| Skip to content | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#start-of-content |
|
| https://patch-diff.githubusercontent.com/ |
|
Sign in
| https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2FUHT2020%2FDeepLearning |
| GitHub CopilotWrite better code with AI | https://github.com/features/copilot |
| GitHub SparkBuild and deploy intelligent apps | https://github.com/features/spark |
| GitHub ModelsManage and compare prompts | https://github.com/features/models |
| MCP RegistryNewIntegrate external tools | https://github.com/mcp |
| ActionsAutomate any workflow | https://github.com/features/actions |
| CodespacesInstant dev environments | https://github.com/features/codespaces |
| IssuesPlan and track work | https://github.com/features/issues |
| Code ReviewManage code changes | https://github.com/features/code-review |
| GitHub Advanced SecurityFind and fix vulnerabilities | https://github.com/security/advanced-security |
| Code securitySecure your code as you build | https://github.com/security/advanced-security/code-security |
| Secret protectionStop leaks before they start | https://github.com/security/advanced-security/secret-protection |
| Why GitHub | https://github.com/why-github |
| Documentation | https://docs.github.com |
| Blog | https://github.blog |
| Changelog | https://github.blog/changelog |
| Marketplace | https://github.com/marketplace |
| View all features | https://github.com/features |
| Enterprises | https://github.com/enterprise |
| Small and medium teams | https://github.com/team |
| Startups | https://github.com/enterprise/startups |
| Nonprofits | https://github.com/solutions/industry/nonprofits |
| App Modernization | https://github.com/solutions/use-case/app-modernization |
| DevSecOps | https://github.com/solutions/use-case/devsecops |
| DevOps | https://github.com/solutions/use-case/devops |
| CI/CD | https://github.com/solutions/use-case/ci-cd |
| View all use cases | https://github.com/solutions/use-case |
| Healthcare | https://github.com/solutions/industry/healthcare |
| Financial services | https://github.com/solutions/industry/financial-services |
| Manufacturing | https://github.com/solutions/industry/manufacturing |
| Government | https://github.com/solutions/industry/government |
| View all industries | https://github.com/solutions/industry |
| View all solutions | https://github.com/solutions |
| AI | https://github.com/resources/articles?topic=ai |
| Software Development | https://github.com/resources/articles?topic=software-development |
| DevOps | https://github.com/resources/articles?topic=devops |
| Security | https://github.com/resources/articles?topic=security |
| View all topics | https://github.com/resources/articles |
| Customer stories | https://github.com/customer-stories |
| Events & webinars | https://github.com/resources/events |
| Ebooks & reports | https://github.com/resources/whitepapers |
| Business insights | https://github.com/solutions/executive-insights |
| GitHub Skills | https://skills.github.com |
| Documentation | https://docs.github.com |
| Customer support | https://support.github.com |
| Community forum | https://github.com/orgs/community/discussions |
| Trust center | https://github.com/trust-center |
| Partners | https://github.com/partners |
| GitHub SponsorsFund open source developers | https://github.com/sponsors |
| Security Lab | https://securitylab.github.com |
| Maintainer Community | https://maintainers.github.com |
| Accelerator | https://github.com/accelerator |
| Archive Program | https://archiveprogram.github.com |
| Topics | https://github.com/topics |
| Trending | https://github.com/trending |
| Collections | https://github.com/collections |
| Enterprise platformAI-powered developer platform | https://github.com/enterprise |
| GitHub Advanced SecurityEnterprise-grade security features | https://github.com/security/advanced-security |
| Copilot for BusinessEnterprise-grade AI features | https://github.com/features/copilot/copilot-business |
| Premium SupportEnterprise-grade 24/7 support | https://github.com/premium-support |
| Pricing | https://github.com/pricing |
| Search syntax tips | https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax |
| documentation | https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax |
|
Sign in
| https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2FUHT2020%2FDeepLearning |
|
Sign up
| https://patch-diff.githubusercontent.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=UHT2020%2FDeepLearning |
| Reload | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning |
| Reload | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning |
| Reload | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning |
|
UHT2020
| https://patch-diff.githubusercontent.com/UHT2020 |
| DeepLearning | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning |
| Mikoto10032/DeepLearning | https://patch-diff.githubusercontent.com/Mikoto10032/DeepLearning |
|
Notifications
| https://patch-diff.githubusercontent.com/login?return_to=%2FUHT2020%2FDeepLearning |
|
Fork
0
| https://patch-diff.githubusercontent.com/login?return_to=%2FUHT2020%2FDeepLearning |
|
Star
0
| https://patch-diff.githubusercontent.com/login?return_to=%2FUHT2020%2FDeepLearning |
|
Apache-2.0 license
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master/LICENSE |
|
0
stars
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/stargazers |
|
3.9k
forks
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/forks |
|
Branches
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/branches |
|
Tags
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/tags |
|
Activity
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/activity |
|
Star
| https://patch-diff.githubusercontent.com/login?return_to=%2FUHT2020%2FDeepLearning |
|
Notifications
| https://patch-diff.githubusercontent.com/login?return_to=%2FUHT2020%2FDeepLearning |
|
Code
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning |
|
Pull requests
0
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/pulls |
|
Actions
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/actions |
|
Projects
0
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/projects |
|
Security
Uh oh!
There was an error while loading. Please reload this page.
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/security |
| Please reload this page | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning |
|
Insights
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/pulse |
|
Code
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning |
|
Pull requests
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/pulls |
|
Actions
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/actions |
|
Projects
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/projects |
|
Security
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/security |
|
Insights
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/pulse |
| Branches | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/branches |
| Tags | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/tags |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/branches |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/tags |
| 552 Commits | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/commits/master/ |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/commits/master/ |
| Projects/lihang-code | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/tree/master/Projects/lihang-code |
| Projects/lihang-code | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/tree/master/Projects/lihang-code |
| books | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/tree/master/books |
| books | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/tree/master/books |
| notes/Images | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/tree/master/notes/Images |
| notes/Images | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/tree/master/notes/Images |
| LICENSE | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master/LICENSE |
| LICENSE | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master/LICENSE |
| README.md | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master/README.md |
| README.md | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master/README.md |
| README | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning |
| Apache-2.0 license | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#deeplearning-tutorial |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#一-入门资料 |
| 完备的 AI 学习路线,最详细的中英文资源整理 | https://zhuanlan.zhihu.com/p/64052743 |
| AiLearning: 机器学习 - MachineLearning - ML、深度学习 - DeepLearning - DL、自然语言处理 NL | https://github.com/apachecn/AiLearning |
| Machine-Learning | https://github.com/shunliz/Machine-Learning |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#数学基础 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master/notes/Images/MathematicalBasis.png |
| 矩阵微积分 | https://zh.wikipedia.org/wiki/%E7%9F%A9%E9%98%B5%E5%BE%AE%E7%A7%AF%E5%88%86 |
