| route-pattern | /:user_id/:repository |
| route-controller | files |
| route-action | disambiguate |
| fetch-nonce | v2:44478376-5573-16bd-4190-5cbd72d1622f |
| current-catalog-service-hash | f3abb0cc802f3d7b95fc8762b94bdcb13bf39634c40c357301c4aa1d67a256fb |
| request-id | EE20:367630:1BE3FFD:271CD4F:696F715E |
| html-safe-nonce | e50daaed9b5d3df88a5540e56d2ad8f6bf7825bd9b1769e31b02157587708d2b |
| visitor-payload | eyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJFRTIwOjM2NzYzMDoxQkUzRkZEOjI3MUNENEY6Njk2RjcxNUUiLCJ2aXNpdG9yX2lkIjoiNTQwMjQ3MDI5MjAxOTcwNDE1OCIsInJlZ2lvbl9lZGdlIjoiaWFkIiwicmVnaW9uX3JlbmRlciI6ImlhZCJ9 |
| visitor-hmac | bd86ce4574c1086a5bf6b365dfcdc3b5b2d95ee2d2d6c989b44db5aa9fbfe052 |
| hovercard-subject-tag | repository:155047817 |
| github-keyboard-shortcuts | repository,copilot |
| google-site-verification | Apib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I |
| octolytics-url | https://collector.github.com/github/collect |
| analytics-location | // |
| fb:app_id | 1401488693436528 |
| apple-itunes-app | app-id=1477376905, app-argument=https://github.com/dade68/DeepLearning |
| twitter:image | https://opengraph.githubassets.com/2db0aec0b397e19ebe24fc40d772226dae744a82e5a2c75801ef8c4454c27a97/dade68/DeepLearning |
| twitter:card | summary_large_image |
| og:image | https://opengraph.githubassets.com/2db0aec0b397e19ebe24fc40d772226dae744a82e5a2c75801ef8c4454c27a97/dade68/DeepLearning |
| og:image:alt | 深度学习入门教程. Contribute to dade68/DeepLearning development by creating an account on GitHub. |
| og:image:width | 1200 |
| og:image:height | 600 |
| og:site_name | GitHub |
| og:type | object |
| hostname | github.com |
| expected-hostname | github.com |
| None | acc7f8c2e144976eeb6e7a73826049dd183bc572ccf5eaa9afb8265c617a97ab |
| turbo-cache-control | no-preview |
| go-import | github.com/dade68/DeepLearning git https://github.com/dade68/DeepLearning.git |
| octolytics-dimension-user_id | 31893485 |
| octolytics-dimension-user_login | dade68 |
| octolytics-dimension-repository_id | 155047817 |
| octolytics-dimension-repository_nwo | dade68/DeepLearning |
| octolytics-dimension-repository_public | true |
| octolytics-dimension-repository_is_fork | true |
| octolytics-dimension-repository_parent_id | 128796920 |
| octolytics-dimension-repository_parent_nwo | Mikoto10032/DeepLearning |
| octolytics-dimension-repository_network_root_id | 128796920 |
| octolytics-dimension-repository_network_root_nwo | Mikoto10032/DeepLearning |
| turbo-body-classes | logged-out env-production page-responsive |
| disable-turbo | false |
| browser-stats-url | https://api.github.com/_private/browser/stats |
| browser-errors-url | https://api.github.com/_private/browser/errors |
| release | cc546a224d6d4726a8d7c3a0dfe0cf65dbf9b7bd |
| ui-target | full |
| theme-color | #1e2327 |
| color-scheme | light dark |
| Skip to content | https://patch-diff.githubusercontent.com/dade68/DeepLearning#start-of-content |
|
| https://patch-diff.githubusercontent.com/ |
|
Sign in
| https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2Fdade68%2FDeepLearning |
| GitHub CopilotWrite better code with AI | https://github.com/features/copilot |
| GitHub SparkBuild and deploy intelligent apps | https://github.com/features/spark |
| GitHub ModelsManage and compare prompts | https://github.com/features/models |
| MCP RegistryNewIntegrate external tools | https://github.com/mcp |
| ActionsAutomate any workflow | https://github.com/features/actions |
| CodespacesInstant dev environments | https://github.com/features/codespaces |
| IssuesPlan and track work | https://github.com/features/issues |
| Code ReviewManage code changes | https://github.com/features/code-review |
| GitHub Advanced SecurityFind and fix vulnerabilities | https://github.com/security/advanced-security |
| Code securitySecure your code as you build | https://github.com/security/advanced-security/code-security |
| Secret protectionStop leaks before they start | https://github.com/security/advanced-security/secret-protection |
| Why GitHub | https://github.com/why-github |
| Documentation | https://docs.github.com |
| Blog | https://github.blog |
| Changelog | https://github.blog/changelog |
| Marketplace | https://github.com/marketplace |
| View all features | https://github.com/features |
| Enterprises | https://github.com/enterprise |
| Small and medium teams | https://github.com/team |
| Startups | https://github.com/enterprise/startups |
| Nonprofits | https://github.com/solutions/industry/nonprofits |
| App Modernization | https://github.com/solutions/use-case/app-modernization |
| DevSecOps | https://github.com/solutions/use-case/devsecops |
| DevOps | https://github.com/solutions/use-case/devops |
| CI/CD | https://github.com/solutions/use-case/ci-cd |
| View all use cases | https://github.com/solutions/use-case |
| Healthcare | https://github.com/solutions/industry/healthcare |
| Financial services | https://github.com/solutions/industry/financial-services |
| Manufacturing | https://github.com/solutions/industry/manufacturing |
| Government | https://github.com/solutions/industry/government |
| View all industries | https://github.com/solutions/industry |
