubusercontent.com/interpretml/interpret#train-a-glassbox-model |
| https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/docs/readme/ebm-global.png?raw=true |
| https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/docs/readme/ebm-local.png?raw=true |
| https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/docs/readme/dashboard.png?raw=true |
| DP-EBMs | https://proceedings.mlr.press/v139/nori21a/nori21a.pdf |
| documentation | https://interpret.ml/docs |
| https://interpret.ml/docs/python/examples/custom-interactions.html | https://interpret.ml/docs/python/examples/custom-interactions.html |
| classification EBMs | https://learn.microsoft.com/en-us/fabric/data-science/explainable-boosting-machines-classification |
| regression EBMs | https://learn.microsoft.com/en-us/fabric/data-science/explainable-boosting-machines-regression |
| https://patch-diff.githubusercontent.com/interpretml/interpret#acknowledgements |
| ACKNOWLEDGEMENTS.md | https://patch-diff.githubusercontent.com/interpretml/interpret/blob/main/ACKNOWLEDGEMENTS.md |
| plotly | https://github.com/plotly/plotly.py |
| dash | https://github.com/plotly/dash |
| scikit-learn | https://github.com/scikit-learn/scikit-learn |
| lime | https://github.com/marcotcr/lime |
| shap | https://github.com/slundberg/shap |
| salib | https://github.com/SALib/SALib |
| skope-rules | https://github.com/scikit-learn-contrib/skope-rules |
| treeinterpreter | https://github.com/andosa/treeinterpreter |
| gevent | https://github.com/gevent/gevent |
| joblib | https://github.com/joblib/joblib |
| pytest | https://github.com/pytest-dev/pytest |
| jupyter | https://github.com/jupyter/notebook |
| https://patch-diff.githubusercontent.com/interpretml/interpret#citations |
| Paper link | https://arxiv.org/pdf/1909.09223.pdf |
| Paper link | https://www.microsoft.com/en-us/research/wp-content/uploads/2017/06/KDD2015FinalDraftIntelligibleModels4HealthCare_igt143e-caruanaA.pdf |
| Paper link | https://www.cs.cornell.edu/~yinlou/papers/lou-kdd13.pdf |
| Paper link | https://www.cs.cornell.edu/~yinlou/papers/lou-kdd12.pdf |
| Paper link | https://arxiv.org/pdf/2206.15465.pdf |
| Paper link | https://arxiv.org/pdf/1810.09092.pdf |
| Paper link | https://arxiv.org/pdf/1710.06169 |
| Paper link | https://arxiv.org/pdf/1911.04974.pdf |
| Paper link | https://www.microsoft.com/en-us/research/publication/interpreting-interpretability-understanding-data-scientists-use-of-interpretability-tools-for-machine-learning/ |
| Paper link | https://arxiv.org/pdf/2006.06466.pdf |
| Paper link | https://proceedings.mlr.press/v139/nori21a/nori21a.pdf |
| Paper link | https://arxiv.org/pdf/1602.04938.pdf |
| Paper link | https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf |
| Paper link | https://arxiv.org/pdf/1802.03888 |
| Paper link | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467492/pdf/nihms-1505578.pdf |
| Paper link | https://www.researchgate.net/profile/Will_Usher/publication/312204236_SALib_An_open-source_Python_library_for_Sensitivity_Analysis/links/5ac732d64585151e80a39547/SALib-An-open-source-Python-library-for-Sensitivity-Analysis.pdf?origin=publication_detail |
| Paper link | https://abe.ufl.edu/Faculty/jjones/ABE_5646/2010/Morris.1991%20SA%20paper.pdf |
| Paper link | https://projecteuclid.org/download/pdf_1/euclid.aos/1013203451 |
| Paper link | https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf |
| Link | https://plot.ly |
| Link | https://joblib.readthedocs.io/en/latest/ |
| https://patch-diff.githubusercontent.com/interpretml/interpret#videos |
| The Science Behind InterpretML: Explainable Boosting Machine | https://www.youtube.com/watch?v=MREiHgHgl0k |
| How to Explain Models with InterpretML Deep Dive | https://www.youtube.com/watch?v=WwBeKMQ0-I8 |
| Black-Box and Glass-Box Explanation in Machine Learning | https://youtu.be/7uzNKY8pEhQ |
| Explainable AI explained! By-design interpretable models with Microsofts InterpretML | https://www.youtube.com/watch?v=qPn9m30ojfc |
| Interpreting Machine Learning Models with InterpretML | https://www.youtube.com/watch?v=ERNuFfsknhk |
| Machine Learning Model Interpretability using AzureML & InterpretML (Explainable Boosting Machine) | https://www.youtube.com/watch?v=0ocVtXU8o1I |
| A Case Study of Using Explainable Boosting Machines | https://uncch.hosted.panopto.com/Panopto/Pages/Embed.aspx?id=063d6839-e8db-40e0-8df4-b0fc012e709b&start=0 |
| From SHAP to EBM: Explain your Gradient Boosting Models in Python | https://www.youtube.com/watch?v=hnZjw77-1rE |
| Rich Caruana – Friends Don’t Let Friends Deploy Black-Box Models | https://www.youtube.com/watch?v=2YKtNYBuojE |
| https://patch-diff.githubusercontent.com/interpretml/interpret#external-links |
| Machine Learning Interpretability in Banking: Why It Matters and How Explainable Boosting Machines Can Help | https://www.prometeia.com/en/trending-topics-article/machine-learning-interpretability-in-banking-why-it-matters-and-how-explainable-boosting-machines-can-help |
| Interpretable Machine Learning – Increase Trust and Eliminate Bias | https://ficonsulting.com/insight-post/interpretable-machine-learning-increase-trust-and-eliminate-bias/ |
| Explainable Boosting Machine for Predicting Claim Severity and Frequency in Car Insurance | https://arxiv.org/pdf/2503.21321 |
| Enhancing Trust in Credit Risk Models: A Comparative Analysis of EBMs and GBMs | https://2os.medium.com/enhancing-trust-in-credit-risk-models-a-comparative-analysis-of-ebms-and-gbms-25e02810300f |
| Explainable AI: unlocking value in FEC operations | https://analytiqal.nl/2024/01/22/fec-value-from-explainable-ai/ |
| Interpretable or Accurate? Why Not Both? | https://towardsdatascience.com/interpretable-or-accurate-why-not-both-4d9c73512192 |
| The Explainable Boosting Machine. As accurate as gradient boosting, as interpretable as linear regression. | https://towardsdatascience.com/the-explainable-boosting-machine-f24152509ebb |
| Exploring explainable boosting machines | https://leinadj.github.io/2023/04/09/Exploring-Explainable-Boosting-Machines.html |
| Performance And Explainability With EBM | https://blog.oakbits.com/ebm-algorithm.html |
| InterpretML: Another Way to Explain Your Model | https://towardsdatascience.com/interpretml-another-way-to-explain-your-model-b7faf0a384f8 |
| A gentle introduction to GA2Ms, a white box model | https://www.fiddler.ai/blog/a-gentle-introduction-to-ga2ms-a-white-box-model |
| Explaining Non-Parametric Additive Models | https://gablabc.github.io/posts/2025/01/NonParametricAdditive/ |
| Model Interpretation with Microsoft’s Interpret ML | https://medium.com/@sand.mayur/model-interpretation-with-microsofts-interpret-ml-85aa0ad697ae |
| Explaining Model Pipelines With InterpretML | https://medium.com/@mariusvadeika/explaining-model-pipelines-with-interpretml-a9214f75400b |
| Explain Your Model with Microsoft’s InterpretML | https://medium.com/@Dataman.ai/explain-your-model-with-microsofts-interpretml-5daab1d693b4 |
| On Model Explainability: From LIME, SHAP, to Explainable Boosting | https://everdark.github.io/k9/notebooks/ml/model_explain/model_explain.nb.html |
| Dealing with Imbalanced Data (Mortgage loans defaults) | https://mikewlange.github.io/ImbalancedData-/index.html |
| The right way to compute your Shapley Values | https://towardsdatascience.com/the-right-way-to-compute-your-shapley-values-cfea30509254 |
| The Art of Sprezzatura for Machine Learning | https://towardsdatascience.com/the-art-of-sprezzatura-for-machine-learning-e2494c0db727 |
| Mixing Art into the Science of Model Explainability | https://towardsdatascience.com/mixing-art-into-the-science-of-model-explainability-312b8216fa95 |
| Automatic Piecewise Linear Regression | https://link.springer.com/article/10.1007/s00180-024-01475-4 |