| 机器学习的数学基础 | https://github.com/fengdu78/Data-Science-Notes/tree/master/0.math/0.basic |
| CS229线性代数与概率论基础 | https://github.com/fengdu78/Data-Science-Notes/tree/master/0.math/1.CS229 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#机器学习基础 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#快速入门 |
| 机器学习算法地图 | http://www.tensorinfinity.com/paper_18.html |
| 机器学习 吴恩达 Coursera个人笔记 | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%5BML-Coursera%5D%5B2014%5D%5BAndrew%20Ng%5D/%5B2014%5D%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E4%B8%AA%E4%BA%BA%E7%AC%94%E8%AE%B0%E5%AE%8C%E6%95%B4%E7%89%88v5.1.pdf |
| 视频(含官方笔记) | https://www.coursera.org/learn/machine-learning |
| CS229 课程讲义中文翻译 | https://kivy-cn.github.io/Stanford-CS-229-CN/#/ |
| 机器学习 吴恩达 cs229个人笔记 | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%5BML-CS229%5D%5B2011%5D%5BAndrew%20NG%5D/%5B2011%5D%E6%96%AF%E5%9D%A6%E7%A6%8F%E5%A4%A7%E5%AD%A6%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E8%AF%BE%E7%A8%8B%E4%B8%AA%E4%BA%BA%E7%AC%94.pdf |
| 官网(笔记) | http://cs229.stanford.edu/ |
| 视频(中文字幕) | http://open.163.com/newview/movie/free?pid=M6SGF6VB4&mid=M6SGHFBMC |
| 百页机器学习 | http://themlbook.com/wiki/doku.php |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#深入理解 |
| 《统计学习方法》李航 | https://github.com/Mikoto10032/DeepLearning/tree/master/books/%E6%9D%8E%E8%88%AA-%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0 |
| 《统计学习方法》各章节笔记 | https://www.cnblogs.com/YongSun/tag/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/ |
| 《统计学习方法》各章节笔记 | https://zhuanlan.zhihu.com/c_1213397558586257408 |
| 推荐答案:statistical-learning-method-solutions-manual | https://github.com/datawhalechina/statistical-learning-method-solutions-manual |
| 《统计学习方法》各章节笔记 | https://www.cnblogs.com/liaohuiqiang/category/1039314.html |
| 《统计学习方法》各章节代码实现与课后习题参考解答 | https://blog.csdn.net/breeze_blows/article/details/85469944 |
| 《模式识别与机器学习》 Christopher Bishop | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E6%A8%A1%E5%BC%8F%E8%AF%86%E5%88%AB%E4%B8%8E%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0PRML_Chinese_vision.pdf |
| 《机器学习》 周志华 | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%91%A8%E5%BF%97%E5%8D%8E.pdf |
| 南瓜书:pumpkin-book | https://github.com/datawhalechina/pumpkin-book |
| 《机器学习实战》 PelerHarrington | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%AE%9E%E6%88%98%20%E4%B8%AD%E6%96%87%E5%8F%8C%E9%A1%B5%E7%89%88.pdf |
| 机器学习与深度学习书单 | https://mp.weixin.qq.com/s?__biz=MzAxMjcyNjE5MQ==&mid=2650488718&idx=1&sn=815a79d27d500f0fb8db1fe1fc6cfe48&chksm=83a2e54eb4d56c58a0989654f920d64ad2784ce52e4b2bc6883974257cf475c9983f05fb88c1&scene=0&xtrack=1&ascene=14&devicetype=android-28&version=27000339&nettype=WIFI&abtest_cookie=AwABAAoACwATAAQAI5ceAFaZHgDQmR4A3JkeAAAA&lang=zh_CN&pass_ticket=oEB1108Pes6HkdxEITmBjTb2Glju5%2BEGqHZKz50fMg0rgK4l9Fodlbe%2FDm96iX57&wx_header=1 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#深度学习基础 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#快速入门-1 |
| 深度学习思维导图 | https://github.com/dformoso/deeplearning-mindmap |
| 深度学习算法地图 | http://www.tensorinfinity.com/paper_158.html |
| 《斯坦福大学深度学习基础教程》 Andrew Ng(吴恩达) | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E6%96%AF%E5%9D%A6%E7%A6%8F%E5%A4%A7%E5%AD%A6-%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E5%9F%BA%E7%A1%80%E6%95%99%E7%A8%8B.pdf |
| 深度学习 吴恩达 个人笔记 | http://www.ai-start.com/dl2017/ |
| 视频 | http://mooc.study.163.com/smartSpec/detail/1001319001.htm |
| MIT深度学习基础-2019视频课程 | https://deeplearning.mit.edu/ |
| 台湾大学(NTU)李宏毅教授课程 | http://speech.ee.ntu.edu.tw/~tlkagk/index.html |
| leeml-notes | https://github.com/datawhalechina/leeml-notes |
| 图解深度学习_Grokking-Deep-Learning | https://github.com/iamtrask/Grokking-Deep-Learning |
| 《神经网络与深度学习》 Michael Nielsen | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E5%92%8C%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0neural%20networks%20and%20deep-learning-%E4%B8%AD%E6%96%87_ALL.pdf |
| CS321-Hinton | http://www.cs.toronto.edu/~tijmen/csc321/ |
| CS230: Deep Learning | https://web.stanford.edu/class/cs230/ |
| CS294-112 | http://rail.eecs.berkeley.edu/deeprlcourse/resources/ |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#计算机视觉 |
| CS231 李飞飞 已授权个人翻译笔记 | https://zhuanlan.zhihu.com/p/21930884 |
| 视频 | http://study.163.com/course/courseMain.htm?courseId=1003223001 |
| 计算机视觉研究方向 | https://mp.weixin.qq.com/s/WNkzfvYtEO5zJoe_-yAPow |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#自然语言处理 |
| CS224n: Natural Language Processing with Deep Learning | http://web.stanford.edu/class/cs224n/index.html |
| NLP上手教程 | https://github.com/FudanNLP/nlp-beginner |
| NLP入门推荐书目(2019版) | https://zhuanlan.zhihu.com/p/58874484 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#深度强化学习 |
| CS234: Reinforcement Learning | http://web.stanford.edu/class/cs234/index.html |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#深入理解-1 |
| 《深度学习》 Yoshua Bengio.Ian GoodFellow | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0.Yoshua%20Bengio%2BIan%20GoodFellow.pdf |
| 《自然语言处理》Jacob Eisenstein | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80%E5%A4%84%E7%90%86.Jacob%20Eisenstein.pdf |
| 《强化学习》 | https://github.com/Mikoto10032/DeepLearning/blob/master/books/Reinforcement%20Learning.Sutton.pdf |
| 第二版 | http://incompleteideas.net/book/RLbook2018trimmed.pdf |
| hangdong的深度学习博客,论文推荐 | https://handong1587.github.io/categories.html#deep_learning-ref |
| Practical Deep Learning for Coders, v3 | https://course.fast.ai/ |
| 《Tensorflow实战Google深度学习框架》 郑泽宇 顾思宇 | https://github.com/Mikoto10032/DeepLearning/blob/master/books/Tensorflow%20%E5%AE%9E%E6%88%98Google%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E6%A1%86%E6%9E%B6.pdf |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#一些书单 |
| 2019年最新-深度学习、生成对抗、Pytorch优秀教材推荐 | https://zhuanlan.zhihu.com/p/63784033 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#工程能力 |
| https://camo.githubusercontent.com/58d36614c20e3b9ef5ad2d43c9188de16ca86926eb15c478b42a364b628497c6/68747470733a2f2f706963342e7a68696d672e636f6d2f76322d30303930313332373836383866353230633037306232373931303235356362315f722e6a7067 |
| 如何系统地学习算法? | https://www.zhihu.com/question/20588261/answer/798928056 |
| LeetCode | https://leetcode.com/ |
| leetcode题解 | https://github.com/azl397985856/leetcode |
| 《算法导论》中算法的C++实现 | https://github.com/huaxz1986/cplusplus-_Implementation_Of_Introduction_to_Algorithms |
| 机器学习算法实战 | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%AE%9E%E6%88%98%E7%AF%87 |
| 深度学习框架 | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E6%A1%86%E6%9E%B6 |
| 如何成为一名算法工程师 | https://mp.weixin.qq.com/s/YMtnBAVDZepsMTO4h-VRtQ |
| 从小白到入门算法,我的经验分享给你~ | https://mp.weixin.qq.com/s?__biz=MzAxMjcyNjE5MQ==&mid=2650488786&idx=1&sn=68b9536d0b0b3105ab8d79f8efcb0a4b&chksm=83a2e512b4d56c045c6ab0349108842e6a5b26e8f3e507ff5d19ee50e3bd63ef149a36d23eef&scene=0&xtrack=1&ascene=14&devicetype=android-28&version=27000437&nettype=WIFI&abtest_cookie=BAABAAoACwASABMABgAjlx4AVpkeANCZHgDcmR4A8ZkeAAOaHgAAAA%3D%3D&lang=zh_CN&pass_ticket=4yovfEr0v09yZCvvQ1NEy12qGIonnRpGi774X09Mh5EZD2oL%2BRz6FTtX9R5gALB1&wx_header=1 |
| 我的研究生这三年 | https://zhuanlan.zhihu.com/p/54161673 |
| 编程面试的题目分类 | https://zhuanlan.zhihu.com/p/89392459 |
| 《AI算法工程师手册》 | http://www.huaxiaozhuan.com/ |
| 如何准备算法工程师面试,斩获一线互联网公司机器学习岗offer? | https://zhuanlan.zhihu.com/p/76827460 |
| 【完结】深度学习CV算法工程师从入门到初级面试有多远,大概是25篇文章的距离 | https://mp.weixin.qq.com/s/HZ3Cd2jHuikyFN9ydvcMTw |
| 计算机相关技术面试必备 | https://github.com/CyC2018/CS-Notes |
| CS-WiKi | https://veal98.gitee.io/cs-wiki/#/ |
| 计算机基础面试问题全面总结 | https://github.com/wolverinn/Waking-Up |
| TeachYourselfCS-CN | https://github.com/keithnull/TeachYourselfCS-CN |
| 面试算法笔记-中文 | https://github.com/imhuay/Algorithm_for_Interview-Chinese |
| 算法工程师面试 | https://github.com/DarLiner/Algorithm_Interview_Notes-Chinese |
| 深度学习面试题目 | https://github.com/ShanghaiTechAIClub/DLInterview |
| 深度学习500问 | https://github.com/scutan90/DeepLearning-500-questions |
| AI算法岗求职攻略 | https://github.com/amusi/AI-Job-Notes#Strategy |
| Kaggle实战 | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master |
| kaggle竞赛宝典第一章-竞赛框架篇!:star: | https://mp.weixin.qq.com/s/EGiFG6u9BYr1aBdq0a0wIQ |
| Kaggle 项目实战(教程) = 文档 + 代码 + 视频 | https://github.com/apachecn/kaggle |
| Kaggle入门系列:(一)机器学习环境搭建 | https://zhuanlan.zhihu.com/p/29086448 |
| Kaggle入门系列:(二)Kaggle简介 | https://zhuanlan.zhihu.com/p/29417603 |
| Kaggle入门系列(三)Titanic初试身手 | https://zhuanlan.zhihu.com/p/29086614 |
| 从 0 到 1 走进 Kaggle | https://zhuanlan.zhihu.com/p/61660061 |
| Kaggle 入门指南 | https://zhuanlan.zhihu.com/p/25742261 |
| 一个框架解决几乎所有机器学习问题 | https://zhuanlan.zhihu.com/p/61657532 |
| Approaching (Almost) Any Machine Learning Problem | Abhishek Thakur | http://blog.kaggle.com/2016/07/21/approaching-almost-any-machine-learning-problem-abhishek-thakur/ |
| 分分钟带你杀入Kaggle Top 1% | https://zhuanlan.zhihu.com/p/27424282 |
| 如何达到Kaggle竞赛top 2%?这里有一篇特征探索经验帖 | https://zhuanlan.zhihu.com/p/48758045 |
| 如何在 Kaggle 首战中进入前 10%? | https://zhuanlan.zhihu.com/p/27486736 |
| Kaggle 首战 Top 2%, APTOS 2019 复盘总结 + 机器学习竞赛通用流程归纳 | http://bbs.cvmart.net/topics/1717 |
