René's URL Explorer Experiment


Title: GitHub - axruff/TransferLearning: A collection of papers, datasets and software on Transfer Learning and Domain Adaptation

Open Graph Title: GitHub - axruff/TransferLearning: A collection of papers, datasets and software on Transfer Learning and Domain Adaptation

X Title: GitHub - axruff/TransferLearning: A collection of papers, datasets and software on Transfer Learning and Domain Adaptation

Description: A collection of papers, datasets and software on Transfer Learning and Domain Adaptation - axruff/TransferLearning

Open Graph Description: A collection of papers, datasets and software on Transfer Learning and Domain Adaptation - axruff/TransferLearning

X Description: A collection of papers, datasets and software on Transfer Learning and Domain Adaptation - axruff/TransferLearning

Opengraph URL: https://github.com/axruff/TransferLearning

X: @github

direct link

Domain: patch-diff.githubusercontent.com

route-pattern/:user_id/:repository
route-controllerfiles
route-actiondisambiguate
fetch-noncev2:ccfcb170-69c9-864a-9d0e-a28674861df3
current-catalog-service-hashf3abb0cc802f3d7b95fc8762b94bdcb13bf39634c40c357301c4aa1d67a256fb
request-idA55C:3B09EF:850F078:AB865AA:6975DD57
html-safe-nonce9827f338b017a5eb17c00e7777c87134b6bd7060386d3d6bba65527bb71ab7fe
visitor-payloadeyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJBNTVDOjNCMDlFRjo4NTBGMDc4OkFCODY1QUE6Njk3NURENTciLCJ2aXNpdG9yX2lkIjoiNDY4NTg0MTg2MDM3NzU2NjU1MSIsInJlZ2lvbl9lZGdlIjoiaWFkIiwicmVnaW9uX3JlbmRlciI6ImlhZCJ9
visitor-hmac0b34c1d39a5c451baa9a4e783362d33c1044130ab96390985c533e73abb63e78
hovercard-subject-tagrepository:199015982
github-keyboard-shortcutsrepository,copilot
google-site-verificationApib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I
octolytics-urlhttps://collector.github.com/github/collect
analytics-location//
fb:app_id1401488693436528
apple-itunes-appapp-id=1477376905, app-argument=https://github.com/axruff/TransferLearning
twitter:imagehttps://opengraph.githubassets.com/6cf26d93fe04e2643c6ec6305af17ab7ae6942879491835d4db78f6b7df69523/axruff/TransferLearning
twitter:cardsummary_large_image
og:imagehttps://opengraph.githubassets.com/6cf26d93fe04e2643c6ec6305af17ab7ae6942879491835d4db78f6b7df69523/axruff/TransferLearning
og:image:altA collection of papers, datasets and software on Transfer Learning and Domain Adaptation - axruff/TransferLearning
og:image:width1200
og:image:height600
og:site_nameGitHub
og:typeobject
hostnamegithub.com
expected-hostnamegithub.com
None2bce766e7450b03e00b2fc5badd417927ce33a860e78cda3e4ecb9bbd1374cc6
turbo-cache-controlno-preview
go-importgithub.com/axruff/TransferLearning git https://github.com/axruff/TransferLearning.git
octolytics-dimension-user_id39738572
octolytics-dimension-user_loginaxruff
octolytics-dimension-repository_id199015982
octolytics-dimension-repository_nwoaxruff/TransferLearning
octolytics-dimension-repository_publictrue
octolytics-dimension-repository_is_forkfalse
octolytics-dimension-repository_network_root_id199015982
octolytics-dimension-repository_network_root_nwoaxruff/TransferLearning
turbo-body-classeslogged-out env-production page-responsive
disable-turbofalse
browser-stats-urlhttps://api.github.com/_private/browser/stats
browser-errors-urlhttps://api.github.com/_private/browser/errors
releasefcca2b8ef702b5f7f91427a6e920fa44446fe312
ui-targetfull
theme-color#1e2327
color-schemelight dark

Links:

