Title: Branches · danielscarvalho/pythonNNexample · GitHub
Open Graph Title: Branches · danielscarvalho/pythonNNexample
X Title: Branches · danielscarvalho/pythonNNexample
Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates the exclusive OR function with two inputs and one output. - Branches · danielscarvalho/pythonNNexample
Open Graph Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th...
X Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th...
Opengraph URL: https://github.com/danielscarvalho/pythonNNexample
X: @github
Domain: patch-diff.githubusercontent.com
| route-pattern | /:user_id/:repository/branches(.:format) |
| route-controller | branches |
| route-action | index |
| fetch-nonce | v2:24981002-b400-2375-dc92-ee9fc12b3b94 |
| current-catalog-service-hash | 82c569b93da5c18ed649ebd4c2c79437db4611a6a1373e805a3cb001c64130b7 |
| request-id | DF44:4FC34:D64C96:123CCA8:6981291E |
| html-safe-nonce | e3138e3bd4138ac102fc5968d4364f9804d3d1aa13e11200ce58ddd02ff2cc8c |
| visitor-payload | eyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJERjQ0OjRGQzM0OkQ2NEM5NjoxMjNDQ0E4OjY5ODEyOTFFIiwidmlzaXRvcl9pZCI6IjU0NzY2OTAzNzYzMjI1MjU0NzAiLCJyZWdpb25fZWRnZSI6ImlhZCIsInJlZ2lvbl9yZW5kZXIiOiJpYWQifQ== |
| visitor-hmac | 334a250360c553c1218685568d5a43568ef8b5744d06194e1aec178d5e62251d |
| hovercard-subject-tag | repository:87107803 |
| github-keyboard-shortcuts | repository,copilot |
| google-site-verification | Apib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I |
| octolytics-url | https://collector.github.com/github/collect |
| analytics-location | / |
| fb:app_id | 1401488693436528 |
| apple-itunes-app | app-id=1477376905, app-argument=https://github.com/danielscarvalho/pythonNNexample/branches |
| twitter:image | https://opengraph.githubassets.com/2723390976b1b92b1f4e495a4846637610544f51ec5a3f7c6cf9de17a2a20248/danielscarvalho/pythonNNexample |
| twitter:card | summary_large_image |
| og:image | https://opengraph.githubassets.com/2723390976b1b92b1f4e495a4846637610544f51ec5a3f7c6cf9de17a2a20248/danielscarvalho/pythonNNexample |
| og:image:alt | Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th... |
| og:image:width | 1200 |
| og:image:height | 600 |
| og:site_name | GitHub |
| og:type | object |
| hostname | github.com |
| expected-hostname | github.com |
| None | 39fe8101494cbb823c09b619b68c80cd4d05ab7279997038dbe06bb91608abe1 |
| turbo-cache-control | no-cache |
| go-import | github.com/danielscarvalho/pythonNNexample git https://github.com/danielscarvalho/pythonNNexample.git |
| octolytics-dimension-user_id | 916663 |
| octolytics-dimension-user_login | danielscarvalho |
| octolytics-dimension-repository_id | 87107803 |
| octolytics-dimension-repository_nwo | danielscarvalho/pythonNNexample |
| octolytics-dimension-repository_public | true |
| octolytics-dimension-repository_is_fork | true |
| octolytics-dimension-repository_parent_id | 70839196 |
| octolytics-dimension-repository_parent_nwo | stmorgan/pythonNNexample |
| octolytics-dimension-repository_network_root_id | 70839196 |
| octolytics-dimension-repository_network_root_nwo | stmorgan/pythonNNexample |
| turbo-body-classes | logged-out env-production page-responsive |
| disable-turbo | false |
| browser-stats-url | https://api.github.com/_private/browser/stats |
| browser-errors-url | https://api.github.com/_private/browser/errors |
| release | d5b34a4e4898b066c629879feb4b184bc471d6a7 |
| ui-target | full |
| theme-color | #1e2327 |
| color-scheme | light dark |
Links:
Viewport: width=device-width