| kaggle的riiid比赛里关于数据处理时间空间优化的笔记 | https://zhuanlan.zhihu.com/p/344388290 |
| 大数据&机器学习相关竞赛推荐 | https://blog.csdn.net/weixin_33739541/article/details/87565983 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#二-神经网络模型概览 |
| 1. 一文看懂25个神经网络模型 | https://blog.csdn.net/qq_35082030/article/details/73368962 |
| 2. DNN概述论文:详解前馈、卷积和循环神经网络技术 | https://zhuanlan.zhihu.com/p/29141828 |
| 3. colah's blog | http://colah.github.io/ |
| 4. Model Zoom | https://modelzoo.co/ |
| 5. DNN概述 | https://zhuanlan.zhihu.com/p/29141828 |
| GitHub上的机器学习/深度学习综述项目合集 | https://zhuanlan.zhihu.com/p/60245227 |
| AlphaTree-graphic-deep-neural-network | https://github.com/weslynn/AlphaTree-graphic-deep-neural-network |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#cnn |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#发展史 |
| 94页论文综述卷积神经网络:从基础技术到研究前景 | https://zhuanlan.zhihu.com/p/35388569 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#图像分类 |
| 从LeNet-5到DenseNet | https://zhuanlan.zhihu.com/p/31006686 |
| 深度学习笔记(十一)网络 Inception, Xception, MobileNet, ShuffeNet, ResNeXt, SqueezeNet, EfficientNet, MixConv | https://www.cnblogs.com/xuanyuyt/p/11329998.html |
| CNN网络结构的发展 | https://zhuanlan.zhihu.com/p/68411179 |
| Awesome - Image Classification:论文&&代码大全 | https://github.com/weiaicunzai/awesome-image-classification |
| pytorch-image-models | https://github.com/rwightman/pytorch-image-models |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#目标检测 |
| 深度学习之目标检测的前世今生(Mask R-CNN) | https://zhuanlan.zhihu.com/p/32830206 |
| 深度学习目标检测模型全面综述:Faster R-CNN、R-FCN和SSD | https://zhuanlan.zhihu.com/p/29434605 |
| 从RCNN到SSD,这应该是最全的一份目标检测算法盘点 | https://zhuanlan.zhihu.com/p/36184131 |
| 目标检测算法综述三部曲 | https://zhuanlan.zhihu.com/p/40047760 |
| 基于深度学习的目标检测算法综述(一) | https://zhuanlan.zhihu.com/p/40047760 |
| 基于深度学习的目标检测算法综述(二) | https://zhuanlan.zhihu.com/p/40020809 |
| 基于深度学习的目标检测算法综述(三) | https://zhuanlan.zhihu.com/p/40102001 |
| From RCNN to YOLOv3 | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master |
| 上 | https://zhuanlan.zhihu.com/p/35724768 |
| 下 | https://zhuanlan.zhihu.com/p/35731743 |
| 后 R-CNN时代, Faster R-CNN、SSD、YOLO 各类变体统治下的目标检测综述:Faster R-CNN系列胜了吗? | https://zhuanlan.zhihu.com/p/38709522 |
| 目标检测进化史 | https://zhuanlan.zhihu.com/p/60590369 |
| CVPR2019目标检测方法进展综述 | https://zhuanlan.zhihu.com/p/59376548 |
| 一文看尽21篇目标检测最新论文(腾讯/Google/商汤/旷视/清华/浙大/CMU/华科/中科院等 | https://zhuanlan.zhihu.com/p/61080508 |
| 我这两年的目标检测 | https://zhuanlan.zhihu.com/p/82491218 |
| Anchor-Free目标检测算法 | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master |
| 第一篇:arxiv2015_baidu_DenseBox | https://zhuanlan.zhihu.com/p/40221183 |
| 如何评价最新的anchor-free目标检测模型FoveaBox? | https://www.zhihu.com/question/319605567/answer/647844997 |
| FCOS: 最新的one-stage逐像素目标检测算法 | https://zhuanlan.zhihu.com/p/61644900 |
| 最新的Anchor-Free目标检测模型FCOS,现已开源! | https://zhuanlan.zhihu.com/p/62198865 |
| 中科院牛津华为诺亚提出CenterNet,one-stage detector可达47AP,已开源! | https://zhuanlan.zhihu.com/p/62789701 |
| AnchorFreeDetection | https://github.com/VCBE123/AnchorFreeDetection |
| Anchor free深度学习的目标检测方法 | https://zhuanlan.zhihu.com/p/64563186 |
| 聊聊Anchor的"前世今生"(上) | https://zhuanlan.zhihu.com/p/63273342 |
| 聊聊Anchor的"前世今生"(下) | https://zhuanlan.zhihu.com/p/68291859 |
| 目标检测算法综述之FPN优化篇 | https://zhuanlan.zhihu.com/p/62975854 |
| 一文看尽物体检测中的各种FPN | https://zhuanlan.zhihu.com/p/148738276 |
| awesome-object-detection:论文&&代码 | https://github.com/amusi/awesome-object-detection |
| deep_learning_object_detection | https://github.com/hoya012/deep_learning_object_detection |
| ObjectDetectionImbalance | https://github.com/kemaloksuz/ObjectDetectionImbalance |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#图像分割语义分割实例分割全景分割 |
| 图像语义分割(Semantic segmentation) Survey | https://zhuanlan.zhihu.com/p/36801104 |
| 干货 | 一文概览主要语义分割网络 | https://blog.csdn.net/qq_20084101/article/details/80432960 |
| 语义分割 发展综述 | https://zhuanlan.zhihu.com/p/37618829 |
| 9102年了,语义分割的入坑指南和最新进展都是什么样的 | https://zhuanlan.zhihu.com/p/76603228 |
| 实例分割最新最全面综述:从Mask R-CNN到BlendMask | https://zhuanlan.zhihu.com/p/110132002 |
| 语义分割综述:深度学习背景下的语义分割的发展状况【推荐】 | https://zhuanlan.zhihu.com/p/133212654 |
| Awesome Semantic Segmentation:论文&&代码 | https://github.com/mrgloom/awesome-semantic-segmentation |
| 一篇看完就懂的最新语义分割综述 | https://zhuanlan.zhihu.com/p/110123136 |
| 基于深度学习的语义分割综述 | https://zhuanlan.zhihu.com/p/142451150 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#轻量化卷积神经网络 |
| 纵览轻量化卷积神经网络:SqueezeNet、MobileNet、ShuffleNet、Xception | https://zhuanlan.zhihu.com/p/32746221 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#人脸相关 |
| 如何走近深度学习人脸识别?你需要这篇超长综述 | 附开源代码 | https://zhuanlan.zhihu.com/p/35295839 |
| 人脸检测和识别算法综述 | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master |
| 人脸检测算法综述 | https://zhuanlan.zhihu.com/p/36621308 |
| 人脸检测背景介绍和发展现状 | https://zhuanlan.zhihu.com/p/32702868 |
| 人脸识别算法演化史 | https://zhuanlan.zhihu.com/p/36416906 |
| CascadeCNN | https://blog.csdn.net/shuzfan/article/details/50358809 |
| MTCNN | https://blog.csdn.net/qq_14845119/article/details/52680940 |
| awesome-Face_Recognition | https://github.com/ChanChiChoi/awesome-Face_Recognition |
| 异质人脸识别研究综述 | https://zhuanlan.zhihu.com/p/64191484 |
| 老板来了:人脸识别+手机推送,老板来了你立刻知道。 | https://zhuanlan.zhihu.com/p/26431250 |
| 手把手教你用Python实现人脸识别 | https://zhuanlan.zhihu.com/p/33456076 |
| 人脸识别项目,网络模型,损失函数,数据集相关总结 | https://www.jianshu.com/p/e57205edc364 |
| 基于深度学习的人脸识别技术综述 | https://zhuanlan.zhihu.com/p/24816781 |
| 如何走近深度学习人脸识别?你需要这篇超长综述 | https://zhuanlan.zhihu.com/p/35295839 |
| 人脸识别损失函数综述(附开源实现) | https://zhuanlan.zhihu.com/p/51324547 |
| Face Recognition Loss on Mnist with Pytorch | https://zhuanlan.zhihu.com/p/64427565 |
| 人脸识别的LOSS(上) | https://zhuanlan.zhihu.com/p/34404607 |
| 人脸识别的LOSS(下) | https://zhuanlan.zhihu.com/p/34436551 |
| 人脸关键点检测 | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master |
| 【每周CV论文推荐】 初学深度学习人脸关键点检测必读文章 | https://zhuanlan.zhihu.com/p/88344339 |
| 从传统方法到深度学习,人脸关键点检测方法综述 | https://mp.weixin.qq.com/s/CvdeV5xgUF0kStJQdRst0w |
| 人脸关键点检测综述 | https://zhuanlan.zhihu.com/p/42968117 |
| 人脸专集4 | 遮挡、光照等因素的人脸关键点检测 | https://zhuanlan.zhihu.com/p/62824113 |
| 【Face key point detection】人脸关键点检测实现 | https://zhuanlan.zhihu.com/p/52525598 |
| OpenCV实战:人脸关键点检测(FaceMark) | https://zhuanlan.zhihu.com/p/35390012 |
| CenterFace+TensorRT部署人脸和关键点检测400fps | https://zhuanlan.zhihu.com/p/106774468 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#图像超分辨率 |
| 深度学习图像超分辨率综述 | https://zhuanlan.zhihu.com/p/57564211 |
| 从SRCNN到EDSR,总结深度学习端到端超分辨率方法发展历程 | https://zhuanlan.zhihu.com/p/31664818 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#行人重识别 |
| 【CVPR2019正式公布】行人重识别论文 | https://zhuanlan.zhihu.com/p/62843442 |
| 【CVPR2019正式公布】行人重识别论文 | https://zhuanlan.zhihu.com/p/62843442 |
| 2019 行人再识别年度进展回顾 | https://zhuanlan.zhihu.com/p/64004977 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#图像着色 |
| Awesome-Image-Colorization | https://github.com/MarkMoHR/Awesome-Image-Colorization |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#边检测 |
| Awesome-Edge-Detection-Papers | https://github.com/MarkMoHR/Awesome-Edge-Detection-Papers |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#ocr文本检测 |
| 2019CVPR文本检测综述 | https://zhuanlan.zhihu.com/p/67319122 |
| OCR文字处理 | https://zhuanlan.zhihu.com/p/65707543 |
| 自然场景文本检测识别技术综述 | https://mp.weixin.qq.com/s?__biz=MzU4MjQ3MDkwNA==&mid=2247485142&idx=1&sn=c0e01da30eb5e750be453eabe4be2bf4&chksm=fdb69b41cac11257ae22c7dac395e9651dab628fc35dd6d3c02d9566a8c7f5f2b56353d58a64&token=1065243837&lang=zh_CN#rd |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#点云 |
| awesome-point-cloud-analysis | https://zhuanlan.zhihu.com/p/65690433 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#细粒度图像分类 |
| 超全深度学习细粒度图像分析:项目、综述、教程一网打尽 | https://zhuanlan.zhihu.com/p/73542103 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#图像检索 |
| 上 | https://mp.weixin.qq.com/s/sM78DCOK3fuG2JrP2QaSZA |
| 下 | https://mp.weixin.qq.com/s/yzVMDEpwbXVS0y-CwWSBEA |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#人群计数 |
| 人群计数 | http://chuansong.me/n/443237851736 |
| 1 | https://www.cnblogs.com/wmr95/p/8134692.html |
| 2 | https://blog.csdn.net/u011285477/article/details/51954989 |
| 3 | https://blog.csdn.net/qingqingdeaini/article/details/79922549 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#教程 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#前馈神经网络 |
| 从基本原理到梯度下降,小白都能看懂的神经网络教程 | https://zhuanlan.zhihu.com/p/59385110 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#激活函数 |
| 激活函数一览 | https://zhuanlan.zhihu.com/p/30567264 |
| 深度学习中几种常见的激活函数理解与总结 | https://www.cnblogs.com/XDU-Lakers/p/10557496.html |
| 一个激活函数需要具有哪些必要的属性 | https://www.zhihu.com/question/67366051 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#反向传播算法 |
| 反向传播算法(过程及公式推导) | https://blog.csdn.net/u014313009/article/details/51039334 |
| 通俗理解神经网络BP传播算法 | https://zhuanlan.zhihu.com/p/24801814 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#优化问题 |
| 神经网络训练中的梯度消失与梯度爆炸 | https://zhuanlan.zhihu.com/p/25631496 |
| 梯度消失和梯度爆炸问题详解 | https://www.jianshu.com/p/3f35e555d5ba |
