Title: Code frequency · coint8801/pythonNNexample · GitHub
Open Graph Title: Code frequency · coint8801/pythonNNexample
X Title: Code frequency · coint8801/pythonNNexample
Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates the exclusive OR function with two inputs and one output. - Code frequency · coint8801/pythonNNexample
Open Graph Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th...
X Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th...
Opengraph URL: https://github.com/coint8801/pythonNNexample
X: @github
Domain: patch-diff.githubusercontent.com
| route-pattern | /:user_id/:repository/graphs/code-frequency(.:format) |
| route-controller | repos_insights_code_frequency |
| route-action | index |
| fetch-nonce | v2:be656864-22ae-0b35-1ee5-39fc79017ded |
| current-catalog-service-hash | b4d8436665c5448282b6f4eacc6394e6e8801de97cb226acdca9da20ae59be92 |
| request-id | D110:337C7:155CBD3:1C53033:69814F97 |
| html-safe-nonce | b0abbacd18abe4c86c69f486c76851434d8007835becacfe107ad151e9857941 |
| visitor-payload | eyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJEMTEwOjMzN0M3OjE1NUNCRDM6MUM1MzAzMzo2OTgxNEY5NyIsInZpc2l0b3JfaWQiOiI1NjE5NDAyNzA3ODIwNDMzMzAzIiwicmVnaW9uX2VkZ2UiOiJpYWQiLCJyZWdpb25fcmVuZGVyIjoiaWFkIn0= |
| visitor-hmac | bb52ee3736d5e8c973cf24ff3f72bb4cf725f099552070d42b7ae96a30372913 |
| hovercard-subject-tag | repository:118324032 |
| github-keyboard-shortcuts | repository,copilot |
| google-site-verification | Apib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I |
| octolytics-url | https://collector.github.com/github/collect |
| analytics-location | / |
| fb:app_id | 1401488693436528 |
| apple-itunes-app | app-id=1477376905, app-argument=https://github.com/coint8801/pythonNNexample/graphs/code-frequency |
| twitter:image | https://opengraph.githubassets.com/deb3625a2ec15fe2ef7431a148d4b9a3ff1b3c9722e146b88ef2166fa88031e8/coint8801/pythonNNexample |
| twitter:card | summary_large_image |
| og:image | https://opengraph.githubassets.com/deb3625a2ec15fe2ef7431a148d4b9a3ff1b3c9722e146b88ef2166fa88031e8/coint8801/pythonNNexample |
| og:image:alt | Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th... |
| og:image:width | 1200 |
| og:image:height | 600 |
| og:site_name | GitHub |
| og:type | object |
| hostname | github.com |
| expected-hostname | github.com |
| None | e5c6a4b0d37e7dc8f18034781c9e3e492fdd80eb16410763ec244c3e1caf0805 |
| turbo-cache-control | no-cache |
| go-import | github.com/coint8801/pythonNNexample git https://github.com/coint8801/pythonNNexample.git |
| octolytics-dimension-user_id | 34885301 |
| octolytics-dimension-user_login | coint8801 |
| octolytics-dimension-repository_id | 118324032 |
| octolytics-dimension-repository_nwo | coint8801/pythonNNexample |
| octolytics-dimension-repository_public | true |
| octolytics-dimension-repository_is_fork | true |
| octolytics-dimension-repository_parent_id | 70839196 |
| octolytics-dimension-repository_parent_nwo | stmorgan/pythonNNexample |
| octolytics-dimension-repository_network_root_id | 70839196 |
| octolytics-dimension-repository_network_root_nwo | stmorgan/pythonNNexample |
| turbo-body-classes | logged-out env-production page-responsive |
| disable-turbo | false |
| browser-stats-url | https://api.github.com/_private/browser/stats |
| browser-errors-url | https://api.github.com/_private/browser/errors |
| release | 906ec698502db8129a94bb04f4413119a1291133 |
| ui-target | full |
| theme-color | #1e2327 |
| color-scheme | light dark |
Links:
Viewport: width=device-width