Skip to contenthttps://patch-diff.githubusercontent.com/axruff/TransferLearning#start-of-content
https://patch-diff.githubusercontent.com/
Sign in https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2Faxruff%2FTransferLearning
GitHub CopilotWrite better code with AIhttps://github.com/features/copilot
GitHub SparkBuild and deploy intelligent appshttps://github.com/features/spark
GitHub ModelsManage and compare promptshttps://github.com/features/models
MCP RegistryNewIntegrate external toolshttps://github.com/mcp
ActionsAutomate any workflowhttps://github.com/features/actions
CodespacesInstant dev environmentshttps://github.com/features/codespaces
IssuesPlan and track workhttps://github.com/features/issues
Code ReviewManage code changeshttps://github.com/features/code-review
GitHub Advanced SecurityFind and fix vulnerabilitieshttps://github.com/security/advanced-security
Code securitySecure your code as you buildhttps://github.com/security/advanced-security/code-security
Secret protectionStop leaks before they starthttps://github.com/security/advanced-security/secret-protection
Why GitHubhttps://github.com/why-github
Documentationhttps://docs.github.com
Bloghttps://github.blog
Changeloghttps://github.blog/changelog
Marketplacehttps://github.com/marketplace
View all featureshttps://github.com/features
Enterpriseshttps://github.com/enterprise
Small and medium teamshttps://github.com/team
Startupshttps://github.com/enterprise/startups
Nonprofitshttps://github.com/solutions/industry/nonprofits
App Modernizationhttps://github.com/solutions/use-case/app-modernization
DevSecOpshttps://github.com/solutions/use-case/devsecops
DevOpshttps://github.com/solutions/use-case/devops
CI/CDhttps://github.com/solutions/use-case/ci-cd
View all use caseshttps://github.com/solutions/use-case
Healthcarehttps://github.com/solutions/industry/healthcare
Financial serviceshttps://github.com/solutions/industry/financial-services
Manufacturinghttps://github.com/solutions/industry/manufacturing
Governmenthttps://github.com/solutions/industry/government
View all industrieshttps://github.com/solutions/industry
View all solutionshttps://github.com/solutions
AIhttps://github.com/resources/articles?topic=ai
Software Developmenthttps://github.com/resources/articles?topic=software-development
DevOpshttps://github.com/resources/articles?topic=devops
Securityhttps://github.com/resources/articles?topic=security
View all topicshttps://github.com/resources/articles
Customer storieshttps://github.com/customer-stories
Events & webinarshttps://github.com/resources/events
Ebooks & reportshttps://github.com/resources/whitepapers
Business insightshttps://github.com/solutions/executive-insights
GitHub Skillshttps://skills.github.com
Documentationhttps://docs.github.com
Customer supporthttps://support.github.com
Community forumhttps://github.com/orgs/community/discussions
Trust centerhttps://github.com/trust-center
Partnershttps://github.com/partners
GitHub SponsorsFund open source developershttps://github.com/sponsors
Security Labhttps://securitylab.github.com
Maintainer Communityhttps://maintainers.github.com
Acceleratorhttps://github.com/accelerator
Archive Programhttps://archiveprogram.github.com
Topicshttps://github.com/topics
Trendinghttps://github.com/trending
Collectionshttps://github.com/collections
Enterprise platformAI-powered developer platformhttps://github.com/enterprise
GitHub Advanced SecurityEnterprise-grade security featureshttps://github.com/security/advanced-security
Copilot for BusinessEnterprise-grade AI featureshttps://github.com/features/copilot/copilot-business
Premium SupportEnterprise-grade 24/7 supporthttps://github.com/premium-support
Pricinghttps://github.com/pricing
Search syntax tipshttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
documentationhttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
Sign in https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2Faxruff%2FTransferLearning
Sign up https://patch-diff.githubusercontent.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=axruff%2FTransferLearning
Reloadhttps://patch-diff.githubusercontent.com/axruff/TransferLearning
Reloadhttps://patch-diff.githubusercontent.com/axruff/TransferLearning
Reloadhttps://patch-diff.githubusercontent.com/axruff/TransferLearning
axruff https://patch-diff.githubusercontent.com/axruff
TransferLearninghttps://patch-diff.githubusercontent.com/axruff/TransferLearning
Notifications https://patch-diff.githubusercontent.com/login?return_to=%2Faxruff%2FTransferLearning
Fork 0 https://patch-diff.githubusercontent.com/login?return_to=%2Faxruff%2FTransferLearning
Star 5 https://patch-diff.githubusercontent.com/login?return_to=%2Faxruff%2FTransferLearning
5 stars https://patch-diff.githubusercontent.com/axruff/TransferLearning/stargazers
0 forks https://patch-diff.githubusercontent.com/axruff/TransferLearning/forks
Branches https://patch-diff.githubusercontent.com/axruff/TransferLearning/branches
Tags https://patch-diff.githubusercontent.com/axruff/TransferLearning/tags
Activity https://patch-diff.githubusercontent.com/axruff/TransferLearning/activity