| View all solutions | https://github.com/solutions |
| AI | https://github.com/resources/articles?topic=ai |
| Software Development | https://github.com/resources/articles?topic=software-development |
| DevOps | https://github.com/resources/articles?topic=devops |
| Security | https://github.com/resources/articles?topic=security |
| View all topics | https://github.com/resources/articles |
| Customer stories | https://github.com/customer-stories |
| Events & webinars | https://github.com/resources/events |
| Ebooks & reports | https://github.com/resources/whitepapers |
| Business insights | https://github.com/solutions/executive-insights |
| GitHub Skills | https://skills.github.com |
| Documentation | https://docs.github.com |
| Customer support | https://support.github.com |
| Community forum | https://github.com/orgs/community/discussions |
| Trust center | https://github.com/trust-center |
| Partners | https://github.com/partners |
| GitHub SponsorsFund open source developers | https://github.com/sponsors |
| Security Lab | https://securitylab.github.com |
| Maintainer Community | https://maintainers.github.com |
| Accelerator | https://github.com/accelerator |
| Archive Program | https://archiveprogram.github.com |
| Topics | https://github.com/topics |
| Trending | https://github.com/trending |
| Collections | https://github.com/collections |
| Enterprise platformAI-powered developer platform | https://github.com/enterprise |
| GitHub Advanced SecurityEnterprise-grade security features | https://github.com/security/advanced-security |
| Copilot for BusinessEnterprise-grade AI features | https://github.com/features/copilot/copilot-business |
| Premium SupportEnterprise-grade 24/7 support | https://github.com/premium-support |
| Pricing | https://github.com/pricing |
| Search syntax tips | https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax |
| documentation | https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax |
|
Sign in
| https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2Fdade68%2FDeepLearning |
|
Sign up
| https://patch-diff.githubusercontent.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=dade68%2FDeepLearning |
| Reload | https://patch-diff.githubusercontent.com/dade68/DeepLearning |
| Reload | https://patch-diff.githubusercontent.com/dade68/DeepLearning |
| Reload | https://patch-diff.githubusercontent.com/dade68/DeepLearning |
|
dade68
| https://patch-diff.githubusercontent.com/dade68 |
| DeepLearning | https://patch-diff.githubusercontent.com/dade68/DeepLearning |
| Mikoto10032/DeepLearning | https://patch-diff.githubusercontent.com/Mikoto10032/DeepLearning |
|
Notifications
| https://patch-diff.githubusercontent.com/login?return_to=%2Fdade68%2FDeepLearning |
|
Fork
0
| https://patch-diff.githubusercontent.com/login?return_to=%2Fdade68%2FDeepLearning |
|
Star
0
| https://patch-diff.githubusercontent.com/login?return_to=%2Fdade68%2FDeepLearning |
|
Apache-2.0 license
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/blob/master/LICENSE |
|
0
stars
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/stargazers |
|
3.9k
forks
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/forks |
|
Branches
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/branches |
|
Tags
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/tags |
|
Activity
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/activity |
|
Star
| https://patch-diff.githubusercontent.com/login?return_to=%2Fdade68%2FDeepLearning |
|
Notifications
| https://patch-diff.githubusercontent.com/login?return_to=%2Fdade68%2FDeepLearning |
|
Code
| https://patch-diff.githubusercontent.com/dade68/DeepLearning |
|
Pull requests
0
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/pulls |
|
Actions
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/actions |
|
Projects
0
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/projects |
|
Wiki
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/wiki |
|
Security
Uh oh!
There was an error while loading. Please reload this page.
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/security |
| Please reload this page | https://patch-diff.githubusercontent.com/dade68/DeepLearning |
|
Insights
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/pulse |
|
Code
| https://patch-diff.githubusercontent.com/dade68/DeepLearning |
|
Pull requests
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/pulls |
|
Actions
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/actions |
|
Projects
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/projects |
|
Wiki
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/wiki |
|
Security
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/security |
|
Insights
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/pulse |
| Branches | https://patch-diff.githubusercontent.com/dade68/DeepLearning/branches |
| Tags | https://patch-diff.githubusercontent.com/dade68/DeepLearning/tags |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/branches |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/tags |
| 310 Commits | https://patch-diff.githubusercontent.com/dade68/DeepLearning/commits/master/ |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning/commits/master/ |