| MCTS EDA which makes sense | https://www.kaggle.com/code/ambrosm/mcts-eda-which-makes-sense/notebook |
| Explainable Boosting machines for Tabular data | https://www.kaggle.com/code/parulpandey/explainable-boosting-machines-for-tabular-data |
| https://patch-diff.githubusercontent.com/interpretml/interpret#papers-that-use-or-compare-ebms |
| Challenging the Performance-Interpretability Trade-off: An Evaluation of Interpretable Machine Learning Models | https://link.springer.com/article/10.1007/s12599-024-00922-2 |
| The hidden risk of round numbers and sharp thresholds in clinical practice | https://www.nature.com/articles/s41746-025-02079-y |
| TabArena: A Living Benchmark for Machine Learning on Tabular Data | https://arxiv.org/pdf/2506.16791 |
| Explainable Boosting Machine for Predicting Claim Severity and Frequency in Car Insurance | https://arxiv.org/pdf/2503.21321 |
| Toward Faithful Retrieval-Augmented Generation with Sparse Autoencoders | https://arxiv.org/html/2512.08892v1 |
| Modelling Container Transhipment Throughput and Analysing Dynamics During Significant External Events: A Case Study of the Port of Busan and the China-to-U.S. Trade Route | https://eprints.soton.ac.uk/505005/1/_PDF_A_Modelling_Container_Transhipment_Throughput_and_Analysing_Dynamics_During_Significant_External_Events_-_A_Case_Study_of_the_Port_of_Busan_and_the_China-to-U.S._Trade_Route.pdf |
| The Most Important Features in Generalized Additive Models Might Be Groups of Features | https://arxiv.org/pdf/2506.19937 |
| GAMFORMER: In-context Learning for Generalized Additive Models | https://arxiv.org/pdf/2410.04560v1 |
| Beyond black-box Predictions: Identifying Marginal Feature Effects in Tabular Transformer Networks | https://arxiv.org/pdf/2504.08712 |
| Glass Box Machine Learning and Corporate Bond Returns | https://download.ssrn.com/2024/12/7/5047456.pdf?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEJn%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCIQC4Tahz9gLK1PnaT2OcGVvU95LIXVjM6MGGLiR8muLBHwIgDhBNcW1HFouaDPID%2FgMGtfAOIqCtr0JTXSsBYYGjXZEqvQUIYhAEGgwzMDg0NzUzMDEyNTciDBSJqXVnefWlpTvEvSqaBfTjYUxrqKGMDY1QImthn4LR848sVKt0vRNJSuhmBUct5KZ%2FYHehm4HVsRgxd%2FYezoCGxoo%2Bee1rhSCW7WVwdPrNzvAb34a410A6DkywgnsGsKhvMltoeYudsXrL2SlqY6fP5z8mmzELDBjHhNRbpjaPx%2BmHQiv8PrE6bqrQz%2Fe18Aj9JVsAlUAiJ0s9AiK5kaqJU6yZJJvaFh4AWHd8IsOj0QBU%2BHoTYj5ff2XzM9PtWUQbZccke066NcJEuUSE7fj5OREKYi%2BCXG6zNWu8y4BubfSzjL1pLRDuBB%2Fc6zQNWu%2Bz9sibZRzBvx1mmhTrL2ffhWCeTlCaSj1EsM3VuyNz3d8z2MFTpxn4hBqcR3lk0daL4qllASz3UMp%2FPwteZszzpE9moZwEwJWmR4TrH3KFF7x2bZaQPLvgt%2BqnstHyJXOgaEmXDX0yEyGQyDQh9RpD4n%2FlBTSHsXme0OfjEt5AscRnBqRpsX3ZG9Bx0cK5ibthJ5M%2FwsExm76cF8tPdyOCqozaF%2B9l1sJsWK1h4jHYrbdyZZZtKj786Ed2CAOZ0M%2FzY1hyHHAO47jOlNs9Ju2qLhsdXmcbFRiBfA2IN4UxClTyrAaYA2fQhpFHpRdM5CMk8%2Fe4h8Mt1PVO7K95BihB2P5O%2BCiWWzrlwAVKa5KKipxmRTDTjl2VIKFkwLeCwPHJFpQCL1ZknhGyIiD9hLpS%2BykAXnHyN4U7dN6rtOf8FGqDO0QUA2ZvTaT6DXrUps1Wf2iNqk%2Facl3RyB3nNwRw4igeUx9UysRRFsz2Rs93kZJq17yGiCLP38xF%2FniKj8doporrNbBjkMhBpAXKyqDpQ7JQ%2Bwu8GPAWdPiD%2FumnjvuuoG0UkmGX81izy5zCREKOraIuDzqOMjD6%2BIu7BjqxAYNSOCdUDYw30aHTCSDBoj%2B4LzQk2ZMdumvEyvNKv%2ButPmI1J6LsIwV8s1q7dgqpe2%2FA%2BLX4ZbWaT0OPR3idfz7ADSNZp6Ykfinfj6FSf673Kj%2FOm4etpiZxcMy8MDD65CHXCDy0%2FhMz9JAwmDyD2Dmb%2Fhvta226gohBnpuBA8KCoP946GdYEzyaXGvByrO4BOmvB%2BlRifauewFHndym7seWzQtJ%2B514aguu1JT%2F7XJVUw%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241218T174139Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAUPUUPRWE45GYNSPF%2F20241218%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=2c2b0fd799efafee1598fbc8ba7dd050451f67845f5cfa3b01a5b3ed0db7db1c&abstractId=5047456 |
| Data Science with LLMs and Interpretable Models | https://arxiv.org/pdf/2402.14474v1.pdf |
| DimVis: Interpreting Visual Clusters in Dimensionality Reduction With Explainable Boosting Machine | https://arxiv.org/pdf/2402.06885.pdf |
| Distill knowledge of additive tree models into generalized linear models | https://detralytics.com/wp-content/uploads/2023/10/Detra-Note_Additive-tree-ensembles.pdf |
| Explainable Boosting Machines with Sparsity - Maintaining Explainability in High-Dimensional Settings | https://arxiv.org/abs/2311.07452 |
| Cost of Explainability in AI: An Example with Credit Scoring Models | https://link.springer.com/chapter/10.1007/978-3-031-44064-9_26 |
| Explainable Boosting Machine for Structural Health Assessment: An Interpretable Approach to Data-Driven Structural Assessment | https://dpi-proceedings.com.destechpub.a2hosted.com/index.php/shm2025/article/view/37379/35953 |
| Interpretable Machine Learning Leverages Proteomics to Improve Cardiovascular Disease Risk Prediction and Biomarker Identification | https://www.medrxiv.org/content/10.1101/2024.01.12.24301213v1.full.pdf |
| Interpretable Additive Tabular Transformer Networks | https://openreview.net/pdf/d2f0db2646418b24bb322fc1f4082fd9e65409c2.pdf |
| Signature Informed Sampling for Transcriptomic Data | https://www.biorxiv.org/content/biorxiv/early/2023/10/31/2023.10.26.564263.full.pdf |
| Interpretable Survival Analysis for Heart Failure Risk Prediction | https://arxiv.org/pdf/2310.15472.pdf |
| Investigating Protective and Risk Factors and Predictive Insights for Aboriginal Perinatal Mental Health: Explainable Artificial Intelligence Approach | https://www.jmir.org/2025/1/e68030 |
| Analyzing User Characteristics of Hate Speech Spreaders on Social Media | https://arxiv.org/pdf/2310.15772 |
| Explainable Boosting Machines Identify Key Metabolomic Biomarkers in Rheumatoid Arthritis | https://www.mdpi.com/1648-9144/61/5/833 |
| AI-Based Estimation and Segmentation of Biological Age Using Clinical Data | https://doi.org/10.21203/rs.3.rs-6638646/v1 |
| Actionable and diverse counterfactual explanations incorporating domain knowledge and causal constraints | https://arxiv.org/html/2511.20236v1 |
| Explainable Learning Framework for the Assessment and Prediction of Wind Shear-Induced Aviation Turbulence | https://www.mdpi.com/2073-4433/16/12/1318 |
| HearteXplain: explainable prediction of acute heart failure and identification of hematologic biomarkers using EBMs and Morris sensitivity analysis | https://www.nature.com/articles/s41598-025-23668-7 |
| Identification of a Novel Lipidomic Biomarker for Hepatocyte Carcinoma Diagnosis: Advanced Boosting Machine Learning Techniques Integrated with Explainable Artificial Intelligence | https://www.mdpi.com/2218-1989/15/11/716 |
| Interpretable machine learning for precision cognitive aging | https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2025.1560064/full |
| LLMs Understand Glass-Box Models, Discover Surprises, and Suggest Repairs | https://arxiv.org/pdf/2308.01157.pdf |
| Model Interpretability in Credit Insurance | http://hdl.handle.net/10400.5/27507 |
| Enhancing ML Interpretability for Credit Scoring | https://arxiv.org/html/2509.11389v1 |
| Transparent and Fair Profiling in Employment Services: Evidence from Switzerland | https://www.arxiv.org/pdf/2509.11847 |
| Federated Boosted Decision Trees with Differential Privacy | https://arxiv.org/pdf/2210.02910.pdf |
| Differentially private and explainable boosting machine with enhanced utility | https://www.sciencedirect.com/science/article/abs/pii/S0925231224011950?via%3Dihub#preview-section-abstract |
| Balancing Explainability and Privacy in Bank Failure Prediction: A Differentially Private Glass-Box Approach | https://ieeexplore.ieee.org/abstract/document/10818483 |
| GAM(E) CHANGER OR NOT? AN EVALUATION OF INTERPRETABLE MACHINE LEARNING MODELS | https://arxiv.org/pdf/2204.09123.pdf |
| GAM Coach: Towards Interactive and User-centered Algorithmic Recourse | https://arxiv.org/pdf/2302.14165.pdf |