Star https://patch-diff.githubusercontent.com/login?return_to=%2Faxruff%2FTransferLearning
Notifications https://patch-diff.githubusercontent.com/login?return_to=%2Faxruff%2FTransferLearning
Code https://patch-diff.githubusercontent.com/axruff/TransferLearning
Issues 0 https://patch-diff.githubusercontent.com/axruff/TransferLearning/issues
Pull requests 0 https://patch-diff.githubusercontent.com/axruff/TransferLearning/pulls
Actions https://patch-diff.githubusercontent.com/axruff/TransferLearning/actions
Projects 0 https://patch-diff.githubusercontent.com/axruff/TransferLearning/projects
Security 0 https://patch-diff.githubusercontent.com/axruff/TransferLearning/security
Insights https://patch-diff.githubusercontent.com/axruff/TransferLearning/pulse
Code https://patch-diff.githubusercontent.com/axruff/TransferLearning
Issues https://patch-diff.githubusercontent.com/axruff/TransferLearning/issues
Pull requests https://patch-diff.githubusercontent.com/axruff/TransferLearning/pulls
Actions https://patch-diff.githubusercontent.com/axruff/TransferLearning/actions
Projects https://patch-diff.githubusercontent.com/axruff/TransferLearning/projects
Security https://patch-diff.githubusercontent.com/axruff/TransferLearning/security
Insights https://patch-diff.githubusercontent.com/axruff/TransferLearning/pulse
Brancheshttps://patch-diff.githubusercontent.com/axruff/TransferLearning/branches
Tagshttps://patch-diff.githubusercontent.com/axruff/TransferLearning/tags
https://patch-diff.githubusercontent.com/axruff/TransferLearning/branches
https://patch-diff.githubusercontent.com/axruff/TransferLearning/tags
58 Commitshttps://patch-diff.githubusercontent.com/axruff/TransferLearning/commits/master/
https://patch-diff.githubusercontent.com/axruff/TransferLearning/commits/master/
README.mdhttps://patch-diff.githubusercontent.com/axruff/TransferLearning/blob/master/README.md
README.mdhttps://patch-diff.githubusercontent.com/axruff/TransferLearning/blob/master/README.md
READMEhttps://patch-diff.githubusercontent.com/axruff/TransferLearning
https://patch-diff.githubusercontent.com/axruff/TransferLearning#transfer-learning-and-domain-adaptation
https://patch-diff.githubusercontent.com/axruff/TransferLearning#table-of-contents
Surveyshttps://patch-diff.githubusercontent.com/axruff/TransferLearning#surveys
Unsortedhttps://patch-diff.githubusercontent.com/axruff/TransferLearning#unsorted
Synthetic Datahttps://patch-diff.githubusercontent.com/axruff/TransferLearning#synthetic-data
Domain Adaptationhttps://patch-diff.githubusercontent.com/axruff/TransferLearning#domain-adaptation
Discrepancy-based Approacheshttps://patch-diff.githubusercontent.com/axruff/TransferLearning#discrepancy-based-approaches
Adversarial-based Approacheshttps://patch-diff.githubusercontent.com/axruff/TransferLearning#adversarial-based-approaches
Generative Modelshttps://patch-diff.githubusercontent.com/axruff/TransferLearning#generative-models
Non-generative Modelshttps://patch-diff.githubusercontent.com/axruff/TransferLearning#non-generative-models
Reconstruction-based Approacheshttps://patch-diff.githubusercontent.com/axruff/TransferLearning#reconstruction-based-approaches
Domain Randomizationhttps://patch-diff.githubusercontent.com/axruff/TransferLearning#domain-randomization
Uniform Randomizationhttps://patch-diff.githubusercontent.com/axruff/TransferLearning#uniform-randomization
Guided Randomizationhttps://patch-diff.githubusercontent.com/axruff/TransferLearning#guided-randomization
Style Transferhttps://patch-diff.githubusercontent.com/axruff/TransferLearning#style-transfer
Texture Synthesishttps://patch-diff.githubusercontent.com/axruff/TransferLearning#texture-synthesis
https://camo.githubusercontent.com/4a0e11b6a28fa78a4d91bfbffdb418ebe5ba62f98a3f6ca9f3cfd18b5da672c7/68747470733a2f2f706c616365686f6c642e69742f31352f6335666631352f3030303030303f746578743d2b
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
https://patch-diff.githubusercontent.com/axruff/TransferLearning#surveys
A Survey on Transfer Learning (2010)https://www.cse.ust.hk/~qyang/Docs/2009/tkde_transfer_learning.pdf
Transfer learning for visual categorization: A survey (2015)https://ieeexplore.ieee.org/document/6847217
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
Domain Adaptation for Visual Applications: A Comprehensive Survey (2017)https://arxiv.org/abs/1702.05374
Visual domain adaptation: A survey of recent advances (2015)https://ieeexplore.ieee.org/document/7078994
https://camo.githubusercontent.com/4a0e11b6a28fa78a4d91bfbffdb418ebe5ba62f98a3f6ca9f3cfd18b5da672c7/68747470733a2f2f706c616365686f6c642e69742f31352f6335666631352f3030303030303f746578743d2b
Deep Visual Domain Adaptation: A Survey (2018)https://arxiv.org/abs/1802.03601
A survey on heterogeneous transfer learning (2017)https://journalofbigdata.springeropen.com/articles/10.1186/s40537-017-0089-0
Transfer learning for cross-dataset recognition: A survey (2017)https://arxiv.org/abs/1705.04396
http://ai.bu.edu/visda-2017/http://ai.bu.edu/visda-2017/