| Projects/TransferLearning | https://patch-diff.githubusercontent.com/dade68/DeepLearning/tree/master/Projects/TransferLearning |
| Projects/TransferLearning | https://patch-diff.githubusercontent.com/dade68/DeepLearning/tree/master/Projects/TransferLearning |
| books | https://patch-diff.githubusercontent.com/dade68/DeepLearning/tree/master/books |
| books | https://patch-diff.githubusercontent.com/dade68/DeepLearning/tree/master/books |
| notes | https://patch-diff.githubusercontent.com/dade68/DeepLearning/tree/master/notes |
| notes | https://patch-diff.githubusercontent.com/dade68/DeepLearning/tree/master/notes |
| LICENSE | https://patch-diff.githubusercontent.com/dade68/DeepLearning/blob/master/LICENSE |
| LICENSE | https://patch-diff.githubusercontent.com/dade68/DeepLearning/blob/master/LICENSE |
| README.md | https://patch-diff.githubusercontent.com/dade68/DeepLearning/blob/master/README.md |
| README.md | https://patch-diff.githubusercontent.com/dade68/DeepLearning/blob/master/README.md |
| README | https://patch-diff.githubusercontent.com/dade68/DeepLearning |
| Apache-2.0 license | https://patch-diff.githubusercontent.com/dade68/DeepLearning |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#deeplearning |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#入门资料 |
| 1. 《深度学习》 Yoshua Bengio.Ian GoodFellow | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0.Yoshua%20Bengio%2BIan%20GoodFellow.pdf |
| 2. 《机器学习》 周志华 | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%91%A8%E5%BF%97%E5%8D%8E.pdf |
| 3. 《神经网络与深度学习》 Michael Nielsen | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E5%92%8C%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0neural%20networks%20and%20deep-learning-%E4%B8%AD%E6%96%87_ALL.pdf |
| 4. 《斯坦福大学深度学习基础教程》 Andrew Ng(吴恩达) | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E6%96%AF%E5%9D%A6%E7%A6%8F%E5%A4%A7%E5%AD%A6-%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E5%9F%BA%E7%A1%80%E6%95%99%E7%A8%8B.pdf |
| 5. 《模式识别与机器学习》 Christopher Bishop | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E6%A8%A1%E5%BC%8F%E8%AF%86%E5%88%AB%E4%B8%8E%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0PRML_Chinese_vision.pdf |
| 6. 《Tensorflow实战Google深度学习框架》 郑泽宇 顾思宇 | https://github.com/Mikoto10032/DeepLearning/blob/master/books/Tensorflow%20%E5%AE%9E%E6%88%98Google%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E6%A1%86%E6%9E%B6.pdf |
| 7. 《机器学习实战》 PelerHarrington | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%AE%9E%E6%88%98%20%E4%B8%AD%E6%96%87%E5%8F%8C%E9%A1%B5%E7%89%88.pdf |
| 8. 机器学习 吴恩达 cs229个人笔记 | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%5BML-CS229%5D%5B2011%5D%5BAndrew%20NG%5D/%5B2011%5D%E6%96%AF%E5%9D%A6%E7%A6%8F%E5%A4%A7%E5%AD%A6%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E8%AF%BE%E7%A8%8B%E4%B8%AA%E4%BA%BA%E7%AC%94.pdf |
| 官网(笔记) | http://cs229.stanford.edu/ |
| 视频(中文字幕) | http://open.163.com/special/opencourse/machinelearning.html |
| 9. 机器学习 吴恩达 Coursera个人笔记 | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%5BML-Coursera%5D%5B2014%5D%5BAndrew%20Ng%5D/%5B2014%5D%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E4%B8%AA%E4%BA%BA%E7%AC%94%E8%AE%B0%E5%AE%8C%E6%95%B4%E7%89%88v5.1.pdf |
| 视频(含官方笔记) | https://www.coursera.org/learn/machine-learning |
| 10. 深度学习 吴恩达 个人笔记 | http://www.ai-start.com/dl2017/ |
| 视频 | http://mooc.study.163.com/smartSpec/detail/1001319001.htm |
| 11. 深度学习 李飞飞 已授权个人翻译笔记 | https://zhuanlan.zhihu.com/p/21930884 |
| 视频 | http://study.163.com/course/courseMain.htm?courseId=1003223001 |
| 12. 台湾大学(NTU)李宏毅教授课程 | http://speech.ee.ntu.edu.tw/~tlkagk/index.html |
| 13. 《自然语言处理》Jacob Eisenstein | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80%E5%A4%84%E7%90%86.Jacob%20Eisenstein.pdf |
| 14. 《强化学习》 | https://github.com/Mikoto10032/DeepLearning/blob/master/books/Reinforcement%20Learning.Sutton.pdf |
| 15. hangdong的深度学习博客,论文推荐 | https://handong1587.github.io/categories.html#deep_learning-ref |
| 16. CS20:Tensorflow for DeepLearning Research | http://web.stanford.edu/class/cs20si/syllabus.html |
| 17. CS321-Hinton | http://www.cs.toronto.edu/~tijmen/csc321/ |
| 18. 深度学习思维导图 | https://github.com/dformoso/deeplearning-mindmap |
| 19. CS230: Deep Learning | https://web.stanford.edu/class/cs230/ |
| 20. CS294-112 | http://rail.eecs.berkeley.edu/deeprlcourse/resources/ |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#神经网络模型概览 |
| 1. 一文看懂25个神经网络模型 | https://blog.csdn.net/qq_35082030/article/details/73368962 |
| 2. DNN概述论文:详解前馈、卷积和循环神经网络技术 | https://zhuanlan.zhihu.com/p/29141828 |
| 3. colah's blog | http://colah.github.io/ |
| 4. Model Zoom | https://modelzoo.co/ |
| 5. DNN概述 | https://zhuanlan.zhihu.com/p/29141828 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#cnn |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#发展史 |
| 1. 94页论文综述卷积神经网络:从基础技术到研究前景 | https://zhuanlan.zhihu.com/p/35388569 |
| 2. 从LeNet-5到DenseNet | https://zhuanlan.zhihu.com/p/31006686 |
| 3. CNN图像分割简史:从R-CNN到Mask R-CNN(译) | https://zhuanlan.zhihu.com/p/26652657 |
| 4. 深度学习之目标检测的前世今生(Mask R-CNN) | https://zhuanlan.zhihu.com/p/32830206 |
