Title: Commits · codingyourlife/pythonNNexample · GitHub
Open Graph Title: Commits · codingyourlife/pythonNNexample
X Title: Commits · codingyourlife/pythonNNexample
Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates the exclusive OR function with two inputs and one output. - Commits · codingyourlife/pythonNNexample
Open Graph Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th...
X Description: Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th...
Opengraph URL: https://github.com/codingyourlife/pythonNNexample
X: @github
Domain: patch-diff.githubusercontent.com
| route-pattern | /:user_id/:repository/commits(/*name) |
| route-controller | commits |
| route-action | show |
| fetch-nonce | v2:6eed9b03-b1f4-f5df-4746-11d4b5201fef |
| current-catalog-service-hash | f3abb0cc802f3d7b95fc8762b94bdcb13bf39634c40c357301c4aa1d67a256fb |
| request-id | 8168:313444:E2DE2B:129D8C1:6982A5A9 |
| html-safe-nonce | 91605462de22554200e36ddfe35af80bbfdf6e2df033b665cc302a9c77352c4f |
| visitor-payload | eyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiI4MTY4OjMxMzQ0NDpFMkRFMkI6MTI5RDhDMTo2OTgyQTVBOSIsInZpc2l0b3JfaWQiOiI4MzgyMDU3MTE1Nzg2ODQ3NjU3IiwicmVnaW9uX2VkZ2UiOiJpYWQiLCJyZWdpb25fcmVuZGVyIjoiaWFkIn0= |
| visitor-hmac | 6dbbc0b1dbaa99de5e5ff82f80f631ed91aab6379f963c73d713a8b252060d5e |
| hovercard-subject-tag | repository:103840072 |
| github-keyboard-shortcuts | repository,commit-list,copilot |
| google-site-verification | Apib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I |
| octolytics-url | https://collector.github.com/github/collect |
| analytics-location | / |
| fb:app_id | 1401488693436528 |
| apple-itunes-app | app-id=1477376905, app-argument=https://github.com/codingyourlife/pythonNNexample/commits/patch-2 |
| twitter:image | https://opengraph.githubassets.com/3fb7a1f65523ee7c9177c1b7f1da1399d8f4ac6c49408562886f550363fb58a6/codingyourlife/pythonNNexample |
| twitter:card | summary_large_image |
| og:image | https://opengraph.githubassets.com/3fb7a1f65523ee7c9177c1b7f1da1399d8f4ac6c49408562886f550363fb58a6/codingyourlife/pythonNNexample |
| og:image:alt | Annotations for the Sirajology Python NN Example. This code comes from a demo NN program from the YouTube video https://youtu.be/h3l4qz76JhQ. The program creates an neural network that simulates th... |
| og:image:width | 1200 |
| og:image:height | 600 |
| og:site_name | GitHub |
| og:type | object |
| hostname | github.com |
| expected-hostname | github.com |
| None | c6741528aa4d4ba81c57bbff8f8cc0de0e9115cb2993431dc9dac8d489f7b4ee |
| turbo-cache-control | no-cache |
| go-import | github.com/codingyourlife/pythonNNexample git https://github.com/codingyourlife/pythonNNexample.git |
| octolytics-dimension-user_id | 10122382 |
| octolytics-dimension-user_login | codingyourlife |
| octolytics-dimension-repository_id | 103840072 |
| octolytics-dimension-repository_nwo | codingyourlife/pythonNNexample |
| octolytics-dimension-repository_public | true |
| octolytics-dimension-repository_is_fork | true |
| octolytics-dimension-repository_parent_id | 70839196 |
| octolytics-dimension-repository_parent_nwo | stmorgan/pythonNNexample |
| octolytics-dimension-repository_network_root_id | 70839196 |
| octolytics-dimension-repository_network_root_nwo | stmorgan/pythonNNexample |
| turbo-body-classes | logged-out env-production page-responsive |
| disable-turbo | false |
| browser-stats-url | https://api.github.com/_private/browser/stats |
| browser-errors-url | https://api.github.com/_private/browser/errors |
| release | c547e382acfeb1148025e943f9b5dc5a5e306b0e |
| ui-target | full |
| theme-color | #1e2327 |
| color-scheme | light dark |
Links:
Viewport: width=device-width