https://patch-diff.githubusercontent.com/axruff/TransferLearning#unsorted
2018 - Do Better ImageNet Models Transfer Better?https://arxiv.org/abs/1805.08974
https://camo.githubusercontent.com/84a24713925f89e42fe32ea53c5f4dc1baa1bf2a0b2c8ca6b9d95630bb78aa7b/68747470733a2f2f6d656469612e61727869762d76616e6974792e636f6d2f72656e6465722d6f75747075742f323234393835392f74736e655f6669677572652e706e67
2019 - Revisiting Self-Supervised Visual Representation Learninghttps://arxiv.org/abs/1901.09005
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
2019 - A Large-scale Study of Representation Learning with the Visual Task Adaptation Benchmarkhttps://arxiv.org/abs/1910.04867
https://camo.githubusercontent.com/47a0dcec999b189d0e40fee5d7b93c091060d25b617ba0d348a4b75cda50f168/68747470733a2f2f312e62702e626c6f6773706f742e636f6d2f2d467061454572413636354d2f5863486e694e5654386c492f41414141414141414536672f3072692d674466503958776e3956716637433650652d6737637958475256726e51434c63424741735948512f733634302f696d616765312e706e67
https://patch-diff.githubusercontent.com/axruff/TransferLearning#synthetic-data
2013 - Simulation as an engine of physical scene understandinghttps://www.pnas.org/content/110/45/18327
2016 - Playing for Data: Ground Truth from Computer Gameshttps://arxiv.org/abs/1608.02192
https://github.com/axruff/ML_papers/raw/master/images/PlayingforData.png
2016 - RenderGAN: Generating Realistic Labeled Datahttps://arxiv.org/abs/1611.01331
https://camo.githubusercontent.com/8f0685f62d460f7beba59c9a5c4e9ecaecc603afab823b96b6386188ef4f0797/68747470733a2f2f692e70696e696d672e636f6d2f353634782f34302f36382f62652f34303638626536653233633532303535306636313863376330313739626133392e6a7067
2017 - On Pre-Trained Image Features and Synthetic Images for Deep Learning)https://arxiv.org/abs/1710.10710
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
https://camo.githubusercontent.com/32deca9cd12838bfb9e22e90bd4d05e5af8fe65753d38de2ee579285897614c8/68747470733a2f2f6d656469612e737072696e6765726e61747572652e636f6d2f6c773738352f737072696e6765722d7374617469632f696d6167652f63687025334131302e313030372532463937382d332d3033302d31313030392d335f34322f4d656469614f626a656374732f3437383737305f315f456e5f34325f466967335f48544d4c2e706e67
2017 - Keep it Unreal: Bridging the Realism Gap for 2.5D Recognition with Geometry Priors Onlyhttps://arxiv.org/abs/1804.09113
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
https://camo.githubusercontent.com/c066d43b0bed6b370dfdf095846cdcd61bfa331baeaad5a45be0e31fba1f320b/68747470733a2f2f692e70696e696d672e636f6d2f353634782f38372f39362f64642f38373936646465613238313562633433643630383739363938323466376136662e6a7067
2018 - Seeing Beyond Appearance - Mapping Real Images into Geometrical Domains for Unsupervised CAD-based Recognitionhttps://arxiv.org/abs/1810.04158
https://camo.githubusercontent.com/a9d2a6e4ceb1712f85e27c513635c4b3b3b23f621265cbe0976cf5414dfb0261/68747470733a2f2f692e70696e696d672e636f6d2f353634782f64632f65622f32302f64636562323065376234656665353965326238626435326363383563366435642e6a7067
2019 - Implicit 3D Orientation Learning for 6D Object Detection from RGB Imageshttps://arxiv.org/abs/1902.01275
https://camo.githubusercontent.com/c91190fafd008837442dd3ce7e1b3e15be1f36488ceb65a7d86215dc86e0ae5e/68747470733a2f2f692e70696e696d672e636f6d2f353634782f66642f34332f64302f66643433643036633631643461623533653061326265323236393830653632662e6a7067
2018 - Learning to Segment via Cut-and-Pastehttp://openaccess.thecvf.com/content_ECCV_2018/papers/Tal_Remez_Learning_to_Segment_ECCV_2018_paper.pdf
https://camo.githubusercontent.com/637c88966d3af3c4bbcf24d4cc183d12dea75e8923f19e31e5fcd6dd7b9d03ca/68747470733a2f2f63646e2d696d616765732d312e6d656469756d2e636f6d2f6d61782f313630302f302a623443426967426c4b5f4c7947553136
2021 - Auto-Tuned Sim-to-Real Transferhttps://arxiv.org/abs/2104.07662
[github]https://yuqingd.github.io/autotuned-sim2real/
https://camo.githubusercontent.com/3e2750620b1fe6281af2c20997c3e44ab9d9958a3d2049df42565389634b4ac1/68747470733a2f2f797571696e67642e6769746875622e696f2f6175746f74756e65642d73696d327265616c2f7265736f75726365732f7379735f6469616772616d2e706e67
https://patch-diff.githubusercontent.com/axruff/TransferLearning#domain-adaptation
https://patch-diff.githubusercontent.com/axruff/TransferLearning#discrepancy-based-approaches
https://patch-diff.githubusercontent.com/axruff/TransferLearning#class-criterion
https://camo.githubusercontent.com/4a0e11b6a28fa78a4d91bfbffdb418ebe5ba62f98a3f6ca9f3cfd18b5da672c7/68747470733a2f2f706c616365686f6c642e69742f31352f6335666631352f3030303030303f746578743d2b
Fine-grained recognition in the wild: A multi-task domain adaptation approach (2017)https://arxiv.org/abs/1709.02476
Deep transfer metric learning (2015)https://ieeexplore.ieee.org/document/7298629
Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation (2017)https://arxiv.org/abs/1705.00609
[98]https://arxiv.org/abs/1702.08400
Asymmetric tri-training for unsupervised domain adaptation (2017)https://arxiv.org/abs/1702.08400
[DTN] Deep transfer network: Unsupervised domain adaptation (2015)https://arxiv.org/abs/1503.00591