| 5. 纵览轻量化卷积神经网络:SqueezeNet、MobileNet、ShuffleNet、Xception | https://zhuanlan.zhihu.com/p/32746221 |
| 6. 深度学习目标检测模型全面综述:Faster R-CNN、R-FCN和SSD | https://zhuanlan.zhihu.com/p/29434605 |
| 7. 图像语义分割(Semantic segmentation) Survey | https://zhuanlan.zhihu.com/p/36801104 |
| 7. 从RCNN到SSD,这应该是最全的一份目标检测算法盘点 | https://zhuanlan.zhihu.com/p/36184131 |
| 8. 图像语义分割(Semantic segmentation) Survey | https://zhuanlan.zhihu.com/p/36801104 |
| 9. 语义分割 发展综述 | https://zhuanlan.zhihu.com/p/37618829 |
| 深度学习分类网络 | https://blog.csdn.net/PeaceInMind/article/details/78079263 |
| 卷积神经网络结构演变(form Hubel and Wiesel to SENet) | https://zhuanlan.zhihu.com/p/34621135 |
| 从VGG到NASNet,一文概览图像分类网络 | https://zhuanlan.zhihu.com/p/35221368 |
| From RCNN to YOLO | https://patch-diff.githubusercontent.com/dade68/DeepLearning/blob/master |
| 上 | https://zhuanlan.zhihu.com/p/35724768 |
| 下 | https://zhuanlan.zhihu.com/p/35731743 |
| 后 R-CNN时代, Faster R-CNN、SSD、YOLO 各类变体统治下的目标检测综述:Faster R-CNN系列胜了吗? | https://zhuanlan.zhihu.com/p/38709522 |
| 目标检测-20种模型的原味代码汇总 | https://zhuanlan.zhihu.com/p/37056927 |
| 目标检测算法综述三部曲 | https://zhuanlan.zhihu.com/p/40047760 |
| 基于深度学习的目标检测算法综述(一)
| https://zhuanlan.zhihu.com/p/40047760 |
| 基于深度学习的目标检测算法综述(二) | https://zhuanlan.zhihu.com/p/40020809 |
| 基于深度学习的目标检测算法综述(三) | https://zhuanlan.zhihu.com/p/40102001 |
| 如何走近深度学习人脸识别?你需要这篇超长综述 | 附开源代码 | https://zhuanlan.zhihu.com/p/35295839 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#教程 |
| 卷积神经网络工作原理 | https://www.zhihu.com/question/39022858 |
| 变形卷积核、可分离卷积 | https://zhuanlan.zhihu.com/p/28749411 |
| 各种卷积 | https://www.cnblogs.com/cvtoEyes/p/8848815.html |
| 反卷积 | https://buptldy.github.io/2016/10/29/2016-10-29-deconv/ |
| Convolution Network及其变种(反卷积、扩展卷积、因果卷积、图卷积) | https://www.cnblogs.com/yangperasd/p/7071657.html |
| Dilated/Atrous conv 空洞卷积/多孔卷积 | https://blog.csdn.net/silence2015/article/details/79748729 |
| CNN模型之ShuffleNet | https://zhuanlan.zhihu.com/p/32304419 |
| 一文简述ResNet及其多种变体 | https://zhuanlan.zhihu.com/p/35985680 |
| ResNet解析 | https://blog.csdn.net/lanran2/article/details/79057994 |
| 将CNN引入目标检测的开山之作:R-CNN | https://zhuanlan.zhihu.com/p/23006190 |
| 深度学习(十八)基于R-CNN的物体检测 | https://blog.csdn.net/hjimce/article/details/50187029 |
| R-CNN论文详解 | https://blog.csdn.net/u014696921/article/details/52824097 |
| 深度学习(六十四)Faster R-CNN物体检测 | https://blog.csdn.net/hjimce/article/details/73382553 |
| 先理解Mask R-CNN的工作原理,然后构建颜色填充器应用 | https://zhuanlan.zhihu.com/p/34816076 |
| 人脸检测和识别算法综述 | https://patch-diff.githubusercontent.com/dade68/DeepLearning/blob/master |
| 人脸检测算法综述 | https://zhuanlan.zhihu.com/p/36621308 |
| 人脸检测背景介绍和发展现状 | https://zhuanlan.zhihu.com/p/32702868 |
| 人脸识别算法演化史 | https://zhuanlan.zhihu.com/p/36416906 |
| CascadeCNN | https://blog.csdn.net/shuzfan/article/details/50358809 |
| MTCNN | https://blog.csdn.net/qq_14845119/article/details/52680940 |
| 语义分割卷积神经网络快速入门 | https://blog.csdn.net/qq_20084101/article/details/80455877 |
| 图像语义分割的工作原理和CNN架构变迁 | https://zhuanlan.zhihu.com/p/38033032 |
| CapsNet入门系列 | http://mp.weixin.qq.com/s?__biz=MzI3ODkxODU3Mg==&mid=2247484099&idx=1&sn=97e209f1a9860c8d8c51e81d98fc8a0a&chksm=eb4ee600dc396f16624a33cdfc0ead905e62ae9447b49b20146020e6cbd7d71f089101512a40&scene=21#wechat_redirect |
| CapsNet入门系列之一:胶囊网络背后的直觉 | http://mp.weixin.qq.com/s?__biz=MzI3ODkxODU3Mg==&mid=2247484099&idx=1&sn=97e209f1a9860c8d8c51e81d98fc8a0a&chksm=eb4ee600dc396f16624a33cdfc0ead905e62ae9447b49b20146020e6cbd7d71f089101512a40&scene=21#wechat_redirect |
| CapsNet入门系列之二:胶囊如何工作 | http://mp.weixin.qq.com/s?__biz=MzI3ODkxODU3Mg==&mid=2247484165&idx=1&sn=0ca679e3a5f499f8d8addb405fe3df83&chksm=eb4ee7c6dc396ed0a330fcac12690110bcaf9a8a10794dbc5e1a326c69ecbb140140f55fd6ba&scene=21#wechat_redirect |
| CapsNet入门系列之三:囊间动态路由算法 | http://mp.weixin.qq.com/s?__biz=MzI3ODkxODU3Mg==&mid=2247484433&idx=1&sn=3afe4605bc2501eebbc41c6dd1af9572&chksm=eb4ee0d2dc3969c4619d6c1097d5c949c76c6c854e60d36eba4388da2c3855747818d062c90a&scene=21#wechat_redirect |
| CapsNet入门系列之四:胶囊网络架构 | https://mp.weixin.qq.com/s/6CRSen8P6zKaMGtX8IRfqw |
| YOLO | http://www.mamicode.com/info-detail-2314392.html |
| 目标检测|YOLOv2原理与实现(附YOLOv3) | https://zhuanlan.zhihu.com/p/35325884?group_id=966229905398362112 |
| 目标检测模型YOLO v3问世 | https://zhuanlan.zhihu.com/p/34995629 |
| Attention | http://www.cnblogs.com/shouhuxianjian/p/7903097.html |
| 1 | https://zhuanlan.zhihu.com/p/31547842 |
| 2 | https://blog.csdn.net/yideqianfenzhiyi/article/details/79422857 |
| 3 | https://blog.csdn.net/Wayne2019/article/details/78488142 |
| 4 | https://zhuanlan.zhihu.com/p/37601161 |
| 5 | https://blog.csdn.net/bvl10101111/article/details/78470716 |
| 一文读懂卷积神经网络中的1x1卷积核 | https://zhuanlan.zhihu.com/p/40050371 |
| 目标检测之CornerNet | https://arxiv.org/abs/1808.01244 |
| 1 | https://zhuanlan.zhihu.com/p/41825737 |
| 2 | https://blog.csdn.net/Hibercraft/article/details/81637451 |
| 3 | https://zhuanlan.zhihu.com/p/41759548 |
| 人群计数 | http://chuansong.me/n/443237851736 |
| 1 | https://www.cnblogs.com/wmr95/p/8134692.html |
| 2 | https://blog.csdn.net/u011285477/article/details/51954989 |
| 3 | https://blog.csdn.net/qingqingdeaini/article/details/79922549 |
| RelationNetwork | https://www.zhihu.com/question/60784169 |