| Missing Values and Imputation in Healthcare Data: Can Interpretable Machine Learning Help? | https://arxiv.org/pdf/2304.11749v1.pdf |
| Practice and Challenges in Building a Universal Search Quality Metric | https://www.researchgate.net/profile/Nuo-Chen-38/publication/370126720_Practice_and_Challenges_in_Building_a_Universal_Search_Quality_Metric/links/6440a0f239aa471a524cb77d/Practice-and-Challenges-in-Building-a-Universal-Search-Quality-Metric.pdf?origin=publication_detail |
| Explaining Phishing Attacks: An XAI Approach to Enhance User Awareness and Trust | https://www.researchgate.net/profile/Giuseppe-Desolda/publication/370003878_Explaining_Phishing_Attacks_An_XAI_Approach_to_Enhance_User_Awareness_and_Trust/links/643922a8e881690c4bd50ced/Explaining-Phishing-Attacks-An-XAI-Approach-to-Enhance-User-Awareness-and-Trust.pdf |
| Revealing the Galaxy-Halo Connection Through Machine Learning | https://arxiv.org/pdf/2204.10332.pdf |
| How the Galaxy–Halo Connection Depends on Large-Scale Environment | https://arxiv.org/pdf/2402.07995.pdf |
| Unveiling the drivers of the Baryon Cycles with Interpretable Multi-step Machine Learning and Simulations | https://arxiv.org/pdf/2504.09744v1 |
| Explainable Artificial Intelligence for COVID-19 Diagnosis Through Blood Test Variables | https://link.springer.com/content/pdf/10.1007/s40313-021-00858-y.pdf |
| Evaluation of Machine Learning Models for Early Prediction of Gestational Diabetes Using Retrospective Electronic Health Records from Current and Previous Pregnancies | https://www.medrxiv.org/content/10.1101/2025.05.12.25327431v1.full.pdf |
| A diagnostic support system based on interpretable machine learning and oscillometry for accurate diagnosis of respiratory dysfunction in silicosis | https://www.biorxiv.org/content/10.1101/2025.01.08.632001v1.full.pdf |
| Using Explainable Boosting Machines (EBMs) to Detect Common Flaws in Data | https://link.springer.com/chapter/10.1007/978-3-030-93736-2_40 |
| Differentially Private Gradient Boosting on Linear Learners for Tabular Data Analysis | https://assets.amazon.science/fa/3a/a62ba73f4bbda1d880b678c39193/differentially-private-gradient-boosting-on-linear-learners-for-tabular-data-analysis.pdf |
| Differentially private and explainable boosting machine with enhanced utility | https://www.sciencedirect.com/science/article/abs/pii/S0925231224011950 |
| Concrete compressive strength prediction using an explainable boosting machine model | https://www.sciencedirect.com/science/article/pii/S2214509523000244/pdfft?md5=171c275b6bcae8897cef03d931e908e2&pid=1-s2.0-S2214509523000244-main.pdf |
| Assessment of pulse wave velocity through weighted visibility graph metrics from photoplethysmographic signals | https://www.nature.com/articles/s41598-025-16598-x?utm_source=rct_congratemailt&utm_medium=email&utm_campaign=oa_20250826&utm_content=10.1038/s41598-025-16598-x |
| When Interpretability Meets Generalization: Delta-GAM for Robust Extrapolation in Out-of-Distribution Settings | https://dl.acm.org/doi/pdf/10.1145/3711896.3737180 |
| Interpretable Prediction of Myocardial Infarction Using Explainable Boosting Machines: A Biomarker-Based Machine Learning Approach | https://www.mdpi.com/2075-4418/15/17/2219 |
| Using Explainable Machine Learning to Analyse Expert-Guided Automatic Triage Systems | https://studenttheses.uu.nl/bitstream/handle/20.500.12932/49903/Thomas_vd_Brink_MSc_thesis_2_0-7.pdf?sequence=1&isAllowed=y |
| Essays on Developing Artificial Intelligence Solutions for Patient centered Healthcare Delivery | https://repositories.lib.utexas.edu/server/api/core/bitstreams/35a2df35-efb6-4a2a-951e-c842814afa9d/content |
| Mitigating Cognitive Biases in Predicting Student Dropout: Global and Local Explainability with Explainable Boosting Machine | https://www.proquest.com/openview/e4e37e8088593f2db0a9d0e346538ad6/1?pq-origsite=gscholar&cbl=6474026 |
| Proxy endpoints - bridging clinical trials and real world data | https://pdf.sciencedirectassets.com/272371/1-s2.0-S1532046424X00064/1-s2.0-S1532046424001412/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEIn%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIBYgAN6aOVrDnvQ1932tPndUyJ0Dm1nHdMVLiekPVduQAiAzbYe7W%2Bd6Dj8ee42ZeZnQxJwEjEjuGdiUEPx0a2G43SqyBQgSEAUaDDA1OTAwMzU0Njg2NSIMyMkCUNFeDTCUCppMKo8FiVShykb8phR%2F8aWUGE9gfnE5y7X3Jj1ZA2CVldH13T67s536bdTBhjIMF18rV0YP9iMi6B5aGr%2F286ovIJl332fxZ6iQNBIOPTm8kXQDUqvZbknYldiZqUPs69kuC%2FcKnJd1BWnv2SEZwbRuX94rWnRDPDaSoJx%2FVS6o4qsbFjp9%2BMYZr%2BvJzWHKrXAI4W%2Fh9%2BsIa0yvlac3IMWzAeD23HzDNmF0nqjJ6BSZzmDNW4HRIGBTrTUTO40TzQzhaOY7wyGA0Zv8SpWIULI%2FrY8z8EOX%2FU6OhqgyIMKv%2FSx3rUpMi5CrC1WcpnL97j%2FDAijNi4vMfG1b%2BBQIFRu2EmUky76k4w3FYxkCpYj4n4mk9H%2B%2Bc9C%2BdjKjUiayi%2FisIZUD7ISNhQ9oov0kXI1IVTCGKKQC9jqHOvdiA8YbVuMdEzy1Lkx%2B1kiEo79qvSlpTe2BtWAOm2Iequ01XoaMv%2FQb4ajhWKKSkTafzDAxc58aayP1YH49UzQ68Me7ecdHpx3JUHyYnxJGQ82wRpPkfZJA5wCmOUVI%2FBLuwFJyczG0LpALN5IpIqZz%2B8DvDR0xjRoN49dVwhrTSQ9BesvXbi2LKVm1ptacaaKqyx0PwLjQYKOd%2BPI3zCvRxEiM3IKSNFRLsUTyPNEE4E8pMFNxfyEX59yvTQrHwM62P7hvxHs%2BY6CxUGZTKBQwDAgxttJmiO%2BvjCRbTBXZg1WrQdXCkxntBXb15Mnqxo4lyPzUUkLdLAFK%2BLSwzBIcvSw2qG81Y8qhWmBgBT9vfAoSrjxsILFrB3nnz7u9XNNpRxb5Z9NuNG92%2Fpd%2F%2F5VespMY8Q0iwsNqazZ4M4H8UB34JgtrUEY27WrIsDWzLR%2FAYAxU%2BZHrFzCrsae5BjqyASqDBsNqjEkho%2FbuQDT%2F0vGx%2BgAqrksvVX0GrzNgvqnuPyvw6%2F%2B40ZJP5EA4axfltOYb2tNjd18Ngy2A3cd6J57v1G7wYyuSFIUfHGN5LA8BXK7p0x1mNcwN3pKHtAf260gjpsWMG7anvpK%2F3YupTz498C1lAmurJD%2BLN41lq05wBr403cchE41yzqAKHVKVpNq9s6oGHJmq0KJRvk%2FfjZr8oLhod5gtrwLKvLGqULf50L0%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241105T092058Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYUKUJCDYI%2F20241105%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=15f8e40964e2c750ae15e43aa8e7f7c76eef6a76b792e41434d14bed42b31432&hash=d4a3e49b29443e5eea9e5a44c0dc11b3f30b21addbe6d6d20d523c68db23cd23&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S1532046424001412&tid=spdf-4fbabbd8-becb-4526-98d3-c7517914e457&sid=8ab2a095350fc74edc4b8765ecd8c0260edcgxrqa&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=0f165f0b050207505b0151&rr=8ddbc55a0d60a380&cc=us |
| Machine Learning Model Reveals Determinators for Admission to Acute Mental Health Wards From Emergency Department Presentations | https://onlinelibrary.wiley.com/doi/epdf/10.1111/inm.13402 |
| Interpretable Machine Learning Models for Predicting Perioperative Myocardial Injury in Non-Cardiac Surgery | https://download.ssrn.com/lancet/3c1e4bc6-9a96-41fe-b60d-4f8c370f9c36-meca.pdf?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEFEaCXVzLWVhc3QtMSJGMEQCIHigbeDDkdVUkffH2H2RZYNuuzMq%2FYlkF%2FibCUOmRXZjAiBJ4I7%2BbMuVoMl4APz5MJ9nmLt%2B73WKABFtE2NSd4azJSrGBQiJ%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAQaDDMwODQ3NTMwMTI1NyIMIVo5lL%2F4nJco3bcLKpoF6PnBkOsbtAPeb6MtFrf4OmMuVjZzVV1Qc6zzBgUTuvijpQFfxzIktRbNW5mUP4fi4rZmjJqhQAjjheSkE7HupPdoBsG3E%2Fii8HKrOXOWErX0qO%2Bwoy%2FFDWS8MdwihFT6EdpwF2yXXAGNz8Vvm%2BgCD772tijc8fXl9DjVtJfr%2BSAPvP3LiG2Pb8UV038Nvko2RbXdyF9rtOmQt1FU738wZ20X3PoLaxzplsAuClhl%2B9zzB5jpC%2BfaW%2BouvPfaZ33McYgKwjTsVv9ox9dBmPgxKbfC%2F5VcF1AAppVeWbGHOj%2BaFIRMocNSaz2IFv06tAqOk7UlIp3p9u4VP8dZ77hf4NI94UEZYojH%2FL%2F6Y23RPj7KtFPjCrHiRbdjaO%2Fl80SoTl21rd41HMBtH%2F%2B%2Fsc5Hgphz9QfI69n03iQ0D6vx30p0knKdwnghrJYYOyW4yCkyztwyYrcOsTOZOcWdvnoGFe6bvIi4DxPrEnf%2FyKDH5iWNeBx5ZAFxzi1ibP8NAXY8c%2B6rr%2Bpe8VGG4shAkI1JRae%2BakvlbBQYbj8vAuVUAGVqM1u8lo0%2FeGfW89KrlojE1VLBUidGrIZSFjCLJP0cG%2FDUbOs7atV1X1H8ny4F5wIw9g0h4lPjj%2FB4vjYPhw%2BOcZYSWiwn1dI0UGNJTyD%2FRtVjuGHT19MOIoqpjSXBymTmOVFjYPSrBYKUUYVfbmzTlrODFwL3oxQwA5eJvAUs0XjXD1rqHQ%2FfISGck5RmCrNlMwpirxgKarRIFwDbzVX8Z7EjTdvIWNAoJJDhwNQCfkdpo12QoINi8yZuiEzdVwMka2sRfIDSyKcn3z2%2B2T6KLgtVf8Q%2BhecxbHgIy8dvcf8secsrh5SDlTia5np%2BNDGLsStb54VQ3oOXMJbE0cQGOrIBoW0oHhskfPiIYI34pCU9cirMG0P9uUmNXP0aJczLXK0mPViF2dAlTOu2uIfl6bFLewWrg7ESDste8Gx6Qci8o4d6rK7ROJv1UpXh9xPRfOx3dksHGKkcW%2FlE4xxEtQ2ctZOSAycoEpPplq4tLgW6BIuDBVR2VxIjY1o5oN7loo13exU4hkJpketet9gRQHdzFYHJYWTzpXDys2TBAp587w2ueQEbnh6zC8GJuv1DxH4OVw%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20250807T093300Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAUPUUPRWEUFEGH3IY%2F20250807%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=1ebccc377c0fbab66bb37e6aac8ab4b50cb82328871b5e8d2b651370d49a58e6&abstractId=5379891 |