https://patch-diff.githubusercontent.com/axruff/TransferLearning#statistic-criterion
https://camo.githubusercontent.com/4a0e11b6a28fa78a4d91bfbffdb418ebe5ba62f98a3f6ca9f3cfd18b5da672c7/68747470733a2f2f706c616365686f6c642e69742f31352f6335666631352f3030303030303f746578743d2b
[DDC] Deep domain confusion: Maximizing for domain invariance (2014)https://arxiv.org/abs/1412.3474
https://camo.githubusercontent.com/8d027dd5cbae929416fe64d44fdb88d39b5a95ea83c737a46e152a51c9bdd635/68747470733a2f2f7777772e67726f756e6461692e636f6d2f6d656469612f61727869765f70726f6a656374732f38353032302f78312e706e672e37353078305f7137355f63726f702e706e67
[73]https://arxiv.org/abs/1502.02791
[DAN] Learning transferable features with deep adaptation networks (2015)https://arxiv.org/abs/1502.02791
[JAN] Deep transfer learning with joint adaptation networks (2016)https://arxiv.org/abs/1605.06636
[RTN] Unsupervised domain adaptation with residual transfer networks (2016)https://arxiv.org/abs/1602.04433
https://camo.githubusercontent.com/579a4791b427dd4ca6241ec54d415b3b5bc01a688af4023313956280b45ee3c7/68747470733a2f2f6172732e656c732d63646e2e636f6d2f636f6e74656e742f696d6167652f312d73322e302d53303932353233313231383330363638342d6772362e6a7067
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
Associative Domain Adaptation (2017)https://arxiv.org/abs/1708.00938
https://camo.githubusercontent.com/38ed84b35d915f7af522270b556336d86618bbe0b89e70ae1015592fdff23f79/68747470733a2f2f766973696f6e2e696e2e74756d2e64652f5f6d656469612f7370657a69616c2f6269622f68616575737365725f696363765f31372e706e67
Return of frustratingly easy domain adaptation (2015)https://arxiv.org/abs/1511.05547
https://patch-diff.githubusercontent.com/axruff/TransferLearning#architectural-criterion
Deeper, broader and artier domain generalization (2017)https://arxiv.org/abs/1710.03077
https://camo.githubusercontent.com/b026754f27dc4ec9a55449b4b2da1ed859bd71ee903e5c92e2964c42aeaa8075/687474703a2f2f7777772e656563732e716d756c2e61632e756b2f7e646c3330372f696d672f70726f6a6563745f696d67312e706e67
https://patch-diff.githubusercontent.com/axruff/TransferLearning#geometric-criterion
[Dlid]: Deep learning for domain adaptation by interpolating between domains (2013)http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.664.4509
https://patch-diff.githubusercontent.com/axruff/TransferLearning#adversarial-based-approaches
https://patch-diff.githubusercontent.com/axruff/TransferLearning#generative-models
2014 - Generative Adversarial Networkshttps://arxiv.org/abs/1406.2661
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
2015 - [DANN] Domain-Adversarial Training of Neural Networkshttps://arxiv.org/abs/1505.07818
[github]https://github.com/fungtion/DANN
https://camo.githubusercontent.com/5201a6af692fe44c22cc2dfda8e9db02fb0e0ffc/68747470733a2f2f73312e617831782e636f6d2f323031382f30312f31322f70384b5479442e6d642e6a7067
2015 - [LapGAN] Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networkshttps://arxiv.org/abs/1506.05751
https://camo.githubusercontent.com/7d1a9a2c2703dfe6566acd5afcda337f472f4918c18dee6ba2a1b0a3514aa490/687474703a2f2f736f756d6974682e63682f65796573637265616d2f696d616765732f4c415047414e2e706e67
2016 - Improved techniques for training GANshttps://arxiv.org/abs/1606.03498
githubhttps://github.com/openai/improved-gan
2016 - Domain Separation Networkshttps://arxiv.org/abs/1608.06019
https://camo.githubusercontent.com/54c4bda6c4febff7a92668bc6c278be234b0c27b168d6ef2b91f9e1aaef4c18d/68747470733a2f2f692e70696e696d672e636f6d2f353634782f64652f35302f66612f64653530666163383130373465313663613738313134663738613337393234362e6a7067
2016 - [PixelDA] Unsupervised pixel-level domain adaptation with generative adversarial networkshttps://arxiv.org/abs/1612.05424
https://camo.githubusercontent.com/4a0e11b6a28fa78a4d91bfbffdb418ebe5ba62f98a3f6ca9f3cfd18b5da672c7/68747470733a2f2f706c616365686f6c642e69742f31352f6335666631352f3030303030303f746578743d2b
https://camo.githubusercontent.com/6328c32ad3205b52be4f1b137397ec651645c65c26c1c0b788ad9720843b20e4/68747470733a2f2f692e70696e696d672e636f6d2f353634782f66382f35322f31652f66383532316534353431353736323436356535653031343532613936336133312e6a7067
2016 - [CoGAN] Coupled generative adversarial networkshttps://arxiv.org/abs/1606.07536
2016 - Pixel-level domain transferhttps://arxiv.org/pdf/1603.07442.pdf
[github]https://github.com/fxia22/PixelDTGAN
https://camo.githubusercontent.com/7ccd19520bebcdae8b42a4f1c622ee7c59feb0d26a1f468b93e0a08bbd22dada/68747470733a2f2f7062732e7477696d672e636f6d2f6d656469612f43674b6851326857454141453233312e6a70673a6c61726765
104https://patch-diff.githubusercontent.com/axruff/TransferLearning/blob/master
2016 - Learning from Simulated and Unsupervised Images through Adversarial Traininghttps://arxiv.org/abs/1612.07828
https://github.com/axruff/ML_papers/raw/master/images/123.png
2017 - [MAD-GAN] Multi-Agent Diverse Generative Adversarial Networkshttps://arxiv.org/abs/1704.02906
2017 - [ADDA] Adversarial discriminative domain adaptationhttps://arxiv.org/abs/1702.05464
https://raw.githubusercontent.com/joshua19881228/my_blogs/master/Computer_Vision/Reading_Note/figures/ADDA_1.jpg