| ShuffleNet V2和四个网络架构设计准则 | https://zhuanlan.zhihu.com/p/40980942 |
| 【Tensorflow】tf.nn.depthwise_conv2d如何实现深度卷积? | https://blog.csdn.net/mao_xiao_feng/article/details/78003476 |
| Tensorflow】tf.nn.atrous_conv2d如何实现空洞卷积? | https://blog.csdn.net/mao_xiao_feng/article/details/78003730 |
| 【Tensorflow】tf.nn.separable_conv2d如何实现深度可分卷积? | https://blog.csdn.net/mao_xiao_feng/article/details/78002811 |
| 【TensorFlow】tf.nn.conv2d_transpose是怎样实现反卷积的? | https://blog.csdn.net/mao_xiao_feng/article/details/71713358 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#action |
| 先读懂CapsNet架构然后用TensorFlow实现 | https://zhuanlan.zhihu.com/p/30753326 |
| TensorFlow Object Detection API 教程 | https://blog.csdn.net/qq_36148847/article/details/79306762 |
| TensorFlow 对象检测 API 教程1 | https://blog.csdn.net/qq_36148847/article/details/79306762 |
| TensorFlow 对象检测 API 教程2 | https://blog.csdn.net/qq_36148847/article/details/79307598 |
| TensorFlow 对象检测 API 教程3 | https://blog.csdn.net/qq_36148847/article/details/79307751 |
| TensorFlow 对象检测 API 教程 4 | https://blog.csdn.net/qq_36148847/article/details/79307931 |
| TensorFlow 对象检测 API 教程5 | https://blog.csdn.net/qq_36148847/article/details/79307933 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#gan |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#发展史-1 |
| 千奇百怪的GAN变体 | https://zhuanlan.zhihu.com/p/26491601 |
| The GAN Landscape:Losses, Architectures, Regularization, and Normalization | https://arxiv.org/pdf/1807.04720.pdf |
| 深度学习新星:GAN的基本原理、应用和走向 | https://www.leiphone.com/news/201701/Kq6FvnjgbKK8Lh8N.html |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#教程-1 |
| 1. GAN原理学习笔记 | https://zhuanlan.zhihu.com/p/27295635 |
| 2. 极端图像压缩的对抗生成网络 | https://zhuanlan.zhihu.com/p/35783437?group_id=969598777652420608 |
| 3. 台湾大学李宏毅GAN教程 | https://www.youtube.com/watch?v=0CKeqXl5IY0&feature=youtu.be |
| Basic | https://github.com/Mikoto10032/DeepLearning/blob/master/books/GAN-Basic%20Idea%20(2017.04.21).pdf |
| Improving | https://github.com/Mikoto10032/DeepLearning/blob/master/books/GAN-Improving%20GAN%20(2017.05.05).pdf |
| 4. 2017年GAN 计算机视觉相关paper汇总 | https://zhuanlan.zhihu.com/p/29882709 |
| 5. 在Keras上实现GAN:构建消除图片模糊的应用 | https://zhuanlan.zhihu.com/p/35030377 |
| 6. CycleGAN:图片风格,想换就换 | ICCV 2017论文解读 | https://zhuanlan.zhihu.com/p/34711316 |
| 7. Wasserstein GAN | https://zhuanlan.zhihu.com/p/25071913 |
| 用变分推断统一理解生成模型(VAE、GAN、AAE、ALI) | https://zhuanlan.zhihu.com/p/40105143 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#action-1 |
| 1. GAN学习指南:从原理入门到制作生成Demo | https://zhuanlan.zhihu.com/p/24767059 |
| 2. 机器之心GitHub项目:GAN完整理论推导与实现 | https://zhuanlan.zhihu.com/p/29837245 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#rnn |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#发展史-2 |
| 从90年代的SRNN开始,纵览循环神经网络27年的研究进展 | https://zhuanlan.zhihu.com/p/32668465 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#教程-2 |
| 完全图解RNN、RNN变体、Seq2Seq、Attention机制 | https://zhuanlan.zhihu.com/p/28054589 |
| 循环神经网络(RNN, Recurrent Neural Networks)介绍 | https://blog.csdn.net/heyongluoyao8/article/details/48636251 |
| RNN以及LSTM的介绍和公式梳理 | https://blog.csdn.net/Dark_Scope/article/details/47056361 |
| 深度学习其五 循环神经网络 | https://zybuluo.com/hanbingtao/note/541458 |
| 用循环神经网络进行文件无损压缩:斯坦福大学提出DeepZip | https://zhuanlan.zhihu.com/p/32582764 |
| 吴恩达序列建模课程 | https://patch-diff.githubusercontent.com/dade68/DeepLearning/blob/master |
| Coursera吴恩达《序列模型》课程笔记(1)-- 循环神经网络(RNN) | https://zhuanlan.zhihu.com/p/34309635 |
| Coursera吴恩达《序列模型》课程笔记(2)-- NLP & Word Embeddings | https://zhuanlan.zhihu.com/p/34975871 |
| Coursera吴恩达《序列模型》课程笔记(3)-- Sequence models & Attention mechanism | https://zhuanlan.zhihu.com/p/35532553 |
| Word2Vec | https://patch-diff.githubusercontent.com/dade68/DeepLearning/blob/master |
| word2vec原理(一) CBOW与Skip-Gram模型基础 | https://www.cnblogs.com/pinard/p/7160330.html |
| word2vec原理(二) 基于Hierarchical Softmax的模型 | http://www.cnblogs.com/pinard/p/7243513.html |
| word2vec原理(三) 基于Negative Sampling的模型 | http://www.cnblogs.com/pinard/p/7249903.html |
| 用gensim学习word2vec | http://www.cnblogs.com/pinard/p/7278324.html |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#action-2 |
| tensorflow中RNNcell源码分析以及自定义RNNCell的方法 | https://blog.csdn.net/liuchonge/article/details/78405185?locationNum=8&fps=1 |
| TensorFlow中RNN实现的正确打开方式 | https://zhuanlan.zhihu.com/p/28196873 |
| TensorFlow RNN 代码 | https://zhuanlan.zhihu.com/p/27906426 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#lstm |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#教程-3 |
| 1. (译)理解长短期记忆(LSTM) 神经网络 | https://zhuanlan.zhihu.com/p/24018768 |
| 2. 一文读懂LSTM和RNN | https://zhuanlan.zhihu.com/p/35878575?group_id=970350175025385472 |
| 3. 探索LSTM:基本概念到内部结构 | https://zhuanlan.zhihu.com/p/27345523 |
| 4. 翻译:深入理解LSTM系列 | https://blog.csdn.net/matrix_space/article/details/53374040 |
| 深入理解 LSTM 网络 (一) | https://blog.csdn.net/matrix_space/article/details/53374040 |
| 深入理解 LSTM 网络 (二) | https://blog.csdn.net/matrix_space/article/details/53376870 |
| LSTM | https://zhuanlan.zhihu.com/p/32085405 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#action-3 |
| 用tensorflow LSTM如何预测股票价格 | https://zhuanlan.zhihu.com/p/33186759 |