| Towards Cleaner Cities: Estimating Vehicle-Induced PM2.5 with Hybrid EBM-CMA-ES Modeling | https://www.mdpi.com/2305-6304/12/11/827 |
| Predicting Robotic Hysterectomy Incision Time: Optimizing Surgical Scheduling with Machine Learning | https://pmc.ncbi.nlm.nih.gov/articles/PMC11741200/pdf/e2024.00040.pdf |
| Performance of explainable artificial intelligence in guiding the management of patients with a pancreatic cyst | https://pdf.sciencedirectassets.com/282081/1-s2.0-S1424390324X00083/1-s2.0-S1424390324007300/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEE8aCXVzLWVhc3QtMSJIMEYCIQDt5kx%2Fzkij3hPAFFQY1mbWqUbYxcSWI9LWHoRYlmJdiQIhAL6gcQnpJNJHHoYFVmnCSbm7lfZt7oW%2BFLqgmTeaRf0VKrIFCHgQBRoMMDU5MDAzNTQ2ODY1IgwhQHpvAtTg383who4qjwVCnFGFYQ201j6uvYXVvBOdbRZ4f%2FXbMAoapXTH0luD4mA%2BIicn2siAAgpx3%2BKLlcBUkXU8fQ8nda7bp%2FaPM1Lvh%2FKTc29pnSN%2FbJZ00cTPwzE8SUiUhOs5lFwkoCshaq2pGcZ75kOGyj4OUVNqKc6FxzGeu76pkEpvAhbNGytfklu4XQ1H2OwLWvYSM4iPc4AnA9ceQOuu5vTHDapjIfNM90MT9gklreIXXl8jRsnZI0kPIPu%2FPSlQVyA9ovw0q32mrHqq2ms%2Fq%2FT4Y3S%2FXUjsvxA8tJD%2FMcGHh6KziR6RPoBuxa8vRxqRlA500bxo1LxGebC38Yz2vBVFppgBUcrQ%2BiIjDno12m1t2ygD6V9XZWJ45fRNqqOQuOpK7Ayu%2FzVJGS2aUVaziorSYwChpwpd7c39M7B0CieLT7Qsb9Svj7QNuA5iL2i3OlTzfwxBHHyRqWpZRl3wyxFwZKaGsPvf7iMWBfczH9UIXFsQietRs8OKE01sn1itTY6O2udVG877TBLcTehR%2FVDoTi4wAK3NqfyXNxVet6Su0l7DvtVQN6IrPQHyQrX6Bz3FOPyiREKrp%2FpnHMLvtb1DjZud4KeM6REwc7BbCgsRNpgPMN5%2FRUYzRnxGA8pBQKpAIlg5oF%2B4iA7raiF3iXdHVs5QnfWL3oaXGKpAChKy6SpPpgZ%2FXQL4BuD3QMwGh3Bvs6JIC1SDfIrpBv4DbMVKNy%2BsnM2DjLrALtso7n8SSATbbnkEICvlGNJDWQW7vqWD5k5ybHUElQO3fWbmgFhRydm%2BXAE0T55PTbGcQltGgGCPEY4OsHbWGlzQ389IkDsjuGNfnHWkZy7B0RsxxaoCNaURaCSPA5qTF7kjr4IvT83c5myHMJ6Qzb0GOrABUl1b4SJKyRQV7x1owREmTbibeuKUpu9uBXuvapSJ51XmzuOTBe2jUCiwH5PJqU0yripIS%2FCw769TIOofSZXvrmWW%2FMUA%2Bv7H%2BwyD0PDZJpcO%2F7YCUoYkOJfdK7%2Fn5Bfup8aDUjTjpGuIFGBplN6oZKkafNWdZK0byZeT%2Bp4tx5lsVTbEmgGzdrHSqUYtmDgdO65vDofxvIrHeoy6NBZju4dWtiYtEvvEM2jnlvRgpPM%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20250217T155221Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYWJXSGAKI%2F20250217%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=b4010ee01020f9d1e5e9f3425bd34a19008e65fae4ca39b07fa521b78dbf031c&hash=364231ff9004818d51efe4b861dd6efc396bcea566c6656024ee6130788182f8&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S1424390324007300&tid=spdf-f3cc76e8-7213-42b5-ba0f-55581d548545&sid=ca4435fb2357444d2418c101a5a89ce4be1dgxrqa&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=10155d535c5701560101&rr=9136f1afbed97c85&cc=us |
| Using machine learning to assist decision making in the assessment of mental health patients presenting to emergency departments | https://journals.sagepub.com/doi/full/10.1177/20552076241287364 |
| Discovering Phenotype-Specific Clinical Markers in Multiple Sclerosis | https://www.researchgate.net/profile/Salvatore-Giugliano/publication/397633958_Discovering_Phenotype-Specific_Clinical_Markers_in_Multiple_Sclerosis/links/691c4765480eb767581c62df/Discovering-Phenotype-Specific-Clinical-Markers-in-Multiple-Sclerosis.pdf |
| Insider Threat Detection using Explainable Machine Learning Models in Corporate Networks | https://www.researchgate.net/profile/Vivek-Singh-240/publication/397714182_Insider_Threat_Detection_using_Explainable_Machine_Learning_Models_in_Corporate_Networks/links/691ca5ed480eb767581c8167/Insider-Threat-Detection-using-Explainable-Machine-Learning-Models-in-Corporate-Networks.pdf |
| Explainable boosting machine for structural health assessment of reinforced concrete beams using crack width measurements | https://www.sciencedirect.com/science/article/abs/pii/S0926580525006818 |
| Proposing an inherently interpretable machine learning model for shear strength prediction of reinforced concrete beams with stirrups | https://pdf.sciencedirectassets.com/287527/1-s2.0-S2214509523X00035/1-s2.0-S2214509524005011/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjECUaCXVzLWVhc3QtMSJGMEQCIB0r0KsYBZufOjbCVtUtozwn1QKMdLt2tbbfhuJKjWlXAiB5Dfr7p0yyj%2FSfypTLmjPL8WbjGAB3tRACFjyyqQbbfiq8BQiu%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAUaDDA1OTAwMzU0Njg2NSIMqBpZ2HmN91c%2BJPqpKpAFZtvqQjCScZa4FN%2FeubsPzOk5c%2B58LliO4Zr%2Bn1pm3vtW4I9I1vA29pkhT5was1N3ccPPIm2jNLwJ%2FHiZej7A2SmFv13Ro3sTvhqG%2F6A9Xx70Nx9jOlDPJUmCypKadKp0FGfuhZQuxeN0b%2F1QUUQZG4RpxC%2FXorRRHmb%2FrXcOWBwu4PmLZAkWmTKpncjDI7oj8eh8yBe6%2FA3JkJ14ZyBgR7JnPzR2ZqMdIhvlKoyMn6EnL1Azq2y3qwEMdzSCvz3wH3sT4pClc2vPs6ruQS4CdT3E7BHrf42Q0VnUXWjuy7gt9iRr0vaWR3tD%2FxyrrEKw7XuMHO9L4rQ4Pfn1dhGZ2J8H5ocwJGSh13U5fY6noyaTNViqvHx1oHNMWL03QpkJxmUxYquBWepcDjxEc32V6eGF7Ecm8Vij3s20wdRNcHqxGFKlUCgph48CKUA79iwSGQCkWQh7bq%2FTtowTbSPud7l8xeG1MvfIVy%2B6yzrjqygvPBQs3qkvdoWUrKXe57bhr2jEkKlSdYyp2TJMD6yoYRdTPyFx5xb0KgIt6KQTPmfbqYXkd3FFz3uc0HmWC5NQz6qP9UzNcBhcK8dXo3Dw042pl0HLO1njFaa%2BBfbT89VUVUIqjrAcmHweIl1v7Eyldzr%2BGBXIlsxPO3gPzyPLF2LTggc6dA%2Bswxmgmkv%2B7n5pU5%2F5sxvEhemb%2Fqu%2B8d47O%2Bn6RH8fL4eLGGL2d0dvFvyE7gEwt%2BaU9HsIN0IHqyH5VmaTF5zaKy%2Fn%2BhkF8yGpe5Hq5yNOUGrfQgfyFn4Kqd%2FTVajxIFzk8DEY%2F%2FFtyGJ%2B8BrHV4P%2FYs8R4XcBzPQtyrTuUC1CGmF01Tc2gnnEo4pVPaIjfBk9B%2BXVMc3Mu4Ywy4L%2BsgY6sgFK3hFIXjIfoVjqrIlBvsGYaFiZB1bVKBVy3DRiBgozzYmIVhipN%2FS%2BPok1oETqvYVvLqEVkGcb5W7nUIK16lFgjwDq6ePuxdqSafgOw5jVQroNsDCPRz8B%2F4fg7kv6gs4R9SX7gCaQ2V7L6NxqJDUUqsCMtIYq05Qx43dGByqLoVEz9USpRBmTLQwpGvOmUaGNNwTsCwmt5gRP8UX3CnkwI%2FydxmhrXLEdaUIFVwJbIor9&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240604T221639Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY4E2DAHPF%2F20240604%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=eece32da8855b55208baecc0ce041e79aa03be1c292b58c67ce0215de36cbdb4&hash=46dd1da122f4cea242c6444a811fb16dde5cb8465e88552ac3eaeee97b975e9b&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S2214509524005011&tid=spdf-45c1c4d1-dd97-4c0d-a04f-c30843a79e78&sid=1fea53ed2d5cf1443e4a7c4-33f4bf6475e1gxrqa&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=0f155c5f060d565b01055d&rr=88eb49dd2a5f7688&cc=us |
| A hybrid machine learning approach for predicting fiber-reinforced polymer-concrete interface bond strength | https://download.ssrn.com/eaai/e646e179-ec4a-4987-80b5-8d6bbf43ceda-meca.pdf?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEBMaCXVzLWVhc3QtMSJHMEUCIFVH%2Ba5TT2NOEqgCl7GMhXBXBZWE9VzzcRFT6kYXzdxYAiEA4yvXsrzNQnNq%2BkJRB0rw1d2p35f418pIO%2FT3PHKoZ%2BoqxgUI%2B%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAEGgwzMDg0NzUzMDEyNTciDCD0kCrKAqamcwb9LCqaBb4zlqjDhNBhf%2Frbe%2FX3lzSjvS58HiJQtbOHmzaM7putg93e7Wk8nPesoiupTH8uB5ejDC7stGJElRZp5ulT5M6CokoMu82ERn15kMpkgptj3MVEmsY9VTCP%2BCbROJ6v4YcAttOOAEzOc2M6li6o0w4IsF8DNXEIJr%2FJvjB3IDYPkrmpIiHl25h3AzfxPuOF01E2rgucLnY0xTyKGnPBBDZ%2FPtcuqlk2NKun3Q9HbcKj8EPJP%2FPupMW3IQvMnhcdJqqLHXs6wL1P42NTw5vtZO2W5WiEC1CNGDFUTSFRdb9hjhpH4JsYl8X%2BSFT6mZ31K2HTWeuigs5nXp1JN8r8r4O021yiVxHAJ6Chnddr0Z19iM5yOZA4H1EhO1rxxL0VF%2F%2F8Ac3GxuEfkBiug5wuL7aNlBNX6720pYfHH%2FgyrqdU5KSDIp8VYw3KgEij0LkizBHQIoolC48VAEMNc%2F8iWOdZpAVYprhEbABbff8%2BW6c4y1N9vmLTkjZkJtZODpzpQVjrHkL9hAOvmXZocEEN6maRoVJx3DlcTHrfQr8%2BQnPQnmajb5x0FHo44xxBIUt7UB4FOc6beDprle%2F7BO2SNEPLw6rJ9e3WJeVaYch46iqk2tiWFroNHDXlQ73CbzV59AEVtLAR29eIf7uyz%2BU0fOAXG5oAsJyB7YXUjH%2Bh79sxJgBq3%2FoqkEja06CFPRhWeqxixc8y9bEU%2FvvjhfbcWcxGY%2Be%2FwnXbemUbSyr26Y5xvADyicKIMexZNjeHBJ9MKMifQ9oh%2FjmudjxtMLbTpA6EAxMelLjhWcoURF0XeTttMEzEuTjO1OXUwMeXSPZ9roJqH3DB4PHi%2B8UIUG1JoVocv7wDu5ZVlMzgmDr0ti1BShKr9szxagq34jCEkJe8BjqxAbm7bsef33J3AImECx0GZeL0R2tFJZ7ctogL261zP7RqJ4T71rDMbpyfX6HfGuNEbWVROKHUexpuH8FZBodmn%2FjDjZSviK1oxQ1L5TDA2rwMsodnThreIad8vSXqxAzx9qng%2BeN2llXkNdIB7WEnkttzcJ24pZqwYnPI%2FsOznTq%2BDJ88mdNPtzph%2FGdVQcR99tV3waapotTEnUjjoqTTSh9aMgi1jIYMGMrJj6Jb4N%2FhWA%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20250114T024208Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAUPUUPRWEXKDDLJZE%2F20250114%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=11c6f325f84736d5324ab155663c94231696de52be8910a03bb5e9c18f0d1689&abstractId=5055231 |