| 详解深度学习中的梯度消失、爆炸原因及其解决方法 | https://zhuanlan.zhihu.com/p/33006526 |
| 神经网络梯度消失和梯度爆炸及解决办法 | https://blog.csdn.net/program_developer/article/details/80032376 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#卷积层 |
| A Comprehensive Introduction to Different Types of Convolutions in Deep Learning | https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215 |
| 上 | https://www.leiphone.com/news/201902/D2Mkv61w9IPq9qGh.html |
| 下 | https://www.leiphone.com/news/201902/biIqSBpehsaXFwpN.html?uniqueCode=OTEsp9649VqJfUcO |
| 卷积有多少种?一文读懂深度学习中的各种卷积 | https://zhuanlan.zhihu.com/p/57575810 |
| 各种卷积 | https://www.cnblogs.com/cvtoEyes/p/8848815.html |
| Convolution Network及其变种(反卷积、扩展卷积、因果卷积、图卷积) | https://www.cnblogs.com/yangperasd/p/7071657.html |
| 深度学习基础--卷积类型 | https://zhuanlan.zhihu.com/p/59839551 |
| 变形卷积核、可分离卷积 | https://zhuanlan.zhihu.com/p/28749411 |
| 对深度可分离卷积、分组卷积、扩张卷积、转置卷积(反卷积)的理解 | https://blog.csdn.net/chaolei3/article/details/79374563 |
| 反卷积 | https://buptldy.github.io/2016/10/29/2016-10-29-deconv/ |
| Dilated/Atrous conv 空洞卷积/多孔卷积 | https://blog.csdn.net/silence2015/article/details/79748729 |
| 卷积层输出大小尺寸计算及 “SAME” 和 “VALID” | https://blog.csdn.net/weixin_37697191/article/details/89527315 |
| 卷积的三种模式full, same, valid以及padding的same, valid | https://zhuanlan.zhihu.com/p/62760780 |
| 正常卷积与空洞卷积输出特征图与感受野大小的计算 | https://blog.csdn.net/qq_43232545/article/details/103317773 |
| 【Tensorflow】tf.nn.depthwise_conv2d如何实现深度卷积? | https://blog.csdn.net/mao_xiao_feng/article/details/78003476 |
| 【Tensorflow】tf.nn.atrous_conv2d如何实现空洞卷积? | https://blog.csdn.net/mao_xiao_feng/article/details/78003730 |
| 【Tensorflow】tf.nn.separable_conv2d如何实现深度可分卷积? | https://blog.csdn.net/mao_xiao_feng/article/details/78002811 |
| 【TensorFlow】tf.nn.conv2d_transpose是怎样实现反卷积的? | https://blog.csdn.net/mao_xiao_feng/article/details/71713358 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#池化层 |
| 卷积神经网络中的各种池化操作 | https://zhuanlan.zhihu.com/p/112216409 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#卷积神经网络 |
| 卷积神经网络工作原理 | https://www.zhihu.com/question/39022858 |
| 「七夕的礼物」: 一日搞懂卷积神经网络 | https://zhuanlan.zhihu.com/p/28863709 |
| 一文读懂卷积神经网络中的1x1卷积核 | https://zhuanlan.zhihu.com/p/40050371 |
| 如何理解神经网络中通过add和concate的方式融合特征? | https://blog.csdn.net/xiaojiajia007/article/details/86008415 |
| 神经网络中对需要concat的特征进行线性变换然后相加是否好于直接concat? | https://www.zhihu.com/question/389912594/answer/1178054600 |
| CNN 模型所需的计算力(flops)和参数(parameters)数量是怎么计算的? | https://www.zhihu.com/question/65305385 |
| 深度学习中卷积的参数量和计算量 | https://www.cnblogs.com/hejunlin1992/p/12978988.html |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#图像分类网络详解 |
| 经典CNN模型LeNet解读 | https://zhuanlan.zhihu.com/p/41736894 |
| 机器学习进阶笔记之三 | 深入理解Alexnet | https://zhuanlan.zhihu.com/p/22659166 |
| 一文读懂VGG网络 | https://zhuanlan.zhihu.com/p/41423739 |
| Inception V1,V2,V3,V4 模型总结 | https://zhuanlan.zhihu.com/p/52802896 |
| ResNet解析 | https://blog.csdn.net/lanran2/article/details/79057994 |
| 一文简述ResNet及其多种变体 | https://zhuanlan.zhihu.com/p/35985680 |
| CapsNet入门系列 | http://mp.weixin.qq.com/s?__biz=MzI3ODkxODU3Mg==&mid=2247484099&idx=1&sn=97e209f1a9860c8d8c51e81d98fc8a0a&chksm=eb4ee600dc396f16624a33cdfc0ead905e62ae9447b49b20146020e6cbd7d71f089101512a40&scene=21#wechat_redirect |
| CapsNet入门系列之一:胶囊网络背后的直觉 | http://mp.weixin.qq.com/s?__biz=MzI3ODkxODU3Mg==&mid=2247484099&idx=1&sn=97e209f1a9860c8d8c51e81d98fc8a0a&chksm=eb4ee600dc396f16624a33cdfc0ead905e62ae9447b49b20146020e6cbd7d71f089101512a40&scene=21#wechat_redirect |
| CapsNet入门系列之二:胶囊如何工作 | http://mp.weixin.qq.com/s?__biz=MzI3ODkxODU3Mg==&mid=2247484165&idx=1&sn=0ca679e3a5f499f8d8addb405fe3df83&chksm=eb4ee7c6dc396ed0a330fcac12690110bcaf9a8a10794dbc5e1a326c69ecbb140140f55fd6ba&scene=21#wechat_redirect |
| CapsNet入门系列之三:囊间动态路由算法 | http://mp.weixin.qq.com/s?__biz=MzI3ODkxODU3Mg==&mid=2247484433&idx=1&sn=3afe4605bc2501eebbc41c6dd1af9572&chksm=eb4ee0d2dc3969c4619d6c1097d5c949c76c6c854e60d36eba4388da2c3855747818d062c90a&scene=21#wechat_redirect |
| CapsNet入门系列之四:胶囊网络架构 | https://mp.weixin.qq.com/s/6CRSen8P6zKaMGtX8IRfqw |
| 深入剖析MobileNet和它的变种(例如:ShuffleNet)为什么会变快? | https://zhuanlan.zhihu.com/p/158591662 |
| CNN模型之ShuffleNet | https://zhuanlan.zhihu.com/p/32304419 |
| ShuffleNet V2和四个网络架构设计准则 | https://zhuanlan.zhihu.com/p/40980942 |
| ResNeXt 深入解读与模型实现 | https://zhuanlan.zhihu.com/p/78019001 |
| 如何评价Momenta ImageNet 2017夺冠架构SENet? | https://www.zhihu.com/question/63460684 |
| CBAM:卷积块注意力模块 | https://zhuanlan.zhihu.com/p/79419670 |
| CBAM: Convolutional Block Attention Module | https://zhuanlan.zhihu.com/p/65529934 |
| SKNet——SENet孪生兄弟篇 | https://zhuanlan.zhihu.com/p/59690223 |
| GCNet:当Non-local遇见SENet | https://zhuanlan.zhihu.com/p/64988633 |
| 深度学习笔记(十一)网络 Inception, Xception, MobileNet, ShuffeNet, ResNeXt, SqueezeNet, EfficientNet, MixConv | https://www.cnblogs.com/xuanyuyt/p/11329998.html |
| 如何评价最新的Octave Convolution? | https://www.zhihu.com/question/320462422 |
| ResNeSt 之语义分割 | https://zhuanlan.zhihu.com/p/136105870 |
| 关于ResNeSt的点滴疑惑 | https://zhuanlan.zhihu.com/p/133805433 |
| ResNeSt在刷榜之后被ECCV2020 strong reject | https://zhuanlan.zhihu.com/p/143214871 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#目标检测网络详解 |
| 目标检测的性能评价指标 | https://zhuanlan.zhihu.com/p/70306015 |
| NMS和计算mAP时的置信度阈值和IoU阈值 | https://zhuanlan.zhihu.com/p/75348108 |
| 白话mAP | https://zhuanlan.zhihu.com/p/60834912 |
| 目标检测模型的评估指标mAP详解(附代码) | https://zhuanlan.zhihu.com/p/37910324 |
| 深度学习中IU、IoU(Intersection over Union) | https://blog.csdn.net/iamoldpan/article/details/78799857 |
| Selective Search for Object Detection | https://www.learnopencv.com/selective-search-for-object-detection-cpp-python/ |
| (译文) | https://blog.csdn.net/guoyunfei20/article/details/78723646 |
| Region Proposal Network(RPN) | https://zhuanlan.zhihu.com/p/106192020 |
| 边框回归(Bounding Box Regression)详解 | https://blog.csdn.net/zijin0802034/article/details/77685438 |
| NMS——非极大值抑制 | https://blog.csdn.net/shuzfan/article/details/52711706 |
| 非极大值抑制NMS的python实现 | https://zhuanlan.zhihu.com/p/128125301 |
| 一文打尽目标检测NMS——精度提升篇 | https://zhuanlan.zhihu.com/p/151914931 |
| 一文打尽目标检测NMS——效率提升篇 | https://zhuanlan.zhihu.com/p/157900024 |
| 目标检测回归损失函数简介:SmoothL1/IoU/GIoU/DIoU/CIoU Loss | https://zhuanlan.zhihu.com/p/104236411 |
| 将CNN引入目标检测的开山之作:R-CNN | https://zhuanlan.zhihu.com/p/23006190 |
| R-CNN论文详解 | https://blog.csdn.net/u014696921/article/details/52824097 |
| 深度学习(十八)基于R-CNN的物体检测 | https://blog.csdn.net/hjimce/article/details/50187029 |
| Fast R-CNN | https://zhuanlan.zhihu.com/p/24780395 |
| 深度学习(六十四)Faster R-CNN物体检测 | https://blog.csdn.net/hjimce/article/details/73382553 |
| 你真的学会RoI Pooling了吗? | https://zhuanlan.zhihu.com/p/59692298 |
| 目标检测论文阅读:Feature Pyramid Networks for Object Detection | https://zhuanlan.zhihu.com/p/36461718 |
| SSD | https://zhuanlan.zhihu.com/p/24954433 |
| 实例分割--Mask RCNN详解(ROI Align / Loss Function) | https://www.codetd.com/article/2554465 |
| 令人拍案称奇的Mask RCNN | https://zhuanlan.zhihu.com/p/37998710 |
| 何恺明大神的「Focal Loss」,如何更好地理解? | https://zhuanlan.zhihu.com/p/32423092 |
| FocalLoss 对样本不平衡的权重调节和减低损失值 | https://zhuanlan.zhihu.com/p/82148525 |
| focal_loss 多类别和二分类 Pytorch代码实现 | https://blog.csdn.net/qq_33278884/article/details/91572173 |
| 多分类focal loss及其tensorflow实现 | https://blog.csdn.net/qq_39012149/article/details/96184383 |
| 堪比Focal Loss!解决目标检测中样本不平衡的无采样方法 | https://zhuanlan.zhihu.com/p/93658728 |
| 目标检测正负样本区分策略和平衡策略总结(一) | https://zhuanlan.zhihu.com/p/138824387 |
| 目标检测正负样本区分策略和平衡策略总结(二) | https://zhuanlan.zhihu.com/p/138828372 |
| 目标检测正负样本区分策略和平衡策略总结(三) | https://zhuanlan.zhihu.com/p/144659734 |
| YOLO | http://www.mamicode.com/info-detail-2314392.html |
| 目标检测|YOLO原理与实现 | https://zhuanlan.zhihu.com/p/32525231 |
| 图解YOLO | https://zhuanlan.zhihu.com/p/24916786 |
| 【论文解读】Yolo三部曲解读——Yolov1 | https://zhuanlan.zhihu.com/p/70387154 |
| 目标检测|YOLOv2原理与实现(附YOLOv3) | https://zhuanlan.zhihu.com/p/35325884?group_id=966229905398362112 |
| YOLO2 | https://zhuanlan.zhihu.com/p/25167153 |
| 【论文解读】Yolo三部曲解读——Yolov2 | https://zhuanlan.zhihu.com/p/74540100 |
| <机器爱学习>YOLO v3深入理解 | https://zhuanlan.zhihu.com/p/49556105 |
| 【论文解读】Yolo三部曲解读——Yolov3 | https://zhuanlan.zhihu.com/p/76802514 |
| YOLOv4 | https://zhuanlan.zhihu.com/p/138510087 |
| 目标检测之CornerNet | https://arxiv.org/abs/1808.01244 |
| 1 | https://zhuanlan.zhihu.com/p/41825737 |
| 2 | https://blog.csdn.net/Hibercraft/article/details/81637451 |
| 3 | https://zhuanlan.zhihu.com/p/41759548 |
| 目标检测小tricks--样本不均衡处理 | https://zhuanlan.zhihu.com/p/60612064 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#图像分割网络详解 |
| 超像素、语义分割、实例分割、全景分割 傻傻分不清 | https://zhuanlan.zhihu.com/p/50996404 |
| 语义分割、实例分割和全景分割的区别 | https://blog.csdn.net/u013066730/article/details/103613154 |
| 语义分割卷积神经网络快速入门 | https://blog.csdn.net/qq_20084101/article/details/80455877 |
| 图像语义分割入门+FCN/U-Net网络解析 | https://zhuanlan.zhihu.com/p/31428783 |
| 深入理解深度学习分割网络Unet | https://blog.csdn.net/Formlsl/article/details/80373200 |
| Unet神经网络为什么会在医学图像分割表现好? | https://www.zhihu.com/question/269914775 |
| 图像语义分割的工作原理和CNN架构变迁 | https://zhuanlan.zhihu.com/p/38033032 |