| TensorFlow的多层LSTM实践 | https://zhuanlan.zhihu.com/p/29797089 |
| 《安娜卡列尼娜》文本生成——利用TensorFlow构建LSTM模型 | https://zhuanlan.zhihu.com/p/27087310 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#深度模型的优化-- |
| 1. 优化算法纵览 | http://fa.bianp.net/teaching/2018/eecs227at/ |
| 2. 从梯度下降到Adam | https://zhuanlan.zhihu.com/p/27449596 |
| 3. 从梯度下降到拟牛顿法:盘点训练神经网络的五大学习算法 | https://zhuanlan.zhihu.com/p/25703402 |
| 4. 正则化技术总结 | https://zhuanlan.zhihu.com/p/35429054?group_id=966442942538444800 |
| 1. [视频讲解]史上最全面的正则化技术总结与分析--part1 | https://zhuanlan.zhihu.com/p/35429054?group_id=966442942538444800 |
| 2. [视频讲解]史上最全面的正则化技术总结与分析--part2 | https://zhuanlan.zhihu.com/p/35432128?group_id=966443101011738624 |
| 5. 最优化算法系列(math) | https://blog.csdn.net/chunyun0716/article/category/6188191/2 |
| 6. 神经网络训练中的梯度消失与梯度爆炸 | https://zhuanlan.zhihu.com/p/25631496 |
| 7. 神经网络的优化及训练 | https://zhuanlan.zhihu.com/p/36050743 |
| 8. 通俗讲解查全率和查准率 | https://zhuanlan.zhihu.com/p/35888543 |
| 9. 激活函数一览 | https://zhuanlan.zhihu.com/p/30567264 |
| 10. Coursera吴恩达《优化深度神经网络》课程笔记(3)-- 超参数调试、Batch正则化和编程框架 | https://zhuanlan.zhihu.com/p/30922689 |
| 11. 机器学习各种熵 | https://zhuanlan.zhihu.com/p/35423404 |
| 12. 距离和相似性度量 | https://zhuanlan.zhihu.com/p/27305237 |
| 13. 机器学习里的黑色艺术:normalization, standardization, regularization | https://zhuanlan.zhihu.com/p/29974820 |
| 14. LSTM系列的梯度问题 | https://zhuanlan.zhihu.com/p/36101196 |
| 15. 损失函数整理 | https://zhuanlan.zhihu.com/p/35027284 |
| 16. 详解残差块为何有助于解决梯度弥散问题 | https://zhuanlan.zhihu.com/p/28124810 |
| 17. FAIR何恺明等人提出组归一化:替代批归一化,不受批量大小限制 | https://zhuanlan.zhihu.com/p/34858971 |
| 18. Batch Normalization(BN) | https://patch-diff.githubusercontent.com/dade68/DeepLearning/blob/master |
| 1 | https://zhuanlan.zhihu.com/p/26702482 |
| 2 | https://blog.csdn.net/hjimce/article/details/50866313 |
| 3 | https://blog.csdn.net/malefactor/article/details/51476961 |
| 4 | https://blog.csdn.net/edogawachia/article/details/80040456 |
| 5 | https://zhuanlan.zhihu.com/p/38176412 |
| 19. 详解深度学习中的Normalization,不只是BN | https://zhuanlan.zhihu.com/p/33173246 |
| 20. BFGS | https://blog.csdn.net/philosophyatmath/article/details/70173128 |
| 21. 详解深度学习中的梯度消失、爆炸原因及其解决方法 | https://zhuanlan.zhihu.com/p/33006526 |
| 22. Dropout | https://arxiv.org/pdf/1207.0580.pdf |
| 1 | https://blog.csdn.net/stdcoutzyx/article/details/49022443 |
| 2 | https://blog.csdn.net/hjimce/article/details/50413257 |
| 3 | https://blog.csdn.net/shuzfan/article/details/50580915 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#炼丹术士那些事 |
| 训练的神经网络不工作?一文带你跨过这37个坑 | https://blog.csdn.net/jiandanjinxin/article/details/77190687 |
| 深度学习与计算机视觉系列(8)_神经网络训练与注意点 | https://blog.csdn.net/han_xiaoyang/article/details/50521064 |
| 神经网络训练loss不下降原因集合 | https://blog.csdn.net/liuweiyuxiang/article/details/80856991 |
| 机器学习:如何找到最优学习率 | https://blog.csdn.net/whut_ldz/article/details/78882871 |
| 实现 | https://github.com/L1aoXingyu/torchlib |
| 不平衡数据集处理方法 | https://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/ |
| 同一个神经网络使用不同激活函数的表达能力是否一致 | https://www.zhihu.com/question/41841299 |
| 梯度下降优化算法回顾 | http://ruder.io/optimizing-gradient-descent/ |
| 论文笔记之数据增广:mixup | https://blog.csdn.net/ly244855983/article/details/78938667#%E8%AE%A8%E8%AE%BA |
| 避坑指南:数据科学家新手常犯的13个错误 | https://zhuanlan.zhihu.com/p/44331706 |
| 凭什么相信CNN的结果?--可视化 | https://bindog.github.io/blog/2018/02/10/model-explanation/ |
| 凭什么相信你,我的CNN模型?(篇一:CAM和Grad-CAM) | https://bindog.github.io/blog/2018/02/10/model-explanation/ |
| 凭什么相信你,我的CNN模型?(篇二:万金油LIME) | http://bindog.github.io/blog/2018/02/11/model-explanation-2/ |
| 论文笔记:Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization | https://www.jianshu.com/p/294ad9ae2e50 |
| CV:基于Keras利用训练好的hdf5模型进行目标检测实现输出模型中的表情或性别的gradcam(可视化) | https://blog.csdn.net/qq_41185868/article/details/80323646 |
| 大卷积核还是小卷积核? | https://patch-diff.githubusercontent.com/dade68/DeepLearning/blob/master |
| 1 | https://www.jianshu.com/p/d75375dd7ebd |
| 2 | https://blog.csdn.net/kuangtun9713/article/details/79475457 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#机器学习深度学习基础理论 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#信息论 |
| 1. 机器学习中的各种熵 | https://zhuanlan.zhihu.com/p/35423404 |
| 2. 从香农熵到手推KL散度:纵览机器学习中的信息论 | https://zhuanlan.zhihu.com/p/32985487 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#深度学习相关算法-- |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#svd |
| 1. 关于奇异值分解SVD的总结(PCA、LDI) | https://zhuanlan.zhihu.com/p/30482640 |
| 2. 奇异值分解(SVD) | https://zhuanlan.zhihu.com/p/29846048 |
| 3. 奇异值分解(SVD)原理详解及推导 | https://blog.csdn.net/zhongkejingwang/article/details/43053513 |
| 4. SVD在推荐系统中的应用详解以及算法推导 | https://blog.csdn.net/zhongkejingwang/article/details/43083603 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#迁移学习 |
| 1. 迁移学习:经典算法解析 | https://blog.csdn.net/linolzhang/article/details/73358219 |
| 2. 什么是迁移学习 (Transfer Learning)?这个领域历史发展前景如何? | https://www.zhihu.com/question/41979241 |
| 3. 迁移学习个人笔记 | https://github.com/Mikoto10032/DeepLearning/blob/master/notes/%E6%97%A5%E5%B8%B8%E9%98%85%E8%AF%BB%E7%AC%94%E8%AE%B0/2018_4_12_%E8%BF%81%E7%A7%BB%E5%AD%A6%E4%B9%A0.pdf |
| 迁移学习总结(One Shot Learning, Zero Shot Learning) | https://blog.csdn.net/XJTU_NOC_Wei/article/details/77850221 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#域自适应 |