2017 - [PacGAN] PacGAN: The power of two samples in generative adversarial networkshttps://arxiv.org/abs/1712.04086
2017 - Wasserstein GANhttps://arxiv.org/abs/1701.07875
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
2017 - [PGAN]: Progressive Growing of GANs for Improved Quality, Stability, and Variationhttps://arxiv.org/abs/1710.10196v3
https://camo.githubusercontent.com/4a0e11b6a28fa78a4d91bfbffdb418ebe5ba62f98a3f6ca9f3cfd18b5da672c7/68747470733a2f2f706c616365686f6c642e69742f31352f6335666631352f3030303030303f746578743d2b
https://camo.githubusercontent.com/eb93076d21d3c666f65170d47353a1c533839e0cf70249f656fe7ba1f4af80f9/68747470733a2f2f61647269616e636f6c7965722e66696c65732e776f726470726573732e636f6d2f323031382f30352f70726f67726573736976652d67616e732d6669672d312e6a7065673f773d363430
2017 - Improved Adversarial Systems for 3D Object Generation and Reconstructionhttps://arxiv.org/abs/1707.09557
2018 - Toward Multimodal Image-to-Image Translationhttps://arxiv.org/abs/1711.11586
https://camo.githubusercontent.com/6a21505b95c92371467360aa85b799ef7442dd9d1e23d554f15f145a85d1d3c1/68747470733a2f2f6a756e79616e7a2e6769746875622e696f2f42696379636c6547414e2f696e6465785f66696c65732f7465617365722e6a7067
2018 - From Source to Target and Back: Symmetric Bi-Directional Adaptive GANhttp://openaccess.thecvf.com/content_cvpr_2018/html/Russo_From_Source_to_CVPR_2018_paper.html
2018 - SRDA: Generating Instance Segmentation Annotation Via Scanning, Reasoning And Domain Adaptationhttps://arxiv.org/abs/1801.08839
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
2018 - How good is my GAN?https://arxiv.org/abs/1807.09499
https://camo.githubusercontent.com/1e86033f0b8f1ba904f377e4cb7951ae46c503fbd187ed526d705d04ef7b5390/687474703a2f2f74686f74682e696e7269616c7065732e66722f72657365617263682f67616e6576616c2f696d616765732f666967312e706e67
2018 - A Style-Based Generator Architecture for Generative Adversarial Networkshttps://arxiv.org/abs/1812.04948
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
https://camo.githubusercontent.com/cc4708cafd34693aa300200813b1e5550f036c0b5f2cd2717438014054f8d0eb/68747470733a2f2f72657365617263682e6e76696469612e636f6d2f73697465732f64656661756c742f66696c65732f7075626c69636174696f6e732f7374796c6567616e2d7465617365722d736d616c6c2e6a7067
2019 - U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translationhttps://arxiv.org/abs/1907.10830
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
https://camo.githubusercontent.com/ad6bc7dfe423705013c98494327bf0f285fc6528a292447b5c2f9338a8ba09e7/68747470733a2f2f707974686f6e617765736f6d652e636f6d2f636f6e74656e742f696d616765732f323031392f30382f67656e657261746f722e706e67
2020 - [BlockGAN]: Learning 3D Object-aware Scene Representations from Unlabelled Imageshttps://arxiv.org/abs/2002.08988
https://camo.githubusercontent.com/cf2917af4b1d375933bab180382f0b2d633a24b38946863fdb879df0b0baa394/68747470733a2f2f692e70696e696d672e636f6d2f353634782f38662f31302f62332f38663130623330393936366139666166353433303939366161376431313534352e6a7067
2021 - DatasetGAN: Efficient Labeled Data Factory with Minimal Human Efforthttps://www.semanticscholar.org/paper/DatasetGAN%3A-Efficient-Labeled-Data-Factory-with-Zhang-Ling/786cb74290340443e9d02ffd9669f5e2a18878b5
https://camo.githubusercontent.com/ba5dd897b7c56d47708af0e0371026e25922bbbe3cb33c819fdd6ea2383f1973/68747470733a2f2f692e70696e696d672e636f6d2f353634782f66342f30392f62392f66343039623934333830346661383732353766626431663361616432393437662e6a7067
2021 - DriveGAN: Towards a Controllable High-Quality Neural Simulationhttps://www.semanticscholar.org/paper/DriveGAN%3A-Towards-a-Controllable-High-Quality-Kim-Philion/02f316857c1d20649b18e5fec3e92dda8ef1d0a0
https://camo.githubusercontent.com/bf7ae8222f06cfdfee18e5d92bb170d4001c8f9c17951faa89ff33255fe38e35/68747470733a2f2f692e70696e696d672e636f6d2f353634782f33372f37622f65342f33373762653432633333336431323930636539613834643965363830323064632e6a7067
https://patch-diff.githubusercontent.com/axruff/TransferLearning#non-generative-models
https://patch-diff.githubusercontent.com/axruff/TransferLearning#reconstruction-based-approaches
https://patch-diff.githubusercontent.com/axruff/TransferLearning#others
[link]https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo/raw/master/The_GAN_Zoo.jpg
[link]https://arxiv.org/abs/1706.05208
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
Context Encoders: Feature Learning by Inpainting (2016)https://arxiv.org/abs/1604.07379
[github]https://github.com/pathak22/context-encoder
https://camo.githubusercontent.com/519d692b3d9230ef9862b80177b3c1dd4a7fcc77b30e582b1912e5654654b567/68747470733a2f2f692e70696e696d672e636f6d2f353634782f35372f62652f64352f35376265643538356561393930623835383331346639313964623566633532322e6a7067
Compositional GAN: Learning Conditional Image Composition (2018)https://arxiv.org/abs/1807.07560
https://camo.githubusercontent.com/38f24ec26a4a0978d4d956cc5ec19e4fe0691d59bace5f857d2a58aa64eaf517/687474703a2f2f7062732e7477696d672e636f6d2f6d656469612f4469376c576457586f4141686436422e6a7067