| 语义分割中的Attention和低秩重建 | https://zhuanlan.zhihu.com/p/77834369 |
| 打通多个视觉任务的全能Backbone:HRNet | https://zhuanlan.zhihu.com/p/134253318 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#注意力机制 |
| 深度学习中的注意力模型(2017版) | https://zhuanlan.zhihu.com/p/37601161 |
| Attention Model(mechanism) 的 套路 | https://blog.csdn.net/bvl10101111/article/details/78470716 |
| 计算机视觉中的注意力机制(推荐) | https://zhuanlan.zhihu.com/p/146130215 |
| More About Attention(推荐) | https://zhuanlan.zhihu.com/p/106662375 |
| 计算机视觉中的注意力机制 | https://zhuanlan.zhihu.com/p/32928645 |
| NLP中的Attention Mechanism | https://zhuanlan.zhihu.com/p/31547842 |
| Transformer中的Attention | https://mp.weixin.qq.com/s/k8PdZAld2ANVoekuyQxI3w |
| 综述:图像处理中的注意力机制 | https://bbs.cvmart.net/topics/2581 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#特征融合 |
| 盘点目标检测中的特征融合技巧(根据YOLO v4总结) | https://zhuanlan.zhihu.com/p/141685352 |
| 多尺度融合介绍 | https://zhuanlan.zhihu.com/p/147820687 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#action |
| PyTorch官方实现ResNet | https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py |
| pytorch_resnet_cifar10 | https://github.com/akamaster/pytorch_resnet_cifar10 |
| PyTorch 63.Coding for FLOPs, Params and Latency | https://zhuanlan.zhihu.com/p/268816646 |
| 先读懂CapsNet架构然后用TensorFlow实现 | https://zhuanlan.zhihu.com/p/30753326 |
| 目标检测-20种模型的原味代码汇总 | https://zhuanlan.zhihu.com/p/37056927 |
| TensorFlow Object Detection API 教程 | https://blog.csdn.net/qq_36148847/article/details/79306762 |
| TensorFlow 对象检测 API 教程1 | https://blog.csdn.net/qq_36148847/article/details/79306762 |
| TensorFlow 对象检测 API 教程2 | https://blog.csdn.net/qq_36148847/article/details/79307598 |
| TensorFlow 对象检测 API 教程3 | https://blog.csdn.net/qq_36148847/article/details/79307751 |
| TensorFlow 对象检测 API 教程 4 | https://blog.csdn.net/qq_36148847/article/details/79307931 |
| TensorFlow 对象检测 API 教程5 | https://blog.csdn.net/qq_36148847/article/details/79307933 |
| 在TensorFlow+Keras环境下使用RoI池化一步步实现注意力机制 | https://zhuanlan.zhihu.com/p/65327747 |
| mxnet如何查看参数数量 | https://discuss.gluon.ai/t/topic/7216 |
| mxnet查看FLOPS | https://github.com/likelyzhao/CalFLOPS-Mxnet |
| Pytorch-UNet | https://github.com/milesial/Pytorch-UNet |
| segmentation_models.pytorch | https://github.com/qubvel/segmentation_models.pytorch |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#gan |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#发展史-1 |
| 千奇百怪的GAN变体 | https://zhuanlan.zhihu.com/p/26491601 |
| 苏剑林博客,讲解得淋漓尽致 | https://kexue.fm/tag/GAN/ |
| The GAN Landscape:Losses, Architectures, Regularization, and Normalization | https://arxiv.org/pdf/1807.04720.pdf |
| 深度学习新星:GAN的基本原理、应用和走向 | https://www.leiphone.com/news/201701/Kq6FvnjgbKK8Lh8N.html |
| GAN生成图像综述 | https://zhuanlan.zhihu.com/p/62746494 |
| 2017年GAN 计算机视觉相关paper汇总 | https://zhuanlan.zhihu.com/p/29882709 |
| 必读的10篇关于GAN的论文 | https://zhuanlan.zhihu.com/p/72745900 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#教程-1 |
| GAN原理学习笔记 | https://zhuanlan.zhihu.com/p/27295635 |
| GAN万字长文综述 | https://zhuanlan.zhihu.com/p/58812258 |
| 极端图像压缩的对抗生成网络 | https://zhuanlan.zhihu.com/p/35783437?group_id=969598777652420608 |
| 台湾大学李宏毅GAN教程 | https://www.youtube.com/watch?v=0CKeqXl5IY0&feature=youtu.be |
| Basic | https://github.com/Mikoto10032/DeepLearning/blob/master/books/GAN-Basic%20Idea%20(2017.04.21).pdf |
| Improving | https://github.com/Mikoto10032/DeepLearning/blob/master/books/GAN-Improving%20GAN%20(2017.05.05).pdf |
| CycleGAN:图片风格,想换就换 | ICCV 2017论文解读 | https://zhuanlan.zhihu.com/p/34711316 |
| Wasserstein GAN | https://zhuanlan.zhihu.com/p/25071913 |
| GAN:两者分布不重合JS散度为log2的数学证明 | https://blog.csdn.net/Invokar/article/details/88917214 |
| 用变分推断统一理解生成模型(VAE、GAN、AAE、ALI) | https://zhuanlan.zhihu.com/p/40105143 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#action-1 |
| GAN学习指南:从原理入门到制作生成Demo | https://zhuanlan.zhihu.com/p/24767059 |
| 机器之心GitHub项目:GAN完整理论推导与实现 | https://zhuanlan.zhihu.com/p/29837245 |
| 在Keras上实现GAN:构建消除图片模糊的应用 | https://zhuanlan.zhihu.com/p/35030377 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#rnn |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#发展史-2 |
| 从90年代的SRNN开始,纵览循环神经网络27年的研究进展 | https://zhuanlan.zhihu.com/p/32668465 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#教程-2 |
| Awesome-Chinese-NLP | https://github.com/crownpku/Awesome-Chinese-NLP |
| nlp-pytorch-zh | https://github.com/apachecn/nlp-pytorch-zh |
| 完全图解RNN、RNN变体、Seq2Seq、Attention机制 | https://zhuanlan.zhihu.com/p/28054589 |
| 循环神经网络(RNN, Recurrent Neural Networks)介绍 | https://blog.csdn.net/heyongluoyao8/article/details/48636251 |
| RNN以及LSTM的介绍和公式梳理 | https://blog.csdn.net/Dark_Scope/article/details/47056361 |
| (译)理解长短期记忆(LSTM) 神经网络 | https://zhuanlan.zhihu.com/p/24018768 |
| 一文读懂LSTM和RNN | https://zhuanlan.zhihu.com/p/35878575?group_id=970350175025385472 |
| 探索LSTM:基本概念到内部结构 | https://zhuanlan.zhihu.com/p/27345523 |
| 翻译:深入理解LSTM系列 | https://blog.csdn.net/matrix_space/article/details/53374040 |
| 深入理解 LSTM 网络 (一) | https://blog.csdn.net/matrix_space/article/details/53374040 |
| 深入理解 LSTM 网络 (二) | https://blog.csdn.net/matrix_space/article/details/53376870 |
| LSTM | https://zhuanlan.zhihu.com/p/32085405 |
| 深度学习其五 循环神经网络 | https://zybuluo.com/hanbingtao/note/541458 |
| 用循环神经网络进行文件无损压缩:斯坦福大学提出DeepZip | https://zhuanlan.zhihu.com/p/32582764 |
| 吴恩达序列建模课程 | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master |
| Coursera吴恩达《序列模型》课程笔记(1)-- 循环神经网络(RNN) | https://zhuanlan.zhihu.com/p/34309635 |
| Coursera吴恩达《序列模型》课程笔记(2)-- NLP & Word Embeddings | https://zhuanlan.zhihu.com/p/34975871 |
| Coursera吴恩达《序列模型》课程笔记(3)-- Sequence models & Attention mechanism | https://zhuanlan.zhihu.com/p/35532553 |
| NLP 秒懂词向量Word2vec的本质 | https://zhuanlan.zhihu.com/p/26306795 |
| 一篇通俗易懂的word2vec | https://zhuanlan.zhihu.com/p/35500923 |
| YJango的Word Embedding--介绍 | https://zhuanlan.zhihu.com/p/27830489 |
| nlp中的词向量对比:word2vec/glove/fastText/elmo/GPT/bert | https://zhuanlan.zhihu.com/p/56382372 |
| 词嵌入(word2vec) | https://zh.diveintodeeplearning.org/chapter_natural-language-processing/word2vec.html |
| 谈谈谷歌word2vec的原理 | https://blog.csdn.net/wangyangzhizhou/article/details/77073023 |
| Word2Vec中为什么使用负采样? | https://zhuanlan.zhihu.com/p/67117737 |
| 练习-word2vec | https://zhuanlan.zhihu.com/p/29200034 |
| word2vec方法的实现和应用 | https://zhuanlan.zhihu.com/p/31886824 |
| 自然语言处理入门 word2vec 使用tensorflow自己训练词向量 | https://blog.csdn.net/wzdjsgf/article/details/79541492 |
| 使用tensorflow实现word2vec中文词向量的训练 | https://zhuanlan.zhihu.com/p/28979653 |
| 如何用TensorFlow训练词向量 | https://blog.csdn.net/wangyangzhizhou/article/details/77530479?locationNum=1&fps=1 |
| 聊聊 Transformer | https://zhuanlan.zhihu.com/p/47812375 |
| 基于Transform的机器翻译系统 | https://zhuanlan.zhihu.com/p/144825330 |
| 基于word2vec训练词向量(一) | https://zhuanlan.zhihu.com/p/35648927 |
| 基于word2vec训练词向量(二) | https://zhuanlan.zhihu.com/p/35889385 |
| 自然语言处理中的自注意力机制(Self-Attention Mechanism) | https://zhuanlan.zhihu.com/p/35041012 |
| 自然语言处理中注意力机制综述 | https://zhuanlan.zhihu.com/p/54491016 |
| YJango的Word Embedding--介绍 | https://zhuanlan.zhihu.com/p/27830489 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#action-2 |
| 推荐:nlp-tutorial | https://github.com/graykode/nlp-tutorial |
| nlp-tutorial | https://github.com/lyeoni/nlp-tutorial |
| tensorflow中RNNcell源码分析以及自定义RNNCell的方法 | https://blog.csdn.net/liuchonge/article/details/78405185?locationNum=8&fps=1 |
| TensorFlow中RNN实现的正确打开方式 | https://zhuanlan.zhihu.com/p/28196873 |
| TensorFlow RNN 代码 | https://zhuanlan.zhihu.com/p/27906426 |
| Tensorflow实现的深度NLP模型集锦 | https://zhuanlan.zhihu.com/p/67031035 |
| 用tensorflow LSTM如何预测股票价格 | https://zhuanlan.zhihu.com/p/33186759 |
| TensorFlow的多层LSTM实践 | https://zhuanlan.zhihu.com/p/29797089 |
| 《安娜卡列尼娜》文本生成——利用TensorFlow构建LSTM模型 | https://zhuanlan.zhihu.com/p/27087310 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#gnn |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#发展史-3 |
| Graph Neural Network(GNN)综述 | https://zhuanlan.zhihu.com/p/65539782 |
| 深度学习时代的图模型,清华发文综述图网络 | https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650754422&idx=4&sn=0dc881487f362322a875b4ce06e645f7&chksm=871a8908b06d001ef7386ccc752827c20711877a4a23d6a8318978095dd241d118257c607b22&scene=21#wechat_redirect |
| 清华大学图神经网络综述:模型与应用 | https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650754558&idx=2&sn=7d79191b9ed30679d5d40e22d9cabdf8&chksm=871a8980b06d00962e0dbe984e1d3469214db31cb402b4725a0dfe330249a830b45cb26932b5&scene=21#wechat_redirect |
| 图神经网络概述第三弹:来自IEEE Fellow的GNN综述 | https://zhuanlan.zhihu.com/p/54241746 |
| GNN最全文献资料整理 | https://github.com/DeepGraphLearning/LiteratureDL4Graph |
| Awesome-Graph-Neural-Networks | https://github.com/nnzhan/Awesome-Graph-Neural-Networks |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#教程-3 |
| 如何理解 Graph Convolutional Network(GCN) | https://www.zhihu.com/question/54504471 |
| 图卷积网络(GCN)新手村完全指南 | https://zhuanlan.zhihu.com/p/54505069 |
| 何时能懂你的心——图卷积神经网络(GCN) | https://zhuanlan.zhihu.com/p/71200936 |
| 图卷积网络GCN的理解与介绍 | https://zhuanlan.zhihu.com/p/90470499 |
| 一文读懂图卷积GCN | https://zhuanlan.zhihu.com/p/89503068 |