| Domain Adaptation视频教程(附PPT)及经典论文分享 | https://zhuanlan.zhihu.com/p/27519182 |
| 模型汇总15 领域适应性Domain Adaptation、One-shot/zero-shot Learning概述 | https://zhuanlan.zhihu.com/p/27449079 |
| 【深度学习】论文导读:无监督域适应(Deep Transfer Network: Unsupervised Domain Adaptation) | https://blog.csdn.net/mao_xiao_feng/article/details/54426101 |
| 【论文阅读笔记】基于反向传播的无监督域自适应研究
| https://zhuanlan.zhihu.com/p/37298073 |
| 【Valse大会首发】领域自适应及其在人脸识别中的应用 | https://zhuanlan.zhihu.com/p/21441807 |
| CVPR 2018:基于域适应弱监督学习的目标检测 | https://zhuanlan.zhihu.com/p/41126114 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#元学习 |
| OpenAI提出新型元学习方法EPG,调整损失函数实现新任务上的快速训练 | https://zhuanlan.zhihu.com/p/35869158?group_id=970310501209645056 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#强化学习 |
| 强化学习(Reinforcement Learning)知识整理 | https://zhuanlan.zhihu.com/p/25498081 |
| 强化学习从入门到放弃的资料 | https://zhuanlan.zhihu.com/p/34918639 |
| 强化学习入门 | https://zhuanlan.zhihu.com/p/25498081 |
| 强化学习入门 第一讲 MDP | https://zhuanlan.zhihu.com/p/25498081 |
| 强化学习——从Q-Learning到DQN到底发生了什么? | https://zhuanlan.zhihu.com/p/35882937 |
| 从强化学习到深度强化学习(上) | https://zhuanlan.zhihu.com/p/35688924 |
| 从强化学习到深度强化学习(下) | https://zhuanlan.zhihu.com/p/35965070 |
| 一文带你理解Q-Learning的搜索策略 | https://zhuanlan.zhihu.com/p/37048004 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#马尔科夫决策 |
| 马尔科夫决策过程之Markov Processes(马尔科夫过程) | https://zhuanlan.zhihu.com/p/35124726 |
| 马尔科夫决策过程之Markov Reward Process(马尔科夫奖励过程) | https://zhuanlan.zhihu.com/p/35231424 |
| 马尔科夫决策过程之Bellman Equation(贝尔曼方程) | https://zhuanlan.zhihu.com/p/35261164 |
| 马尔科夫决策过程之Markov Decision Process(马尔科夫决策过程) | https://zhuanlan.zhihu.com/p/35354956 |
| 马尔科夫决策过程之最优价值函数与最优策略 | https://zhuanlan.zhihu.com/p/35373905 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#推荐算法--- |
| 推荐算法相关的文档整理 | https://zhuanlan.zhihu.com/p/29969721 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#自然语言处理nlp |
| 基于word2vec训练词向量(一) | https://zhuanlan.zhihu.com/p/35648927 |
| 基于word2vec训练词向量(二) | https://zhuanlan.zhihu.com/p/35889385 |
| 自然语言处理中的自注意力机制(Self-Attention Mechanism) | https://zhuanlan.zhihu.com/p/35041012 |
| YJango的Word Embedding--介绍 | https://zhuanlan.zhihu.com/p/27830489 |
| CMU&谷歌大脑提出新型问答模型QANet | https://zhuanlan.zhihu.com/p/37168143 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#语义分割相关算法 |
| 干货 | 一文概览主要语义分割网络 | https://blog.csdn.net/qq_20084101/article/details/80432960 |
| 深度学习中IU、IoU(Intersection over Union) | https://blog.csdn.net/iamoldpan/article/details/78799857 |
| Selective Search for Object Detection | https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/ |
| (译文) | https://blog.csdn.net/guoyunfei20/article/details/78723646 |
| NMS——非极大值抑制 | https://blog.csdn.net/shuzfan/article/details/52711706 |
| 边框回归(Bounding Box Regression)详解 | https://blog.csdn.net/zijin0802034/article/details/77685438 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#机器学习相关算法-- |
| ID3、C4.5、CART、随机森林、bagging、boosting、Adaboost、GBDT、xgboost算法总结 | https://zhuanlan.zhihu.com/p/34534004 |
| 数据挖掘十大算法简要说明 | http://www.cnblogs.com/en-heng/p/5013995.html |
| AdaBoost到GBDT系列 | https://patch-diff.githubusercontent.com/dade68/DeepLearning/blob/master |
| 当我们在谈论GBDT:从 AdaBoost 到 Gradient Boosting | https://zhuanlan.zhihu.com/p/25096501?refer=data-miner |
| 当我们在谈论GBDT:Gradient Boosting 用于分类与回归 | https://zhuanlan.zhihu.com/p/25257856?refer=data-miner |
| 当我们在谈论GBDT:其他 Ensemble Learning 算法 | https://zhuanlan.zhihu.com/p/25443980 |
| 集成学习之bagging,stacking,boosting概念理解 | https://zhuanlan.zhihu.com/p/41809927 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#决策树decision-tree- |
| Python3《机器学习实战》学习笔记(二):决策树基础篇之让我们从相亲说起 | https://blog.csdn.net/c406495762/article/details/75663451 |
| Python3《机器学习实战》学习笔记(三):决策树实战篇之为自己配个隐形眼镜 | https://blog.csdn.net/c406495762/article/details/76262487 |
| 机器学习实战教程(十三):树回归基础篇之CART算法与树剪枝 | http://cuijiahua.com/blog/2017/12/ml_13_regtree_1.html |
| 《机器学习实战》基于信息论的三种决策树算法(ID3,C4.5,CART) | https://blog.csdn.net/gamer_gyt/article/details/51242815 |
| 说说决策树剪枝算法 | https://zhuanlan.zhihu.com/p/31404571 |
| 机器学习实战 第九章 树回归 | https://blog.csdn.net/namelessml/article/details/52595066 |
| 决策树值ID3、C4.5实现 | https://blog.csdn.net/u014688145/article/details/53212112 |
| 决策树值CART实现 | https://blog.csdn.net/u014688145/article/details/53326910 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#支持向量机svm-- |
| SVM通俗导论 July(本文章是我看过最好的SVM导论) | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BA%E9%80%9A%E4%BF%97%E5%AF%BC%E8%AE%BA%EF%BC%88%E7%90%86%E8%A7%A3SVM%E7%9A%84%E4%B8%89%E5%B1%82%E5%A2%83%E7%95%8C%EF%BC%89LaTeX%E6%9C%80%E6%96%B0%E7%89%88_2015.1.9.pdf |
| Python3《机器学习实战》学习笔记(八):支持向量机原理篇之手撕线性SVM (SMO训练过程总结得清晰易懂) | https://blog.csdn.net/c406495762/article/details/78072313 |
| svm核函数的理解和选择 | https://blog.csdn.net/leonis_v/article/details/50688766 |
| 核函数和径向基核函数 (Radial Basis Function)--RBF | https://blog.csdn.net/huang1024rui/article/details/51510611 |
| SVM核函数 | https://blog.csdn.net/xiaowei_cqu/article/details/35993729 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#lda |