[link]https://arxiv.org/abs/1811.10597v
https://gandissect.csail.mit.edu/https://gandissect.csail.mit.edu/
[link]https://arxiv.org/abs/1704.03976
https://camo.githubusercontent.com/4e3d1db4e26819bf4cf7745523b8a7642821bb79b95bb2f50c5dcf324b4ecc4b/68747470733a2f2f7777772e7265736561726368676174652e6e65742f70726f66696c652f54616b6572755f4d697961746f2f7075626c69636174696f6e2f3331363039383537312f6669677572652f666967322f41533a36363737393137353334393836333540313533363232353336393931382f44656d6f6e7374726174696f6e2d6f662d686f772d6f75722d5641542d776f726b732d6f6e2d73656d692d737570657276697365642d6c6561726e696e672d57652d67656e6572617465642d382d6c6162656c65642e706e67
https://camo.githubusercontent.com/8781c97b711053eef5cc4dbdc3d83de11e683525b524976dc7058a327240bc34/68747470733a2f2f7068696c6c6970692e6769746875622e696f2f706978327069782f696d616765732f7465617365725f76332e6a7067
Pros and Cons of GAN Evaluation Measures (2018)https://arxiv.org/abs/1802.03446
https://patch-diff.githubusercontent.com/axruff/TransferLearning#domain-randomization
Lil'Log blog post titled - Domain Randomization for Sim2Real Transferhttps://lilianweng.github.io/lil-log/2019/05/05/domain-randomization.html#uniform-domain-randomization
https://patch-diff.githubusercontent.com/axruff/TransferLearning#uniform-randomization
2017 - Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real Worldhttps://arxiv.org/abs/1703.06907
https://camo.githubusercontent.com/94e91b29a597894c238b9aecf8f844c7107abe00d901d1f73bc79aad723f7f9f/68747470733a2f2f692e70696e696d672e636f6d2f353634782f39392f65392f36352f39396539363537333832656631653934653261636239353863376331636636632e6a7067
2017 - Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomizationhttps://arxiv.org/abs/1804.06516
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
https://camo.githubusercontent.com/d8cd49ed772e5b8c5e23cd3b36b15ec6d0a288f6961faa245941a029b4e17a29/68747470733a2f2f72657365617263682e6e76696469612e636f6d2f73697465732f64656661756c742f66696c65732f7075626c69636174696f6e732f637670722d666967315f646f776e342e706e67
2017 - Sim-to-Real Transfer of Robotic Control with Dynamics Randomizationhttps://arxiv.org/abs/1710.06537
https://camo.githubusercontent.com/09ba4e414f7e9047e6a8ffdc97f2b94c453a9fae6c4cf01ebcf30a459afb1aae/68747470733a2f2f786270656e672e6769746875622e696f2f70726f6a656374732f53696d546f5265616c2f73696d746f7265616c5f7465617365722e706e67
https://patch-diff.githubusercontent.com/axruff/TransferLearning#guided-randomization
https://patch-diff.githubusercontent.com/axruff/TransferLearning#optimization-for-task-performance
2018 - Learning To Simulatehttps://arxiv.org/abs/1810.02513
https://camo.githubusercontent.com/a04b3effb3b5790f3e9e0892728ff6765fcde2053f1197da37577107272431da/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f323030302f312a666869436b67334474324535517955564a4530527a512e706e67
2019 - [Meta-Sim]: Learning to Generate Synthetic Datasetshttps://arxiv.org/abs/1904.11621
[website]https://nv-tlabs.github.io/meta-sim/
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
https://camo.githubusercontent.com/7e591a29ce4cd892b9376c9077e4d6a5b3e71bef67d717926b851a2458eec0b7/68747470733a2f2f6e762d746c6162732e6769746875622e696f2f6d6574612d73696d2f7265736f75726365732f6d6574612d73696d2d7465617365722e706e67
https://patch-diff.githubusercontent.com/axruff/TransferLearning#match-real-data-distribution
2019 - Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experiencehttps://arxiv.org/abs/1810.05687
https://camo.githubusercontent.com/e5c55be171c46ab5fbbdedd4d20229400f05e1054c428bff7b97664ea8aa3b2e/68747470733a2f2f646565706c6561726e2e6f72672f61727869765f66696c65732f313831302e303536383776312f78312e706e67
2018 - [RCAN] Sim-to-Real via Sim-to-Sim: Data-efficient Robotic Grasping via Randomized-to-Canonical Adaptation Networkshttps://arxiv.org/abs/1812.07252
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
https://camo.githubusercontent.com/ab594fce4f967b4e1ca01bb15899b381a4de42bb9ecb7e4eb16651458241f035/68747470733a2f2f6c696c69616e77656e672e6769746875622e696f2f6c696c2d6c6f672f6173736574732f696d616765732f5243414e2e706e67
https://patch-diff.githubusercontent.com/axruff/TransferLearning#guided-by-data-in-simulation
2019 - [DeceptionNet]: Network-Driven Domain Randomizationhttps://arxiv.org/abs/1904.02750
https://camo.githubusercontent.com/b6b4f7ae350b65c7027497843f477dfc7deb7671433b42b7c4dfee669dee3cf6/68747470733a2f2f706c616365686f6c642e69742f31352f3030666630302f3030303030303f746578743d2b
https://camo.githubusercontent.com/82137f11f6c0cb227cbe2d63c26629a3ef325a98fbd3b631268275425440f975/68747470733a2f2f6c696c69616e77656e672e6769746875622e696f2f6c696c2d6c6f672f6173736574732f696d616765732f646563657074696f6e2d6e65742e706e67
2019 - [ADR]: Active Domain Randomizationhttps://arxiv.org/abs/1904.04762
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
https://camo.githubusercontent.com/29e064e4b5b75c085339ac8d68bb0dd72465c8f14ada389c318ee28727aa774e/68747470733a2f2f6c696c69616e77656e672e6769746875622e696f2f6c696c2d6c6f672f6173736574732f696d616765732f4144522e706e67