| 2020 年 GNN 开卷有益与再谈图卷积 | https://zhuanlan.zhihu.com/p/101310106 |
| 【GCN】万字长文带你入门 GCN | https://zhuanlan.zhihu.com/p/120311352 |
| 如何解决图神经网络(GNN)训练中过度平滑的问题? | https://www.zhihu.com/question/346942899/answer/848298494 |
| 全连接的图卷积网络(GCN)和self-attention这些机制有什么区别联系 | https://www.zhihu.com/question/366088445 |
| CNN与GCN的区别、联系及融合 | https://zhuanlan.zhihu.com/p/147654689 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#action-3 |
| 图卷积网络到底怎么做,这是一份极简的Numpy实现 | https://zhuanlan.zhihu.com/p/57235377 |
| DGL | https://docs.dgl.ai/index.html |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#三-深度模型的优化与正则化 |
| 1. 优化算法纵览 | http://fa.bianp.net/teaching/2018/eecs227at/ |
| 2. 从梯度下降到Adam | https://zhuanlan.zhihu.com/p/27449596 |
| 3. 从梯度下降到拟牛顿法:盘点训练神经网络的五大学习算法 | https://zhuanlan.zhihu.com/p/25703402 |
| 4. 正则化技术总结 | https://zhuanlan.zhihu.com/p/35429054?group_id=966442942538444800 |
| 史上最全面的正则化技术总结与分析--part1 | https://zhuanlan.zhihu.com/p/35429054?group_id=966442942538444800 |
| 史上最全面的正则化技术总结与分析--part2 | https://zhuanlan.zhihu.com/p/35432128?group_id=966443101011738624 |
| 权重衰减(weight decay)与学习率衰减(learning rate decay) | https://zhuanlan.zhihu.com/p/38709373 |
| pytorch必须掌握的的4种学习率衰减策略 | https://zhuanlan.zhihu.com/p/93624972 |
| 5. 最优化算法系列(math) | https://blog.csdn.net/chunyun0716/article/category/6188191/2 |
| 6. 神经网络训练中的梯度消失与梯度爆炸 | https://zhuanlan.zhihu.com/p/25631496 |
| 7. 神经网络的优化及训练 | https://zhuanlan.zhihu.com/p/36050743 |
| 8. 通俗讲解查全率和查准率 | https://zhuanlan.zhihu.com/p/35888543 |
| 全面梳理:准确率,精确率,召回率,查准率,查全率,假阳性,真阳性,PRC,ROC,AUC,F1 | https://zhuanlan.zhihu.com/p/34079183 |
| 机器学习之类别不平衡问题 (1) —— 各种评估指标 | https://zhuanlan.zhihu.com/p/34473430 |
| 机器学习之类别不平衡问题 (2) —— ROC和PR曲线 | https://zhuanlan.zhihu.com/p/34655990 |
| AUC详解与python实现 | https://zhuanlan.zhihu.com/p/84035782 |
| 微平均和宏平均 | https://zhuanlan.zhihu.com/p/78628437 |
| 机器学习中的性能度量 | https://zhuanlan.zhihu.com/p/74980268 |
| 精确率、召回率、F1 值、ROC、AUC 各自的优缺点是什么 | https://www.zhihu.com/question/30643044 |
| 激活函数一览 | https://zhuanlan.zhihu.com/p/30567264 |
| 深度学习中几种常见的激活函数理解与总结 | https://www.cnblogs.com/XDU-Lakers/p/10557496.html |
| 深度学习笔记(三):激活函数和损失函数 | https://blog.csdn.net/u014595019/article/details/52562159 |
| 激活函数/损失函数汇总 | https://zhuanlan.zhihu.com/p/30385380 |
| 机器学习中常见的损失函数及其应用场景 | https://blog.csdn.net/zuolixiangfisher/article/details/88649110 |
| PyTorch的十八个损失函数 | https://zhuanlan.zhihu.com/p/61379965 |
| 深度度量学习中的损失函数 | https://zhuanlan.zhihu.com/p/82199561 |
| 反向传播算法(过程及公式推导) | https://blog.csdn.net/u014313009/article/details/51039334 |
| 通俗理解神经网络BP传播算法 | https://zhuanlan.zhihu.com/p/24801814 |
| 10. Coursera吴恩达《优化深度神经网络》课程笔记(3)-- 超参数调试、Batch正则化和编程框架 | https://zhuanlan.zhihu.com/p/30922689 |
| 11. 机器学习各种熵 | https://zhuanlan.zhihu.com/p/35423404 |
| 12. 距离和相似性度量 | https://zhuanlan.zhihu.com/p/27305237 |
| 13. 机器学习里的黑色艺术:normalization, standardization, regularization | https://zhuanlan.zhihu.com/p/29974820 |
| 数据标准化/归一化normalization | https://blog.csdn.net/pipisorry/article/details/52247379 |
| 特征工程中的「归一化」有什么作用? | https://www.zhihu.com/question/20455227 |
| 14. LSTM系列的梯度问题 | https://zhuanlan.zhihu.com/p/36101196 |
| 15. 损失函数整理 | https://zhuanlan.zhihu.com/p/35027284 |
| 16. 详解残差块为何有助于解决梯度弥散问题 | https://zhuanlan.zhihu.com/p/28124810 |
| 17. FAIR何恺明等人提出组归一化:替代批归一化,不受批量大小限制 | https://zhuanlan.zhihu.com/p/34858971 |
| 18. Batch Normalization(BN) | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master |
| 1 | https://zhuanlan.zhihu.com/p/26702482 |
| 2 | https://blog.csdn.net/hjimce/article/details/50866313 |
| 3 | https://bbs.cvmart.net/topics/576 |
| 4 | https://blog.csdn.net/edogawachia/article/details/80040456 |
| 5 | https://zhuanlan.zhihu.com/p/38176412 |
| 6 | https://www.zhihu.com/question/38102762 |
| 7 | https://zhuanlan.zhihu.com/p/52132614 |
| 19. 详解深度学习中的Normalization,不只是BN | https://zhuanlan.zhihu.com/p/33173246 |
| 如何区分并记住常见的几种 Normalization 算法 | https://zhuanlan.zhihu.com/p/69659844 |
| 20. BFGS | https://blog.csdn.net/philosophyatmath/article/details/70173128 |
| 21. 详解深度学习中的梯度消失、爆炸原因及其解决方法 | https://zhuanlan.zhihu.com/p/33006526 |
| 神经网络梯度消失和梯度爆炸及解决办法 | https://blog.csdn.net/program_developer/article/details/80032376 |
| 22. Dropout | https://arxiv.org/pdf/1207.0580.pdf |
| 1 | https://blog.csdn.net/stdcoutzyx/article/details/49022443 |
| 2 | https://blog.csdn.net/hjimce/article/details/50413257 |
| 3 | https://blog.csdn.net/shuzfan/article/details/50580915 |
| 系列解读Dropout | https://blog.csdn.net/shuzfan/article/details/50580915 |
| 23.谱归一化(Spectral Normalization)的理解 | https://blog.csdn.net/StreamRock/article/details/83590347 |
| 常见向量范数和矩阵范数 | https://blog.csdn.net/left_la/article/details/9159949 |
| 谱范数正则(Spectral Norm Regularization)的理解 | https://blog.csdn.net/StreamRock/article/details/83539937 |
| 24.L1正则化与L2正则化 | https://zhuanlan.zhihu.com/p/35356992 |
| 深入理解L1、L2正则化 | https://zhuanlan.zhihu.com/p/29360425 |
| L2正则=Weight Decay?并不是这样 | https://zhuanlan.zhihu.com/p/40814046 |
| 都9102年了,别再用Adam + L2 regularization | https://zhuanlan.zhihu.com/p/63982470 |
| 25.为什么选用交叉熵而不是MSE | https://zhuanlan.zhihu.com/p/61944055 |
| 为什么使用交叉熵作为损失函数 | https://zhuanlan.zhihu.com/p/63731947 |
| 二元分类为什么不能用MSE做为损失函数? | http://sofasofa.io/forum_main_post.php?postid=1001792 |
| 为什么平方损失函数不适用分类问题? | https://www.zhihu.com/question/319865092 |
| 浅谈神经网络中的梯度爆炸问题 | https://zhuanlan.zhihu.com/p/32154263 |
| 为什么weight decay能够防止过拟合 | https://www.zhihu.com/question/65626362 |
| 交叉熵代价函数(作用及公式推导) | https://blog.csdn.net/u014313009/article/details/51043064 |
| 交叉熵损失的来源、说明、求导与pytorch实现 | https://zhuanlan.zhihu.com/p/67782576 |
| Softmax函数与交叉熵 | https://zhuanlan.zhihu.com/p/27223959 |
| 极大似然估计与最小化交叉熵损失或者KL散度为什么等价 | https://zhuanlan.zhihu.com/p/84764177 |
| 梯度下降优化算法纵览 | http://ruder.io/optimizing-gradient-descent/ |
| 1 | https://blog.csdn.net/qq_23269761/article/details/80901411 |
| 2 | https://www.cnblogs.com/guoyaohua/p/8542554.html |
| 几种优化算法的比较(BGD、SGD、Adam、RMSPROP) | https://blog.csdn.net/qq_32172681/article/details/100979476 |
| 详解softmax函数以及相关求导过程 | https://zhuanlan.zhihu.com/p/25723112 |
| softmax的log似然代价函数(公式求导) | https://blog.csdn.net/u014313009/article/details/51045303 |
| 【技术综述】一文道尽softmax loss及其变种 | https://zhuanlan.zhihu.com/p/34044634 |
| 从最优化的角度看待Softmax损失函数 | https://zhuanlan.zhihu.com/p/45014864 |
| Softmax理解之二分类与多分类 | https://zhuanlan.zhihu.com/p/45368976 |
| Softmax理解之Smooth程度控制 | https://zhuanlan.zhihu.com/p/49939159 |
| Softmax理解之margin | https://zhuanlan.zhihu.com/p/52108088 |
| 神经网络中的权重初始化一览:从基础到Kaiming | https://zhuanlan.zhihu.com/p/62850258 |
| 深度学习中常见的权重初始化方法 | https://zhuanlan.zhihu.com/p/138064188 |
| 深度学习中神经网络的几种权重初始化方法 | https://blog.csdn.net/u012328159/article/details/80025785 |
| 谈谈神经网络权重为什么不能初始化为0 | https://zhuanlan.zhihu.com/p/75879624 |
| 神经网络中的偏置(bias)究竟有这么用? | https://www.zhihu.com/question/305340182 |
| 深度学习里面的偏置为什么不加正则? | https://www.zhihu.com/question/66894061 |
| 为什么说bagging是减少variance,而boosting是减少bias? | https://www.zhihu.com/question/26760839 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#四-炼丹术士那些事 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#调参经验 |
| 训练的神经网络不工作?一文带你跨过这37个坑 | https://blog.csdn.net/jiandanjinxin/article/details/77190687 |
| Deep Learning 之 训练过程中出现NaN问题 | https://blog.csdn.net/BVL10101111/article/details/76086344 |
| 神经网络训练trick | https://zhuanlan.zhihu.com/p/59918821 |
| 你有哪些deep learning(rnn、cnn)调参的经验? | https://www.zhihu.com/question/41631631 |
| GAN的一些小trick | https://zhuanlan.zhihu.com/p/27725664 |
| 深度学习与计算机视觉系列(8)_神经网络训练与注意点 | https://blog.csdn.net/han_xiaoyang/article/details/50521064 |
| 神经网络训练loss不下降原因集合 | https://blog.csdn.net/liuweiyuxiang/article/details/80856991 |
| loss不下降的解决方法 | https://blog.csdn.net/zongza/article/details/89185852 |
| 深度学习:欠拟合问题的几种解决方案 | https://blog.csdn.net/u014038273/article/details/84108688 |
| 过拟合和欠拟合问题 | https://blog.csdn.net/mzpmzk/article/details/79741682 |
| 机器学习:如何找到最优学习率 | https://blog.csdn.net/whut_ldz/article/details/78882871 |
| 实现 | https://github.com/L1aoXingyu/torchlib |
| 神经网络中 warmup 策略为什么有效 | https://www.zhihu.com/question/338066667 |
| 不平衡数据集处理方法 | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master |
| 其一 | https://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/ |
| 其二 | https://www.zhihu.com/question/285824343 |
| 其三 | https://blog.csdn.net/songhk0209/article/details/71484469 |
| Awesome Imbalanced Learning | https://github.com/ZhiningLiu1998/awesome-imbalanced-learning |
| Class-balanced-loss-pytorch | https://github.com/vandit15/Class-balanced-loss-pytorch |
| 同一个神经网络使用不同激活函数的表达能力是否一致 | https://www.zhihu.com/question/41841299 |
| 论文笔记之数据增广:mixup | https://blog.csdn.net/ly244855983/article/details/78938667#%E8%AE%A8%E8%AE%BA |
| 避坑指南:数据科学家新手常犯的13个错误 | https://zhuanlan.zhihu.com/p/44331706 |
| 凭什么相信CNN的结果?--可视化 | https://bindog.github.io/blog/2018/02/10/model-explanation/ |
| 凭什么相信你,我的CNN模型?(篇一:CAM和Grad-CAM) | https://bindog.github.io/blog/2018/02/10/model-explanation/ |
| pytorch-grad-cam | https://github.com/jacobgil/pytorch-grad-cam |
| Grad-CAM-tensorflow | https://github.com/insikk/Grad-CAM-tensorflow |
| grad-cam.tensorflow | https://github.com/Ankush96/grad-cam.tensorflow |