| 教科书上的LDA为什么长这个样子? | https://zhuanlan.zhihu.com/p/42238953 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#标签传播算法label-propagation-algorithm-- |
| 标签传播算法(Label Propagation)及Python实现 | https://blog.csdn.net/zouxy09/article/details/49105265 |
| 参考资料 | https://github.com/Mikoto10032/DeepLearning/blob/master/books/Semi-Supervised%20Learning%20with%20Graphs.pdf |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#蒙塔卡罗搜索树 |
| 蒙特卡洛树搜索入门指南 | https://zhuanlan.zhihu.com/p/34950988 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#gbdt |
| LightGBM大战XGBoost | https://zhuanlan.zhihu.com/p/35645973 |
| 概述XGBoost、Light GBM和CatBoost的同与不同 | https://zhuanlan.zhihu.com/p/34698733 |
| 梯度提升决策树 | https://zhuanlan.zhihu.com/p/36339161 |
| GBDT原理及应用 | https://zhuanlan.zhihu.com/p/30339807 |
| XGBOOST原理篇 | https://zhuanlan.zhihu.com/p/31654000 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#集成em |
| 集成学习法之bagging方法和boosting方法 | https://blog.csdn.net/qq_30189255/article/details/51532442 |
| Bagging,Boosting,Stacking | https://blog.csdn.net/Mr_tyting/article/details/72957853 |
| 人人都懂的EM算法 | https://zhuanlan.zhihu.com/p/36331115 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#条件随机场crf-判别式模型 |
| 如何轻松愉快地理解条件随机场(CRF)? | https://www.jianshu.com/p/55755fc649b1 |
| 如何用简单易懂的例子解释条件随机场(CRF)模型?它和HMM有什么区别? | https://www.zhihu.com/question/35866596 |
| HMM ,MHMM,CRF 优缺点与区别 | https://blog.csdn.net/u013378306/article/details/55213029 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#tsne |
| 流形学习-高维数据的降维与可视化 | https://blog.csdn.net/u012162613/article/details/45920827 |
| tSNE | https://blog.csdn.net/flyingzhan/article/details/79521765 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#工具平台使用- |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#tensorflow |
| 【干货】史上最全的Tensorflow学习资源汇总 | https://zhuanlan.zhihu.com/p/35515805?group_id=967136289941897216 |
| 《21个项目玩转深度学习———基于TensorFlow的实践详解》 | https://github.com/hzy46/Deep-Learning-21-Examples |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#mxnet |
| Gluon | https://github.com/Mikoto10032/DeepLearning/blob/master/books/gluon_tutorials_zh%EF%BC%88%E5%9F%BA%E4%BA%8EMXNet%EF%BC%89.pdf |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#python3x |
| 廖雪峰Python教程 | https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000 |
| 菜鸟教程 | http://www.runoob.com/python3/python3-tutorial.html |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#标注工具 |
| labelImg | https://github.com/tzutalin/labelImg |
| labelme | https://github.com/wkentaro/labelme |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#数据集 |
| 1. 25个深度学习相关公开数据集 | https://zhuanlan.zhihu.com/p/35449783 |
| 2. 自然语言处理(NLP)数据集 | https://zhuanlan.zhihu.com/p/35423943 |
| 3.全唐诗(43030首) | https://pan.baidu.com/s/1o7QlUhO |
| 4. 伯克利大学公开数据集 | https://people.eecs.berkeley.edu/~taesung_park/ |
| 5. ACL 2018资源:100+ 预训练的中文词向量 | https://zhuanlan.zhihu.com/p/36835964 |
| 6. 预训练中文词向量 | https://github.com/Embedding/Chinese-Word-Vectors |
| 7. 公开数据集种子库 | http://academictorrents.com |
| 8. 数据集】计算机视觉,深度学习,数据挖掘数据集整理 | https://blog.csdn.net/c20081052/article/details/79814082 |
| 9. 计算机视觉著名数据集CV Datasets | https://blog.csdn.net/accepthjp/article/details/51831026 |
| 10. 计算机视觉相关数据集和比赛 | https://blog.csdn.net/NNNNNNNNNNNNY/article/details/68485160 |
| 11. 这是一份非常全面的开源数据集,你,真的不想要吗? | https://zhuanlan.zhihu.com/p/43846002 |
| 12. 人群密度估计现有主要数据集特点及其比较 | https://blog.csdn.net/weixin_40516558/article/details/81564464 |
| 13. DANBOORU2017: A LARGE-SCALE CROWDSOURCED AND TAGGED ANIME ILLUSTRATION DATASET | https://www.gwern.net/Danbooru2017 |
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#to-do-list |
| Inter Covariate shift | https://blog.csdn.net/mao_xiao_feng/article/details/54317852 |
| Transposed Convolution, Fractionally Strided Convolution or Deconvolution | https://buptldy.github.io/2016/10/29/2016-10-29-deconv/ |
|
Readme
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#readme-ov-file |
|
Apache-2.0 license
| https://patch-diff.githubusercontent.com/dade68/DeepLearning#Apache-2.0-1-ov-file |
| Please reload this page | https://patch-diff.githubusercontent.com/dade68/DeepLearning |
|
Activity | https://patch-diff.githubusercontent.com/dade68/DeepLearning/activity |
|
0
stars | https://patch-diff.githubusercontent.com/dade68/DeepLearning/stargazers |
|
0
watching | https://patch-diff.githubusercontent.com/dade68/DeepLearning/watchers |
|
0
forks | https://patch-diff.githubusercontent.com/dade68/DeepLearning/forks |
|
Report repository
| https://patch-diff.githubusercontent.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2Fdade68%2FDeepLearning&report=dade68+%28user%29 |
| Releases | https://patch-diff.githubusercontent.com/dade68/DeepLearning/releases |
| Packages
0 | https://patch-diff.githubusercontent.com/users/dade68/packages?repo_name=DeepLearning |
|
| https://github.com |
| Terms | https://docs.github.com/site-policy/github-terms/github-terms-of-service |
| Privacy | https://docs.github.com/site-policy/privacy-policies/github-privacy-statement |
| Security | https://github.com/security |
| Status | https://www.githubstatus.com/ |
| Community | https://github.community/ |
| Docs | https://docs.github.com/ |
| Contact | https://support.github.com?tags=dotcom-footer |