| Explainable boosting machine for structural health assessment of reinforced concrete beams using crack width measurements | https://www.sciencedirect.com/science/article/abs/pii/S0926580525006818 |
| Predicting Blood Pressure Variability in Hemodialysis Using an Explainable Boosting Machine Model | https://watermark02.silverchair.com/sfaf349.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAA2MwggNfBgkqhkiG9w0BBwagggNQMIIDTAIBADCCA0UGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMm7wA5F_lPXmvNdTqAgEQgIIDFntD2DpLY86ZmHPq_NP8eqetbgsJAQoWdmWJbrOCXQSmzUiPWAF4tXg7y3Zm-pbozGaU__mYTs4vtxjBa-e6SEGBiAwHX_ypi84R2nwLEuxNcnPKP1jIZs68e4Ic9WTH3PHCWt9AgzE-plVFtuZPrkpRbdqXcnKYhuu1yoRW-apB_SDQRiX5ofrY-iIRyXtktYlmMQKCkaPRnUS-p08JMtTYpZJl1REUxZB7-Awfaq364Qlpkunu7FBS4njs6eAr6Gmo2LiUj538WQ4LFrXhoUj4IcbIJRNcoPuyOowdPAGihUtam5SnVONTB5DvWI3zYE-AS8bNXw_1hYI91wk0BbvLg2phvPT1lyOMRJOLVzqQ3cvuyu5yob6tU3ZDLF3c__Dfe9F7RFJ6WxX98V6eqIyuR39ol6tJXgSvIZ59FH26KO2ItaYSDHWwkGxst32eBo0zu0vkNpMF_PVm7X69HT2VLkZyw1Ke-yQHh-h9K58VsqD3kk5E0-ZjGprIHEqyIMG-D22-mS7_6-lVIGoVZAY7tFH7dHpMDu4WacLQ-FiCo_Bq0G_VBlD9b-gzcY-L6b-pXxRaygS3Km3DfS_VTu0iFum3e_NaL8-mf0EOxFWD3J83iTDr135u4nkjwFfG4ee4Yr-TzrNQtue_SqmiGGH0qd6ML8ahL9oSzYZZMAjCHwV_yU9xRSxqm2B7xt6EFOTJ_tLKV-nXV51xFI9p77cVimNGqIYLABdjwNftGWqnhcTRoOIdeVsfQcg7sWO6Tjr37tt9AmaK4AazAjf97l2EI2vkdSiHvKZ9oHVxRzatb-iOUmaI0LG7CiwazcRx6FQqr1BOX-duhDO558Mq8U3Jw47KLK177VzKAE1YpAqKiVPh56bki43EGDHW6cpM53xQe-hqxOQkOk0UkkQMTTdW62r288VtRdvHd6WMG95cwYUPIiQFN4GYedOa2aGrTG2adZkW_CPmzUogmiqY6jcDmySlb6MUuadYMYnYFnjYa4hVl-0MSsl4x9XC-j5f357TUq_ugMVD__tLKHK9YBtuE_dzAME |
| Validating Explainer Methods: A Functionally GroundedApproach for Numerical Forecasting | https://onlinelibrary.wiley.com/doi/epdf/10.1002/for.70060 |
| Using explainable machine learning and fitbit data to investigate predictors of adolescent obesity | https://www.nature.com/articles/s41598-024-60811-2 |
| Interpretable Predictive Value of Including HDL-2b and HDL-3 in an Explainable Boosting Machine Model for Multiclass Classification of Coronary Artery Stenosis Severity in Acute Myocardial Infarction Patients | https://watermark.silverchair.com/ztae100.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAA2owggNmBgkqhkiG9w0BBwagggNXMIIDUwIBADCCA0wGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMnDqoUBnqG9Zyr0dAAgEQgIIDHT2M3owEzTRAV3KZzrOpzyqOYgClio-CQrzB5731fvsEe9ZWO_QfqQAKdaPyyOsEKjacd25hWs-_OvgXCqc36R4yFWu46PFOCApII2s3hbHYI1XEQozWfdyosgaQf_e7_5RIqIfwTEHt19LoYZuaDYjCqq2vmWOMZb6dNI6mz-h3Zd6BgbyYAFgRHiJfU94NU0Crf_AbbTx2jW3HqMBLYPn-ysUiyQYILNmqlKAAlw81ZjBwzusaQFsiJMCxwGyFHks7nwtnUQ8J5PU5Jelp8_fQ8x5_dlZvzvdkI9MR87zUkk4hm2XL0uyfvH92-7VV_2gMe-rU3aJZhbHJu2hENPDh_OmoDe7SOC-5EwPsgIDoDr_dgSgyhBMIbOk_TrSM4oEN6dbtvfLSDXQUWDV4semLuPjqz7WyiQz4PPt1mXuaf12X5xyVsf1Mms4UpGAKLyoCdJ-zDJ9csOPCefIsV2Bzs-KzaD63HWFLJuCU0hWIaK0QOcJATnpQb1PhFiAF6YZ_cCYTxkuAcrQyHS-WCEefNy8hB8PQXhNljtw0J499qdnLcNOM1gAQ3-o21KaTrEFs-DyvZwWmaGn8Zw1bK1CG8yVxWOh6_wjJpGjMMenstzrKFcLbJADs1yf3PuNGZds0g-Qf4NDcgsturcr0V1nLHVRFazWZhUKSeRnLjPzA5i3lVKnmwKjKa_50i0LMSIXNFS-dmvHs-qVUb8FO0_aKZ6egckXkoGG8w3Jox4MhhY2-B28Z0wbJOj8_DojCCtAmAPC0T5emRsuk1rkuRXIoMtFDWN0l7fr7RVkuy1TEd3mpa5UuU7Qo-wu_yqi6ibwLupjGeVN__7SeteoBSh8yFJgYN4BEiYmdkEX7DgKaMC90h5GakNJ7zeAPR9PFnQVRORoof04qMWK4aGod2igso1-qsCup-kVWmPy8zrQKlqxE4OCeqUpKQgZMUUAlFu643iuRnQuLnahXhui45TY8lS56XGCLqkwSG594lMoAXAYZ9tVFM4fAVwQJ3EWkJfHRRCWWGZfLwBPsdUnNEziGg4QIdrKhe-Fu7nLF |
| Estimate Deformation Capacity of Non-Ductile RC Shear Walls Using Explainable Boosting Machine | https://arxiv.org/pdf/2301.04652.pdf |
| Introducing the Rank-Biased Overlap as Similarity Measure for Feature Importance in Explainable Machine Learning: A Case Study on Parkinson’s Disease | https://www.researchgate.net/publication/362808061_Introducing_the_Rank-Biased_Overlap_as_Similarity_Measure_for_Feature_Importance_in_Explainable_Machine_Learning_A_Case_Study_on_Parkinson's_Disease |
| Targeting resources efficiently and justifiably by combining causal machine learning and theory | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768181/pdf/frai-05-1015604.pdf |
| Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection | https://arxiv.org/pdf/2212.10707.pdf |
| Death by Round Numbers: Glass-Box Machine Learning Uncovers Biases in Medical Practice | https://www.medrxiv.org/content/medrxiv/early/2022/11/28/2022.04.30.22274520.full.pdf |
| Post-Hoc Interpretation of Transformer Hyperparameters with Explainable Boosting Machines | https://www.cs.jhu.edu/~xzhan138/papers/BLACK2022.pdf |
| Interpretable machine learning for predicting pathologic complete response in patients treated with chemoradiation therapy for rectal adenocarcinoma | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771385/pdf/frai-05-1059033.pdf |
| Exploring the Balance between Interpretability and Performance with carefully designed Constrainable Neural Additive Models | https://www.sciencedirect.com/science/article/pii/S1566253523001987 |
| Estimating Discontinuous Time-Varying Risk Factors and Treatment Benefits for COVID-19 with Interpretable ML | https://arxiv.org/pdf/2211.08991.pdf |
| StratoMod: Predicting sequencing and variant calling errors with interpretable machine learning | https://www.biorxiv.org/content/10.1101/2023.01.20.524401v1.full.pdf |
| Interpretable machine learning algorithms to predict leaf senescence date of deciduous trees | https://pdf.sciencedirectassets.com/271723/1-s2.0-S0168192323X00112/1-s2.0-S0168192323003143/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEOP%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIArPrCug2%2BpvA%2F87dfMYdbINsntWDDgNHeCOn72Yfad3AiBHzR9BvMkRvZrjQZ1DoY1YMkD6VsQw45zqo5ykkClnHSq8BQiL%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAUaDDA1OTAwMzU0Njg2NSIMdV4IhgM83azwHKyjKpAFFMABPkhGjjH1i3y26weF5LN6ZuxfgcDlklmnpEZDoEntreay08vlEU7%2F3CLeNSqYgaq5txCiVztJDv2TBcxDUt0PP4faNrHUWIQdfDksvDs3EE7VEupaqhVjMNi0%2F%2ByLRw2OzjMPpz7H5sd3i4%2F%2FK2%2FJlpAWHlr4RFJ9BXMMPbLDEqhjIJIl5ZzaeLeeijXKrTtvJ6iYwTic%2FHJ23m7Fdnkh94HKkFTOWeglJzGT7FSc5Wnc7DgExrL7EBLvu9YVusMUf9rFYIU%2BKaVyxIa7WDUN48cWjwdGLjYV9XPy%2FP2lRKjeiiNMYbdknQzJfSzh0HWxx0Aq6zlXdkJUbvSgqFoDC2npaUGXjNupSLNIzcMFWr8lUvUFIBm1ZigETFDZrB4zEJFQVxXV%2Bsztpcs1tMO%2F8LAG3MNI%2BI%2Fp7lT3bj%2F%2BZg6S7d6ROGS96XMS3Am3WffiwNIxueTGrWmRWxS75EQexcJmrQ4ELU%2By3vOXxIvqftT68w6%2BnBryUB5kGE%2B6GljxUFD5y7hZFLM0tfFW9XEZF5PjDbz%2Fx%2Bi0dxEiwvN2mzNpSAWiiy6ZBT31GSRRMtTe9Sm4U%2B8DwSR0fymXmme5fKLGzkySq0xPuFhzN6LyLCoxtbob%2BRyLALNdP8E31enPu%2B1xl5Isg%2FXHINRM29SYzK0u1PlPK78ng%2Bqt4mUlLD7jlzIeBKa1vz%2BU8%2F1ZYvEofc8i6q691PqjYl%2FZK5lFQO1EEremVOv4i2nEYwmGtjtCAk1WFChnamFlEdWyJIerN5pKI4YvsGF%2FwXG8aHuYBg41CfGftl%2FwlJ77dPOQ8QHgp5BZFheyeYwEMijnbz4terE7kVpdvBKOk5lBxtiJILI0ftU%2F4F0k825M%2Ft4w%2FqzIpgY6sgFspzJ6vfwqmIKbmprTCY6NBr4uAZU%2FPUWraWxu3hCydMZTVOjlrab%2Bv5NSdCqWKHvK7Yn89JtE9um3P8Gyev9BFPXT6LykCtjNOulKUQnywvl8ngKdbujNjLAyZb4D0p4dFRFsE2sUTUWNvs%2BVwA%2BYdn4%2BwPkMN5PU0KR78myJ7LyYJGodNLOXcBSV%2FXa396TmeXagW3ihm2U7H%2FvXm1IZmOz%2FflT5y6CEy%2FegChXEVpb6&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20230808T111525Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY64PTFOFS%2F20230808%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=e35040e1985923b74081dbdac33f7250949695d95e631d68a8fe20684b3746bc&hash=59ce65176ba4b931ecc905ef2a0bb80561947d73205e8ad2561d63a95552a4fb&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0168192323003143&tid=spdf-41137a89-2992-4585-8512-4303f8dedb0c&sid=b0b6f2a791aeb640d1897e968c8092375869gxrqa&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=10145807525053555255&rr=7f375764f8ea2338&cc=us |