| cnn_visualization | https://github.com/js-fan/mxnet/tree/d2b802e2d2af3dae5b4ac941354602630d2ef1c7/example/cnn_visualization |
| 凭什么相信你,我的CNN模型?(篇二:万金油LIME) | http://bindog.github.io/blog/2018/02/11/model-explanation-2/ |
| 论文笔记:Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization | https://www.jianshu.com/p/294ad9ae2e50 |
| CV:基于Keras利用训练好的hdf5模型进行目标检测实现输出模型中的表情或性别的gradcam(可视化) | https://blog.csdn.net/qq_41185868/article/details/80323646 |
| 大卷积核还是小卷积核? | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master |
| 1 | https://www.jianshu.com/p/d75375dd7ebd |
| 2 | https://blog.csdn.net/kuangtun9713/article/details/79475457 |
| 模型可解释性差?你考虑了各种不确定性了吗? | https://baijiahao.baidu.com/s?id=1608193373391996908 |
| 炼丹笔记系列 | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master |
| 炼丹笔记一:样本不平衡问题 | https://zhuanlan.zhihu.com/p/56882616 |
| 炼丹笔记二:数据清洗 | https://zhuanlan.zhihu.com/p/56022212 |
| 炼丹笔记三:数据增强 | https://zhuanlan.zhihu.com/p/56139575 |
| 炼丹笔记四:小样本问题 | https://zhuanlan.zhihu.com/p/56365469 |
| 炼丹笔记五:数据标注 | https://zhuanlan.zhihu.com/p/56443169 |
| 炼丹笔记六 : 调参技巧 | https://zhuanlan.zhihu.com/p/56745640 |
| 炼丹笔记七:卷积神经网络模型设计 | https://zhuanlan.zhihu.com/p/57738934 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#刷排行榜的小技巧 |
| Kaggle 六大比赛最全面解析(上) | https://www.leiphone.com/news/201803/XBjvQriKTyTMPLcz.html |
| Kaggle 六大比赛最全面解析(下) | https://www.leiphone.com/news/201803/chz1DNHqgVWNEm5t.html |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#图像分类-1 |
| 炼丹笔记三:数据增强 | https://zhuanlan.zhihu.com/p/56139575 |
| 数据增强(Data Augmentation) | https://zhuanlan.zhihu.com/p/41679153 |
| 【技术综述】 深度学习中的数据增强(上) | https://zhuanlan.zhihu.com/p/38345420 |
| 【技术综述】深度学习中的数据增强(下) | https://zhuanlan.zhihu.com/p/38437739 |
| 深度学习数据增广技术一览 | https://zhuanlan.zhihu.com/p/144921458 |
| 《Bag of Tricks for Image Classification with CNN》 | https://zhuanlan.zhihu.com/p/53324148 |
| pdf | https://arxiv.org/pdf/1812.01187.pdf |
| 深度神经网络模型训练中的最新tricks总结【原理与代码汇总】 | https://zhuanlan.zhihu.com/p/66080948 |
| 神经网络训练trick | https://zhuanlan.zhihu.com/p/59918821 |
| Kaggle解决方案分享 | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master |
| 从0上手Kaggle图像分类挑战:冠军解决方案详解 | https://www.itcodemonkey.com/article/4898.html |
| Kaggle 冰山图像分类大赛近日落幕,看冠军团队方案有何亮点 | https://www.leiphone.com/news/201803/u40cjEZWArBfFaBm.html |
| 【Kaggle冠军分享】图像识别和分类竞赛,数据增强及优化算法 | https://mp.weixin.qq.com/s/_S8EBBJ-u9g_fHp7I3ChMQ |
| 识别座头鲸,Kaggle竞赛第一名解决方案解读 | https://zhuanlan.zhihu.com/p/58496385 |
| kaggle 首战拿金牌总结 | https://zhuanlan.zhihu.com/p/60953933 |
| 16岁高中生夺冠Kaggle地标检索挑战赛!而且竟然是Kaggle老兵 | https://zhuanlan.zhihu.com/p/37522227 |
| 6次Kaggle计算机视觉类比赛赛后感 | https://zhuanlan.zhihu.com/p/37663895 |
| Kaggle首战斩获第三-卫星图像识别 | https://zhuanlan.zhihu.com/p/63275166 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#目标检测-1 |
| 目标检测任务的优化策略tricks | https://zhuanlan.zhihu.com/p/56792817 |
| 目标检测小tricks--样本不均衡处理 | https://zhuanlan.zhihu.com/p/60612064 |
| 汇总|目标检测中的数据增强、backbone、head、neck、损失函数 | https://zhuanlan.zhihu.com/p/137769687 |
| 目标检测算法中的常见trick | https://zhuanlan.zhihu.com/p/39262769 |
| Bag of Freebies —— 提升目标检测模型性能的免费tricks | https://zhuanlan.zhihu.com/p/141878389 |
| 目标检测比赛中的tricks(已更新更多代码解析) | https://zhuanlan.zhihu.com/p/102817180 |
| Kaggle:肺癌自动诊断系统3D Deep Leaky Noisy-or Network 论文阅读 | https://www.jianshu.com/p/50158f8daf0d |
| 干货|大神教你如何参加kaggle比赛——根据CT扫描图预测肺癌 | https://yq.aliyun.com/articles/89312 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#五-年度总结 |
| 新年大礼包:机器之心2018高分教程合集 | https://zhuanlan.zhihu.com/p/53717510 |
| 收藏、退出一气呵成,2019年机器之心干货教程都在这里了 | https://zhuanlan.zhihu.com/p/104022144 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#六-科研相关 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#深度学习框架 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#python3x先修 |
| The Python Tutorial | https://docs.python.org/3/tutorial/ |
| 廖雪峰Python教程 | https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000 |
| 菜鸟教程 | http://www.runoob.com/python3/python3-tutorial.html |
| 给深度学习入门者的Python快速教程 - 基础篇 | https://zhuanlan.zhihu.com/p/24162430 |
| Python - 100天从新手到大师 | https://github.com/jackfrued/Python-100-Days |
| Python中读取,显示,保存图片的方法 | https://blog.csdn.net/u010472607/article/details/78855816 |
| Python的图像打开保存显示的几种方式 | https://blog.csdn.net/weixin_37619439/article/details/86559239 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#numpy先修 |
| Quickstart tutorial | https://www.numpy.org/devdocs/user/quickstart.html |
| Numpy快速入门(Numpy 1.14 官方文档中文翻译) | https://www.jianshu.com/p/3e566f09a0cf |
| Numpy中文文档 | https://www.numpy.org.cn/index.html |
| 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇 | https://zhuanlan.zhihu.com/p/24309547 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#opencv-python |
| OpenCV-Python Tutorials | https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_tutorials.html |
| OpenCV官方教程中文版(For Python) | https://www.cnblogs.com/Undo-self-blog/p/8423851.html |
| 数字图像处理系列 | https://blog.csdn.net/feilong_csdn/article/category/8037591 |
| python+OpenCV图像处理 | https://blog.csdn.net/qq_40962368/article/category/7688903 |
| 给深度学习入门者的Python快速教程 - 番外篇之Python-OpenCV | https://zhuanlan.zhihu.com/p/24425116 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#pandas |
| Python 数据科学入门教程:Pandas | https://www.jianshu.com/p/d9774cf1fea5?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#tensorflow |
| 如何高效地学习 TensorFlow 代码 | https://www.zhihu.com/question/41667903 |
| 中文教程 | http://www.tensorfly.cn/tfdoc/tutorials/overview.html |
| TensorFlow官方文档 | https://www.w3cschool.cn/tensorflow_python/ |
| CS20:Tensorflow for DeepLearning Research | http://web.stanford.edu/class/cs20si/syllabus.html |
| 吴恩达TensorFlow专项课程 | https://zhuanlan.zhihu.com/p/62981537 |
| 【干货】史上最全的Tensorflow学习资源汇总 | https://zhuanlan.zhihu.com/p/35515805?group_id=967136289941897216 |
| 《21个项目玩转深度学习———基于TensorFlow的实践详解》 | https://github.com/hzy46/Deep-Learning-21-Examples |
| 最全Tensorflow2.0 入门教程持续更新 | https://zhuanlan.zhihu.com/p/59507137 |
| Github优秀开源教程 | https://github.com/search?o=desc&q=tensorflow+tutorial&s=&type=Repositories |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#mxnet |
| Gluon | http://zh.gluon.ai/# |
| GluonCV | https://gluon-cv.mxnet.io/index.html |
| GluonNLP | http://gluon-nlp.mxnet.io/ |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#pytorch |
| Pytorch版动手学深度学习 | https://github.com/ShusenTang/Dive-into-DL-PyTorch |
| PyTorch中文文档 | https://pytorch-cn.readthedocs.io/zh/latest/ |
| WELCOME TO PYTORCH TUTORIALS | https://pytorch.org/tutorials/index.html |
| 史上最全的PyTorch学习资源汇总 | https://zhuanlan.zhihu.com/p/64895011 |
| 【干货】史上最全的PyTorch学习资源汇总 | https://github.com/INTERMT/Awesome-PyTorch-Chinese |
| Hands-on tour to deep learning with PyTorch | https://mlelarge.github.io/dataflowr-web/cea_edf_inria.html |
| pytorch学习(五)—图像的加载/读取方式 | https://www.jianshu.com/p/cfca9c4338e7 |
| PyTorch—ImageFolder/自定义类 读取图片数据 | https://blog.csdn.net/wsp_1138886114/article/details/83620869 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#深度学习常用命令 |
| command_for_deeplearning | https://github.com/Stephenfang51/command_for_deeplearning/blob/master/command%20for%20deeplearning.md |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#python可视化 |
| Top 50 matplotlib Visualizations – The Master Plots (with full python code) | https://www.machinelearningplus.com/plots/top-50-matplotlib-visualizations-the-master-plots-python/ |
| Python之MatPlotLib使用教程 | https://blog.csdn.net/zhw864680355/article/details/102500263 |
| 十分钟上手matplotlib,开启你的python可视化 | https://mp.weixin.qq.com/s/UfvEdzr-ZGmyT08yKDOchA |
| 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇 | https://zhuanlan.zhihu.com/p/24309547 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#标注工具 |
| labelImg | https://github.com/tzutalin/labelImg |
| labelme | https://github.com/wkentaro/labelme |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#数据集 |
| 1. 25个深度学习相关公开数据集 | https://zhuanlan.zhihu.com/p/35449783 |
| 2. 自然语言处理(NLP)数据集 | https://zhuanlan.zhihu.com/p/35423943 |
| 3.全唐诗(43030首) | https://pan.baidu.com/s/1o7QlUhO |
| 4. 伯克利大学公开数据集 | https://people.eecs.berkeley.edu/~taesung_park/ |
| 5. ACL 2018资源:100+ 预训练的中文词向量 | https://zhuanlan.zhihu.com/p/36835964 |
| 6. 预训练中文词向量 | https://github.com/Embedding/Chinese-Word-Vectors |
| 7. 公开数据集种子库 | http://academictorrents.com |
| 8. 计算机视觉,深度学习,数据挖掘数据集整理 | https://blog.csdn.net/c20081052/article/details/79814082 |
| 9. 计算机视觉著名数据集CV Datasets | https://blog.csdn.net/accepthjp/article/details/51831026 |
| 10. 计算机视觉相关数据集和比赛 | https://blog.csdn.net/NNNNNNNNNNNNY/article/details/68485160 |
| 11. 这是一份非常全面的开源数据集,你,真的不想要吗? | https://zhuanlan.zhihu.com/p/43846002 |
| 12. 人群密度估计现有主要数据集特点及其比较 | https://blog.csdn.net/weixin_40516558/article/details/81564464 |
| 13. DANBOORU2017: A LARGE-SCALE CROWDSOURCED AND TAGGED ANIME ILLUSTRATION DATASET | https://www.gwern.net/Danbooru2017 |
| 14. 行人重识别数据集 | http://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/systems/projectpages/reiddataset.html |
| 15. 自然语言处理常见数据集、论文最全整理分享 | https://zhuanlan.zhihu.com/p/56144877 |