https://patch-diff.githubusercontent.com/axruff/TransferLearning#style-transfer
2016 - Image Style Transfer Using Convolutional Neural Networkshttps://ieeexplore.ieee.org/document/7780634
2016 Perceptual losses for real-time style transfer and super-resolutionhttps://arxiv.org/abs/1603.08155?context=cs
[github]https://github.com/jcjohnson/fast-neural-style
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
https://raw.githubusercontent.com/sunshineatnoon/Paper-Collection/master/images/RTNS.png
2017 - [CycleGAN] Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networkshttps://arxiv.org/abs/1703.10593
https://camo.githubusercontent.com/f71c3e57a18abccf81d508c2589114c0e8939f308626b42cf2e54453a9892543/68747470733a2f2f6a756e79616e7a2e6769746875622e696f2f4379636c6547414e2f696d616765732f7465617365722e6a7067
2016 - [pix2pix] Image-to-Image Translation with Conditional Adversarial Networkshttps://arxiv.org/abs/1611.07004
[github]https://phillipi.github.io/pix2pix/
2018 - [DRIT] Diverse Image-to-Image Translation via Disentangled Representationshttps://arxiv.org/abs/1808.00948
[github]https://github.com/HsinYingLee/DRIT
https://camo.githubusercontent.com/583ab1044327ad645fec38b373832f325df8a7a2d07e8521f08de21b2b11a76f/68747470733a2f2f706c616365686f6c642e69742f31352f6666303030302f3030303030303f746578743d2b
https://camo.githubusercontent.com/73e32b84546b3ae5ac271fc63c13c28c91096eefad7193f67cb8ba5d5059c75c/68747470733a2f2f6d656469612e737072696e6765726e61747572652e636f6d2f6f726967696e616c2f737072696e6765722d7374617469632f696d6167652f63687025334131302e313030372532463937382d332d3033302d30313234362d355f332f4d656469614f626a656374732f3437343137325f315f456e5f335f466967335f48544d4c2e676966
2018 - A Style-Based Generator Architecture for Generative Adversarial Networkshttps://arxiv.org/abs/1812.04948
[github]https://github.com/NVlabs/stylegan
https://github.com/NVlabs/stylegan/raw/master/stylegan-teaser.png
2018 - Deep Painterly Harmonizationhttps://arxiv.org/abs/1804.03189v3
[github]https://github.com/luanfujun/deep-painterly-harmonization
https://camo.githubusercontent.com/61bdf0d364d539fae6375e37654c78012c44635f428bedea53e3a01e33c7d3ea/68747470733a2f2f692e70696e696d672e636f6d2f353634782f66362f66612f37342f66366661373430333935633162393965636565326237316634366231363735312e6a7067
2021 - StyleLess layer: Improving robustness for real-world drivinghttps://www.semanticscholar.org/paper/StyleLess-layer%3A-Improving-robustness-for-driving-Rebut-Bursuc/4f8a4bd77795d9794047e2ec5b1ca35b016ed688
https://camo.githubusercontent.com/133110c91b1f8e522ae7f4cb342f0347558467691a129e8aeb0816f631080791/68747470733a2f2f692e70696e696d672e636f6d2f353634782f31612f33302f31302f31613330313033303535383666373963383564653637636339316434336165352e6a7067
https://patch-diff.githubusercontent.com/axruff/TransferLearning#texture-synthesis
2015 - Texture Synthesis Using Convolutional Neural Networkshttps://arxiv.org/abs/1505.07376
[github]https://mc.ai/tensorflow-implementation-of-paper-texture-synthesis-using-convolutional-neural-networks/
https://camo.githubusercontent.com/fe7923c07a20c2f2958d358f9fecad5cfb9686791b3f211cd8fae7796fe7efb6/68747470733a2f2f646d69747279756c79616e6f762e6769746875622e696f2f6173736574732f6f6e6c696e652d6e657572616c2d646f6f646c652f74657874757265732e706e67
http://bethgelab.org/deeptextures/http://bethgelab.org/deeptextures/
https://www.textures.com/index.phphttps://www.textures.com/index.php
style-transfer https://patch-diff.githubusercontent.com/topics/style-transfer
generative-model https://patch-diff.githubusercontent.com/topics/generative-model
transfer-learning https://patch-diff.githubusercontent.com/topics/transfer-learning
domain-adaptation https://patch-diff.githubusercontent.com/topics/domain-adaptation
synthetic-data https://patch-diff.githubusercontent.com/topics/synthetic-data
Readme https://patch-diff.githubusercontent.com/axruff/TransferLearning#readme-ov-file
Please reload this pagehttps://patch-diff.githubusercontent.com/axruff/TransferLearning
Activityhttps://patch-diff.githubusercontent.com/axruff/TransferLearning/activity
5 starshttps://patch-diff.githubusercontent.com/axruff/TransferLearning/stargazers
1 watchinghttps://patch-diff.githubusercontent.com/axruff/TransferLearning/watchers
0 forkshttps://patch-diff.githubusercontent.com/axruff/TransferLearning/forks
Report repository https://patch-diff.githubusercontent.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2Faxruff%2FTransferLearning&report=axruff+%28user%29
Releaseshttps://patch-diff.githubusercontent.com/axruff/TransferLearning/releases
Packages 0https://patch-diff.githubusercontent.com/users/axruff/packages?repo_name=TransferLearning
https://github.com
Termshttps://docs.github.com/site-policy/github-terms/github-terms-of-service
Privacyhttps://docs.github.com/site-policy/privacy-policies/github-privacy-statement
Securityhttps://github.com/security
Statushttps://www.githubstatus.com/
Communityhttps://github.community/
Docshttps://docs.github.com/
Contacthttps://support.github.com?tags=dotcom-footer

Viewport: width=device-width


URLs of crawlers that visited me.