| Comparing Explainable Machine Learning Approaches With Traditional Statistical Methods for Evaluating Stroke Risk Models: Retrospective Cohort Study | https://cardio.jmir.org/2023/1/e47736/PDF |
| An Explainable AI Approach using Graph Learning to Predict ICU Length of Stay | https://shichangzh.github.io/preprints/LoS_XAI_ISR.pdf |
| Cross Feature Selection to Eliminate Spurious Interactions and Single Feature Dominance Explainable Boosting Machines | https://arxiv.org/ftp/arxiv/papers/2307/2307.08485.pdf |
| Multi-Objective Optimization of Performance and Interpretability of Tabular Supervised Machine Learning Models | https://arxiv.org/pdf/2307.08175v1.pdf |
| An explainable model to support the decision about the therapy protocol for AML | https://arxiv.org/pdf/2307.02631.pdf |
| Assessing wind field characteristics along the airport runway glide slope: an explainable boosting machine-assisted wind tunnel study | https://www.nature.com/articles/s41598-023-36495-5 |
| Explainable Modeling for Wind Power Forecasting: A Glass-Box Approach with High Accuracy | https://arxiv.org/pdf/2310.18629 |
| Trustworthy Academic Risk Prediction with Explainable Boosting Machines | https://link.springer.com/chapter/10.1007/978-3-031-36272-9_38 |
| Binary ECG Classification Using Explainable Boosting Machines for IoT Edge Devices | https://ieeexplore.ieee.org/document/9970834 |
| Explainable artificial intelligence toward usable and trustworthy computer-aided diagnosis of multiple sclerosis from Optical Coherence Tomography | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406231/ |
| An Interpretable Machine Learning Model with Deep Learning-based Imaging Biomarkers for Diagnosis of Alzheimer’s Disease | https://arxiv.org/pdf/2308.07778.pdf |
| Prediction of Alzheimer Disease on the DARWIN Dataset with Dimensionality Reduction and Explainability Techniques | https://www.scitepress.org/Papers/2024/130174/130174.pdf |
| Explainable Boosting Machine for Predicting Alzheimer’s Disease from MRI Hippocampal Subfields | https://link.springer.com/chapter/10.1007/978-3-030-86993-9_31 |
| Comparing explainable machine learning approaches with traditional statistical methods for evaluating stroke risk models: retrospective cohort study | https://pureadmin.qub.ac.uk/ws/portalfiles/portal/495863198/JMIR_Cardio.pdf |
| Explainable Artificial Intelligence for Cotton Yield Prediction With Multisource Data | https://ieeexplore.ieee.org/document/10214067 |
| Preoperative detection of extraprostatic tumor extension in patients with primary prostate cancer utilizing | https://insightsimaging.springeropen.com/articles/10.1186/s13244-024-01876-5 |
| Monotone Tree-Based GAMI Models by Adapting XGBoost | https://arxiv.org/ftp/arxiv/papers/2309/2309.02426.pdf |
| Neural Graphical Models | https://arxiv.org/pdf/2210.00453.pdf |
| FAST: An Optimization Framework for Fast Additive Segmentation in Transparent ML | https://arxiv.org/pdf/2402.12630v1.pdf |
| The Quantitative Analysis of Explainable AI for Network Anomaly Detection | https://studenttheses.uu.nl/bitstream/handle/20.500.12932/45996/Thesis_SinievanderBen_6021794.pdf?sequence=1&isAllowed=y |
| Enhancing Predictive Battery Maintenance Through the Use of Explainable Boosting Machine | https://link.springer.com/chapter/10.1007/978-3-031-44146-2_6 |
| Improved Differentially Private Regression via Gradient Boosting | https://arxiv.org/pdf/2303.03451.pdf |
| Explainable Artificial Intelligence in Job Recommendation Systems | http://essay.utwente.nl/96974/1/Tran_MA_EEMCS.pdf |
| Diagnosis uncertain models for medical risk prediction | https://arxiv.org/pdf/2306.17337.pdf |
| Extending Explainable Boosting Machines to Scientific Image Data | https://arxiv.org/pdf/2305.16526.pdf |
| Exploring explanation deficits in subclinical mastitis detection with explainable boosting machines | https://link.springer.com/article/10.1007/s44279-025-00246-z |
| Pest Presence Prediction Using Interpretable Machine Learning | https://arxiv.org/pdf/2205.07723.pdf |
| Key Thresholds and Relative Contributions of Knee Geometry, Anteroposterior Laxity, and Body Weight as Risk Factors for Noncontact ACL Injury | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184233/pdf/10.1177_23259671231163627.pdf |
| A clinical prediction model for 10-year risk of self-reported osteoporosis diagnosis in pre- and perimenopausal women | https://pubmed.ncbi.nlm.nih.gov/37273115/ |
| epitope1D: Accurate Taxonomy-Aware B-Cell Linear Epitope Prediction | https://www.biorxiv.org/content/10.1101/2022.10.17.512613v1.full.pdf |
| Explainable Boosting Machines for Slope Failure Spatial Predictive Modeling | https://www.mdpi.com/2072-4292/13/24/4991/htm |
| Micromodels for Efficient, Explainable, and Reusable Systems: A Case Study on Mental Health | https://arxiv.org/pdf/2109.13770.pdf |
| Identifying main and interaction effects of risk factors to predict intensive care admission in patients hospitalized with COVID-19 | https://www.medrxiv.org/content/10.1101/2020.06.30.20143651v1.full.pdf |
| Leveraging interpretable machine learning in intensive care | https://link.springer.com/article/10.1007/s10479-024-06226-8#Tab10 |
| Development of prediction models for one-year brain tumour survival using machine learning: a comparison of accuracy and interpretability | https://www.pure.ed.ac.uk/ws/portalfiles/portal/343114800/1_s2.0_S0169260723001487_main.pdf |
| Using Interpretable Machine Learning to Predict Maternal and Fetal Outcomes | https://arxiv.org/pdf/2207.05322.pdf |
| Calibrate: Interactive Analysis of Probabilistic Model Output | https://arxiv.org/pdf/2207.13770.pdf |
| Neural Additive Models: Interpretable Machine Learning with Neural Nets | https://arxiv.org/pdf/2004.13912.pdf |
| TabSRA: An Attention based Self-Explainable Model for Tabular Learning | https://www.esann.org/sites/default/files/proceedings/2023/ES2023-37.pdf |
| Evaluating the Efficacy of Instance Incremental vs. Batch Learning in Delayed Label Environments: An Empirical Study on Tabular Data Streaming for Fraud Detection | https://arxiv.org/pdf/2409.10111v1 |
| Improving Neural Additive Models with Bayesian Principles | https://arxiv.org/pdf/2305.16905.pdf |
| NODE-GAM: Neural Generalized Additive Model for Interpretable Deep Learning | https://arxiv.org/pdf/2106.01613.pdf |
| Scalable Interpretability via Polynomials | https://arxiv.org/pdf/2205.14108v1.pdf |
| Polynomial Threshold Functions of Bounded Tree-Width: Some Explainability and Complexity Aspects | https://arxiv.org/pdf/2501.08297 |
| Neural Basis Models for Interpretability | https://arxiv.org/pdf/2205.14120.pdf |
| ILMART: Interpretable Ranking with Constrained LambdaMART | https://arxiv.org/pdf/2206.00473.pdf |
| Integrating Co-Clustering and Interpretable Machine Learning for the Prediction of Intravenous Immunoglobulin Resistance in Kawasaki Disease | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9097874 |
| Distilling Reinforcement Learning Policies for Interpretable Robot Locomotion: Gradient Boosting Machines and Symbolic Regression | https://arxiv.org/pdf/2403.14328 |
| Proxy Endpoints - Bridging clinical trials and real world data | https://deliverypdf.ssrn.com/delivery.php?ID=100104064008112111075114086019087126028049030043069035029115016108019006060084089121082084037060084007106031067094003062092094027085086025068093071031052079088007024075059029108100000124020112107075035009017105116086086122095064020024067066064103085015070113092118127102118080007103101&EXT=pdf&INDEX=TRUE |
| Application of boosted trees to the prognosis prediction of COVID‐19 | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111612/pdf/HSR2-7-e2104.pdf |
| Explainable Gradient Boosting for Corporate Crisis Forecasting in Italian Businesses | https://assets-eu.researchsquare.com/files/rs-4426436/v1_covered_0583163e-fa83-4b34-9a7e-eae573b17bd8.pdf?c=1715832940 |
| Revisiting differentially private XGBoost: Are random decision trees really better than greedy ones? | https://openreview.net/pdf?id=bCynxWndWY |
| Investigating Trust in Human-Machine Learning Collaboration: A Pilot Study on Estimating Public Anxiety from Speech | https://dl.acm.org/doi/pdf/10.1145/3462244.3479926 |
| pureGAM: Learning an Inherently Pure Additive Model | https://www.microsoft.com/en-us/research/uploads/prod/2022/07/pureGAM-camera-ready.pdf |
| GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions | https://arxiv.org/pdf/2003.07132v1.pdf |
| Interpretable Machine Learning based on Functional ANOVA Framework: Algorithms and Comparisons | https://arxiv.org/ftp/arxiv/papers/2305/2305.15670.pdf |
| Using Model-Based Trees with Boosting to Fit Low-Order Functional ANOVA Models | https://arxiv.org/ftp/arxiv/papers/2207/2207.06950.pdf |
| Interpretable generalized additive neural networks | https://pdf.sciencedirectassets.com/271700/AIP/1-s2.0-S0377221723005027/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEOX%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCIQDYA80LSoQY%2FmGTGsi8cQ2BzHoFU7410ljuYQwqt9ht0gIgBg4NSEN4e5jKUouf04uZCPIMh8NHH22jrY3opOG%2Fa1wqsgUIXhAFGgwwNTkwMDM1NDY4NjUiDFuCZlUMsD25uY5h3CqPBW0KcZyo1I0j19n0O26WHoCoxeimG0I7m02rUpQug4EiDYFVkx%2FRqfC4eL2Y0z7iO%2B95NIQ9UrOd3zWWZZPGpKCgHpU1GA4JwHSKNJDi8G2q%2FGm18%2Fl8B9jN4Lq3klUfU3HcjJh%2B4O1aZTJb3PmqDxKn%2BFQIftfS13xNcyqGnGBlw3yaSp3ZXoV55tKSX6b%2Fp5ZuXWORWiC2JlANxa0exR%2FkBeE75gfILdU8bH2TJ1wozoB0yTZwDAl1%2Bc4exGhVdhZRpvr9W6q%2BTG4tx6qhglAwv1uUQN8Zt1z8GEFHMTrtSv5pNJIpLqqMxp62UeufPMesYyoO5RfKjRS96PxYs1S%2FC5zfz0V63kkFtmSVn4IzVQ%2B9tLq%2FEWQ3BvTs8B0cH%2FOm6W8wn4nGk3HywJiUWvGexXahMqDW9o2pq7CWOSoFCKjjkOyxBXAzP0OX5LeCCgOF11BbhNcDSiIqlWQhqsk0738appUu99Yh12XmMWyu6YXAv1jvgrpaliMRkliAu9by418e6%2FBBA%2B%2BfcDQC3VkEv3NpSQklitMaIT2Y624jhM09ntjdC4IcONNRVE3Q5sHIh6DZsBHrPj9oKqpu9nPKnDBrKoAFdnQ%2BkLQ%2B8JAXyCHwd3YBUXQStlYTpUExESOnFFJ36HGJ%2FbkkFC5Ac9W%2BALq%2FkBYIvtPFNBWIGUSC%2BUgSH0kC%2BJqoyYUNHjfYZ3fxCDwI%2BAugNT3UtXtT%2BrnCKlH3f68ZAyOdkFLiHRQevc2%2FRBXJ5gAqCgZFDUVM%2BVjgB%2BInE458PRMxLuRwFHJarOqZhoDvC68ar2q3YDPyqmyUZxaiVrqn2xlJGdh0lcTVwNourzqlY2l4v87nYm7ncxJO%2FiiBQArtSRTOWmkw6JigpQY6sQEhgDdw23Gwj9rSPFlCHfUzj%2B%2BfdgeX3LZpuPITkl6%2BYwjKw0wXpR4c0Rj0IsCH1EAxJcxSLXhSSHgInlZR41EreEAByudeYNtxD0iAQcR3L4RlqTVuI6V3IIcxNltdg5rDAJwUqsGqhMrZOH0uJqQXvLJwxgfkOkckdjdnrfT%2FmOh%2BNjLCR4KTvwTJIC2YAmNHQco2TLKbC27i118DSoKwrYUvb%2BkCTwD3TMkxIf%2BrW5s%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20230707T133754Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYTYKBXRE7%2F20230707%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=389ecd144af85f4eae42ab9684f9d56696191a9d8d33c44386ee6af520187724&hash=e798cbd4d80d01d56a2a1ea75a3947b027daecaea5f6e6674a1dc2dbea97dab3&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0377221723005027&tid=spdf-79e45837-627e-4a9f-88f5-7359ecb4ca63&sid=7e54333b754ff04056483e557e54be0269ddgxrqa&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=0b1a5101565e5607565a&rr=7e307c188e87e7cb&cc=mx |
| A Concept and Argumentation based Interpretable Model in High Risk Domains | https://arxiv.org/pdf/2208.08149.pdf |
| Analyzing the Differences between Professional and Amateur Esports through Win Probability | https://dl.acm.org/doi/pdf/10.1145/3485447.3512277 |
| Explainable machine learning with pairwise interactions for the classification of Parkinson’s disease and SWEDD from clinical and imaging features | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132761/pdf/11682_2022_Article_688.pdf |
| Interpretable Prediction of Goals in Soccer | https://statsbomb.com/wp-content/uploads/2019/10/decroos-interpretability-statsbomb.pdf |
| Extending the Tsetlin Machine with Integer-Weighted Clauses for Increased Interpretability | https://arxiv.org/pdf/2005.05131.pdf |
| In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction | https://arxiv.org/pdf/2005.04176.pdf |
| From Shapley Values to Generalized Additive Models and back | https://arxiv.org/pdf/2209.04012.pdf |
| Developing A Visual-Interactive Interface for Electronic Health Record Labeling | https://arxiv.org/pdf/2209.12778.pdf |
| Development and Validation of an Interpretable 3-day Intensive Care Unit Readmission Prediction Model Using Explainable Boosting Machines | https://www.medrxiv.org/content/10.1101/2021.11.01.21265700v1.full.pdf |
| EPS: An Explainable Post-Shot Expected Goal Metric for Evaluating Goalkeepers and Attackers | https://hal.science/hal-05258651/ |
| Prediction of surface rougness of additively manufactured and machined parts via machine learning | https://open.metu.edu.tr/handle/11511/115643 |
| Development of Explainable Machine Learning Models to Predict Outcomes After Platelet-Rich Plasma Injections for Knee Osteoarthritis | https://journals.sagepub.com/doi/full/10.1177/23259671251349743 |
| Transparent Machine Learning: Training and Refining an Explainable Boosting Machine to Identify Overshooting Tops in Satellite Imagery | https://arxiv.org/pdf/2507.03183 |
| Death by Round Numbers and Sharp Thresholds: How to Avoid Dangerous AI EHR Recommendations | https://www.medrxiv.org/content/10.1101/2022.04.30.22274520v1.full.pdf |
| Building a predictive model to identify clinical indicators for COVID-19 using machine learning method | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037972/pdf/11517_2022_Article_2568.pdf |
| Using Innovative Machine Learning Methods to Screen and Identify Predictors of Congenital Heart Diseases | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777022/pdf/fcvm-08-797002.pdf |
| Impact of Accuracy on Model Interpretations | https://arxiv.org/pdf/2011.09903.pdf |
| Machine Learning Algorithms for Identifying Dependencies in OT Protocols | https://www.mdpi.com/1996-1073/16/10/4056 |
| Causal Understanding of Why Users Share Hate Speech on Social Media | https://arxiv.org/pdf/2310.15772.pdf |
| Explainable Boosting Machine: A Contemporary Glass-Box Model to Analyze Work Zone-Related Road Traffic Crashes | https://www.mdpi.com/2313-576X/9/4/83 |
| Efficient and Interpretable Traffic Destination Prediction using Explainable Boosting Machines | https://arxiv.org/pdf/2402.03457.pdf |
| Explainable Artificial Intelligence Paves the Way in Precision Diagnostics and Biomarker Discovery for the Subclass of Diabetic Retinopathy in Type 2 Diabetics | https://www.mdpi.com/2218-1989/13/12/1204 |
| A proposed tree-based explainable artificial intelligence approach for the prediction of angina pectoris | https://www.nature.com/articles/s41598-023-49673-2 |
| Explainable Boosting Machine: A Contemporary Glass-Box Strategy for the Assessment of Wind Shear Severity in the Runway Vicinity Based on the Doppler Light Detection and Ranging Data | https://www.mdpi.com/2073-4433/15/1/20 |
| On the Physical Nature of Lya Transmission Spikes in High Redshift Quasar Spectra | https://arxiv.org/pdf/2401.04762.pdf |
| GRAND-SLAMIN’ Interpretable Additive Modeling with Structural Constraints | https://openreview.net/pdf?id=F5DYsAc7Rt |
| Identification of groundwater potential zones in data-scarce mountainous region using explainable machine learning | https://www.sciencedirect.com/science/article/pii/S0022169423013598 |
| Explainable Classification Techniques for Quantum Dot Device Measurements | https://arxiv.org/pdf/2402.13699v1.pdf |
| https://patch-diff.githubusercontent.com/interpretml/interpret#books-that-cover-ebms |
| Machine Learning for High-Risk Applications | https://www.oreilly.com/library/view/machine-learning-for/9781098102425/ |
| Explainable AI with Python | https://www.amazon.com/Explainable-AI-Python-Antonio-Cecco/dp/303192228X/ref=sr_1_1?crid=1D8M7T61VP2N9&dib=eyJ2IjoiMSJ9.Yuoa4g8YohqY3C8Umi1E0qOZfUgATZQR2GpBnxVUHuwvH1ml3gkgioEHWOHqod3AQtc8jPXxX6KvFVjsjuN3oZUzw8k5XALdGIsx8bk6ZCT4yRNEX8vgJHjhf7oVFRdbSvsRAWcDem2GI4I8F0xawxpgxYvpNDCzk9J8-FmIxeMN0tMST89WbTVTNO30crxXj5gok1PuZV_1IxYa6tyVhmtGlesWHcewNG0h7wfMIbk.FAlg6RW_KFog7rTG2O5z0425E88Z20EHAqSM2deROyI&dib_tag=se&keywords=Explainable+AI+with+Python&qid=1754559323&sprefix=%2Caps%2C147&sr=8-1 |
| Interpretable Machine Learning with Python | https://www.amazon.com/Interpretable-Machine-Learning-Python-hands-dp-180323542X/dp/180323542X/ |
| Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning | https://www.amazon.com/Explainable-Artificial-Intelligence_-An-Introduction-to-Interpretable-XAI/dp/3030833550 |
| Applied Machine Learning Explainability Techniques | https://www.amazon.com/Applied-Machine-Learning-Explainability-Techniques/dp/1803246154 |
| The eXplainable A.I.: With Python examples | https://www.amazon.com/eXplainable-I-Python-examples-ebook/dp/B0B4F98MN6 |
| Platform and Model Design for Responsible AI: Design and build resilient, private, fair, and transparent machine learning models | https://www.amazon.com/Platform-Model-Design-Responsible-transparent/dp/1803237074 |
| Explainable AI Recipes | https://www.amazon.com/Explainable-Recipes-Implement-Explainability-Interpretability-ebook/dp/B0BSF5NBY7 |
| Ensemble Methods for Machine Learning | https://www.amazon.com/Ensemble-Methods-Machine-Learning-Kunapuli/dp/1617297135 |
| Interpretability and Explainability in AI Using Python | https://www.amazon.com/Interpretability-Explainability-Using-Python-Decision-Making/dp/B0F536GGT5/ref=sr_1_1?crid=5QJBMJKZOJ4H&dib=eyJ2IjoiMSJ9.oiAm3_DaQcHqA3YNRGrC70d1KcpeDZReI29ATLUdCe0VWb6wKLo-U1iLlyW24-u0SIdRxce8m_E1urP9pl-Qwjm9JSfu6l8nX3Ws9itlpXw.AJkX9wz_VBTb3OSeiW22Fbt2NCI3_kM7zJ_TCTUcbt0&dib_tag=se&keywords=interpretability+and+explainability+in+ai&qid=1748138569&sprefix=interpretability+and+explainability+in+ai%2Caps%2C175&sr=8-1 |
| https://patch-diff.githubusercontent.com/interpretml/interpret#external-tools |
| R package for building EBMs through reticulate | https://github.com/bgreenwell/ebm |
| EBM to Onnx converter by SoftAtHome | https://github.com/interpretml/ebm2onnx |
| EBM to SQL converter - ML 2 SQL | https://github.com/kaspersgit/ml_2_sql |
| EBM to PMML converter - SkLearn2PMML | https://github.com/jpmml/sklearn2pmml |
| EBM visual editor - GAM Changer | https://github.com/interpretml/gam-changer |
| Interpreting Visual Clusters in Dimensionality Reduction - DimVis | https://github.com/parisa-salmanian/DimVis |
| https://patch-diff.githubusercontent.com/interpretml/interpret#contact-us |
| https://patch-diff.githubusercontent.com/interpretml/interpret#if-a-tree-fell-in-your-random-forest-would-anyone-notice |
| interpret.ml/docs | https://interpret.ml/docs |
|
machine-learning
| https://patch-diff.githubusercontent.com/topics/machine-learning |
|
ai
| https://patch-diff.githubusercontent.com/topics/ai |
|
scikit-learn
| https://patch-diff.githubusercontent.com/topics/scikit-learn |
|
artificial-intelligence
| https://patch-diff.githubusercontent.com/topics/artificial-intelligence |
|
transparency
| https://patch-diff.githubusercontent.com/topics/transparency |
|
blackbox
| https://patch-diff.githubusercontent.com/topics/blackbox |
|
bias
| https://patch-diff.githubusercontent.com/topics/bias |
|
differential-privacy
| https://patch-diff.githubusercontent.com/topics/differential-privacy |
|
gradient-boosting
| https://patch-diff.githubusercontent.com/topics/gradient-boosting |
|
interpretability
| https://patch-diff.githubusercontent.com/topics/interpretability |
|
interpretable-ai
| https://patch-diff.githubusercontent.com/topics/interpretable-ai |
|
interpretable-ml
| https://patch-diff.githubusercontent.com/topics/interpretable-ml |
|
explainable-ai
| https://patch-diff.githubusercontent.com/topics/explainable-ai |
|
explainable-ml
| https://patch-diff.githubusercontent.com/topics/explainable-ml |
|
xai
| https://patch-diff.githubusercontent.com/topics/xai |
|
interpretable-machine-learning
| https://patch-diff.githubusercontent.com/topics/interpretable-machine-learning |
|
iml
| https://patch-diff.githubusercontent.com/topics/iml |
|
explainability
| https://patch-diff.githubusercontent.com/topics/explainability |
|
interpretml
| https://patch-diff.githubusercontent.com/topics/interpretml |
|
Readme
| https://patch-diff.githubusercontent.com/interpretml/interpret#readme-ov-file |
|
MIT license
| https://patch-diff.githubusercontent.com/interpretml/interpret#MIT-1-ov-file |
|
Contributing
| https://patch-diff.githubusercontent.com/interpretml/interpret#contributing-ov-file |
| Please reload this page | https://patch-diff.githubusercontent.com/interpretml/interpret |
|
Activity | https://patch-diff.githubusercontent.com/interpretml/interpret/activity |
|
Custom properties | https://patch-diff.githubusercontent.com/interpretml/interpret/custom-properties |
|
6.8k
stars | https://patch-diff.githubusercontent.com/interpretml/interpret/stargazers |
|
142
watching | https://patch-diff.githubusercontent.com/interpretml/interpret/watchers |
|
771
forks | https://patch-diff.githubusercontent.com/interpretml/interpret/forks |
|
Report repository
| https://patch-diff.githubusercontent.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2Finterpretml%2Finterpret&report=interpretml+%28user%29 |
| Releases
62 | https://patch-diff.githubusercontent.com/interpretml/interpret/releases |
|
Version 0.7.4
Latest
Dec 11, 2025
| https://patch-diff.githubusercontent.com/interpretml/interpret/releases/tag/v0.7.4 |
| + 61 releases | https://patch-diff.githubusercontent.com/interpretml/interpret/releases |
| Packages
0 | https://patch-diff.githubusercontent.com/orgs/interpretml/packages?repo_name=interpret |
| Used by 916 | https://patch-diff.githubusercontent.com/interpretml/interpret/network/dependents |
|
+ 908
| https://patch-diff.githubusercontent.com/interpretml/interpret/network/dependents |
| Contributors
47 | https://patch-diff.githubusercontent.com/interpretml/interpret/graphs/contributors |
| Please reload this page | https://patch-diff.githubusercontent.com/interpretml/interpret |
| + 33 contributors | https://patch-diff.githubusercontent.com/interpretml/interpret/graphs/contributors |
|
C++
59.8%
| https://patch-diff.githubusercontent.com/interpretml/interpret/search?l=c%2B%2B |
|
Python
34.3%
| https://patch-diff.githubusercontent.com/interpretml/interpret/search?l=python |
|
Shell
2.1%
| https://patch-diff.githubusercontent.com/interpretml/interpret/search?l=shell |
|
C
1.2%
| https://patch-diff.githubusercontent.com/interpretml/interpret/search?l=c |
|
R
0.7%
| https://patch-diff.githubusercontent.com/interpretml/interpret/search?l=r |
|
Cuda
0.4%
| https://patch-diff.githubusercontent.com/interpretml/interpret/search?l=cuda |
|
| https://github.com |
| Terms | https://docs.github.com/site-policy/github-terms/github-terms-of-service |
| Privacy | https://docs.github.com/site-policy/privacy-policies/github-privacy-statement |
| Security | https://github.com/security |
| Status | https://www.githubstatus.com/ |
| Community | https://github.community/ |
| Docs | https://docs.github.com/ |
| Contact | https://support.github.com?tags=dotcom-footer |