| 16. paper, code, sota | https://paperswithcode.com/ |
| 17. 旷视RPC大型商品数据集发布! | https://zhuanlan.zhihu.com/p/55627416 |
| 18. CVPR 2019「准满分」论文:英伟达推出首个跨摄像头汽车跟踪数据集(汽车Re-ID) | https://zhuanlan.zhihu.com/p/60617001 |
| 19.【OCR技术】大批量生成文字训练集 | https://zhuanlan.zhihu.com/p/59052013 |
| 20. 语义分析数据集-MSRA | https://github.com/msra-nlc/MSParS |
| IEEE DataPort | https://ieee-dataport.org/ |
| 数据集市 | http://www.shujujishi.com/ |
| 医疗/医学图像数据集 | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master |
| Medical Data for Machine Learning | https://github.com/beamandrew/medical-data |
| 医疗领域图像挑战赛数据集 | https://grand-challenge.org/challenges/ |
| 【医学影像系列:一】数据集合集 最新最全 | https://blog.csdn.net/qq_31622015/article/details/90573874 |
| medical-imaging-datasets | https://github.com/sfikas/medical-imaging-datasets |
| 【数据集】一文道尽医学图像数据集与竞赛 | https://zhuanlan.zhihu.com/p/50615907 |
| 医学图像数据集汇总 | https://zhuanlan.zhihu.com/p/102855802 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#记笔记工具 |
| Markdown编辑器:Typora介绍 | https://zhuanlan.zhihu.com/p/67153848 |
| Markdown语法介绍(常用) | https://zhuanlan.zhihu.com/p/47897214 |
| Markdown 语法手册 (完整整理版) | https://blog.csdn.net/witnessai1/article/details/52551362 |
| Markdown中Latex 数学公式基本语法 | https://blog.csdn.net/u014630987/article/details/70156489 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#会议期刊列表 |
| 国际会议日期表 | https://github.com/JackieTseng/conference_call_for_paper |
| ai-deadlines | https://github.com/abhshkdz/ai-deadlines/ |
| Keep Up With New Trends | https://handong1587.github.io/deep_learning/2017/12/18/keep-up-with-new-trends.html |
| 计算机会议排名等级 | https://blog.csdn.net/cserchen/article/details/40508181 |
| 中国计算机学会(CCF)推荐国际学术刊物和会议 | https://www.ccf.org.cn/Academic_Evaluation/By_category/ |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#论文写作工具 |
| Windows: Texlive+Texstudio | https://jingyan.baidu.com/article/b2c186c83c9b40c46ff6ff4f.html |
| Ubuntu: Texlive+Texmaker | https://jingyan.baidu.com/article/7c6fb4280b024180642c90e4.html |
| Latex:基本用法、表格、公式、算法 | https://blog.csdn.net/quiet_girl/article/details/72847208 |
| LaTeX 各种命令,符号 | https://blog.csdn.net/garfielder007/article/details/51646604 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#论文画图工具 |
| Visio2016 | https://msdn.itellyou.cn/ |
| Matplotlib | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#Python%E5%8F%AF%E8%A7%86%E5%8C%96 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#论文写作教程 |
| 刘知远_如何写一篇合格的NLP论文 | https://zhuanlan.zhihu.com/p/58752815 |
| 刘洋_如何写论文_V7 | http://nlp.csai.tsinghua.edu.cn/~ly/talks/cwmt14_tut.pdf |
| 如何端到端地写科研论文-邱锡鹏 | https://xpqiu.github.io/slides/20181019-PaperWriting.pdf |
| 论文Introduction写作其一 | https://zhuanlan.zhihu.com/p/33876355 |
| 论文Introduction写作其二 | https://zhuanlan.zhihu.com/p/52494933 |
| 论文Introduction写作其三 | https://zhuanlan.zhihu.com/p/52494879 |
| 毕业论文怎么写 | https://zhuanlan.zhihu.com/c_179195484 |
| 浅谈学术论文rebuttal | https://zhuanlan.zhihu.com/p/104298923 |
| 学术论文投稿与返修(Rebuttal)分享 | https://zhuanlan.zhihu.com/p/344008879 |
| 研之成理写作实验室 | https://zhuanlan.zhihu.com/rationalscience-writing-lab |
| 智源论坛·论文写作专题报告会 | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master |
| 《论文写作小白的成长之路》 | https://zhuanlan.zhihu.com/p/135989892 |
| 《谈如何写一篇合格的国际学术论文》 | https://zhuanlan.zhihu.com/p/136005095 |
| 《计算机视觉会议论文从投稿到接收》 | https://zhuanlan.zhihu.com/p/139571199 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#researchgos |
| ResearchGo:研究生活第一帖——文献检索与管理 | https://zhuanlan.zhihu.com/p/22323250?refer=wjdml |
| ResearchGo:研究生活第二贴——文献阅读 | https://zhuanlan.zhihu.com/p/22402393?refer=wjdml |
| ResearchGo:研究生活第三帖——阅读辅助 | https://zhuanlan.zhihu.com/p/22622502?refer=wjdml |
| ResearchGo:研究生活第四帖——文献调研 | https://zhuanlan.zhihu.com/p/23178836?refer=wjdml |
| ResearchGo:研究生活第五帖——文献综述 | https://zhuanlan.zhihu.com/p/23356843?refer=wjdml |
| ResearchGo:研究生活第六帖——如何讲论文 | https://zhuanlan.zhihu.com/p/23872063?refer=wjdml |
| ResearchGo:研究生活第七帖——专利检索与申请 | https://zhuanlan.zhihu.com/p/25191025 |
| ResearchGo:研究生活第八帖——写论文、做PPT、写文档必备工具集锦 | https://zhuanlan.zhihu.com/p/62100815 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#毕业论文排版 |
| 吐血推荐收藏的学位论文排版教程(完整版) | https://zhuanlan.zhihu.com/p/52495345 |
| 论文怎么写——如何修改毕业论文格式 | https://zhuanlan.zhihu.com/p/35951260 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#信号处理 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#傅里叶变换 |
| 傅里叶分析之掐死教程(完整版)更新于2014.06.06 | https://zhuanlan.zhihu.com/p/19763358 |
| 如何简明的总结傅里叶变换? | https://www.zhihu.com/question/34899574/answer/612923473 |
| 从连续时间傅里叶级数到快速傅里叶变换 | https://blog.csdn.net/clover13/article/details/79469851 |
| 十分简明易懂的FFT(快速傅里叶变换) | https://blog.csdn.net/enjoy_pascal/article/details/81478582 |
| 傅里叶级数推导过程 | https://blog.csdn.net/hanxiaohu88/article/details/8245687 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#小波变换 |
| 形象易懂讲解算法I——小波变换 | https://zhuanlan.zhihu.com/p/22450818 |
| 小波变换完美通俗讲解系列之 (一) | https://zhuanlan.zhihu.com/p/44215123 |
| 小波变换完美通俗讲解系列之 (二) | https://zhuanlan.zhihu.com/p/44217268 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#实战 |
| MWCNN中使用的haar小波变换 pytorch | https://www.cnblogs.com/wanghui-garcia/p/12524515.html |
| 【小波变换】小波变换入门----haar小波 | https://blog.csdn.net/baidu_27643275/article/details/84826773 |
| (3)小波变换原理及应用 | https://blog.csdn.net/hhaowang/article/details/82909332 |
| 图像处理-小波变换 | https://blog.csdn.net/qq_30815237/article/details/89704855 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#机器学习理论与实战 |
| 机器学习原理 | https://github.com/shunliz/Machine-Learning |
| ID3、C4.5、CART、随机森林、bagging、boosting、Adaboost、GBDT、xgboost算法总结 | https://zhuanlan.zhihu.com/p/34534004 |
| 数据挖掘十大算法简要说明 | http://www.cnblogs.com/en-heng/p/5013995.html |
| 机器学习十大经典算法入门 | https://blog.csdn.net/qq_42379006/article/details/80741808 |
| 【算法模型】轻松看懂机器学习十大常用算法 | https://www.cnblogs.com/ljt1412451704/p/9678248.html |
| AdaBoost到GBDT系列 | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master |
| 当我们在谈论GBDT:从 AdaBoost 到 Gradient Boosting | https://zhuanlan.zhihu.com/p/25096501?refer=data-miner |
| 当我们在谈论GBDT:Gradient Boosting 用于分类与回归 | https://zhuanlan.zhihu.com/p/25257856?refer=data-miner |
| 当我们在谈论GBDT:其他 Ensemble Learning 算法 | https://zhuanlan.zhihu.com/p/25443980 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#机器学习理论篇之经典算法 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#信息论 |
| 1. 机器学习中的各种熵 | https://zhuanlan.zhihu.com/p/35423404 |
| 2. 从香农熵到手推KL散度:纵览机器学习中的信息论 | https://zhuanlan.zhihu.com/p/32985487 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#多层感知机mlp |
| 多层感知机(MLP)学习与总结博客 | https://blog.csdn.net/baidu_33718858/article/details/84972537 |
| 多层感知机:Multi-Layer Perceptron | https://blog.csdn.net/xholes/article/details/78461164 |
| 神经网络基础-多层感知器(MLP) | https://blog.csdn.net/weixin_38206214/article/details/81137911 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#k近邻knn |
| 机器学习之KNN(k近邻)算法详解 | https://blog.csdn.net/sinat_30353259/article/details/80901746 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#k均值k-means |
| Kmeans聚类算法详解 | https://blog.csdn.net/qq_32892383/article/details/80107795 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#朴素贝叶斯naive-bayesian |
| 一个例子搞清楚(先验分布/后验分布/似然估计) | https://blog.csdn.net/qq_23947237/article/details/78265026 |
| 朴素贝叶斯分类器(Naive Bayesian Classifier) | https://blog.csdn.net/qq_32690999/article/details/78737393 |
| 朴素贝叶斯分类器 详细解析 | https://blog.csdn.net/qq_17073497/article/details/81076250 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#决策树decision-tree |
| 最常见核心的决策树算法详细介绍,含ID3、C4.5、CART:star: | https://mp.weixin.qq.com/s/lXaPZyNrgG9LBv-JHdGm9A |
| 最常用的决策树算法!Random Forest、Adaboost、GBDT 算法:star: | https://mp.weixin.qq.com/s/Nl_-PdF0nHBq8yGp6AdI-Q |
| 终于有人把XGBoost 和 LightGBM 讲明白了,项目中最主流的集成算法!:star: | https://mp.weixin.qq.com/s/LoX987dypDg8jbeTJMpEPQ |
| 为什么xgboost要用泰勒展开,优势在哪里 | http://blog.itblood.com/4082.html |
| Python3《机器学习实战》学习笔记(二):决策树基础篇之让我们从相亲说起 | https://blog.csdn.net/c406495762/article/details/75663451 |
| Python3《机器学习实战》学习笔记(三):决策树实战篇之为自己配个隐形眼镜 | https://blog.csdn.net/c406495762/article/details/76262487 |
| 机器学习实战教程(十三):树回归基础篇之CART算法与树剪枝 | http://cuijiahua.com/blog/2017/12/ml_13_regtree_1.html |
| 《机器学习实战》基于信息论的三种决策树算法(ID3,C4.5,CART) | https://blog.csdn.net/gamer_gyt/article/details/51242815 |
| 说说决策树剪枝算法 | https://zhuanlan.zhihu.com/p/31404571 |
| 机器学习实战 第九章 树回归 | https://blog.csdn.net/namelessml/article/details/52595066 |
| 决策树值ID3、C4.5实现 | https://blog.csdn.net/u014688145/article/details/53212112 |
| 决策树之CART实现 | https://blog.csdn.net/u014688145/article/details/53326910 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#随机森林random-forest |
| 随机森林和GBDT的区别 | https://blog.csdn.net/login_sonata/article/details/73929426 |
| 随机森林(Random Forest)入门与实战 | https://blog.csdn.net/sb19931201/article/details/52601058 |
| 随机森林之特征选择 | https://www.cnblogs.com/justcxtoworld/p/3447231.html |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#线性回归linear-regression |
| 线性回归最小二乘法和最大似然估计 | https://blog.csdn.net/lt793843439/article/details/91392646 |
| 【从入门到放弃】线性回归 | https://zhuanlan.zhihu.com/p/147297924 |
| 线性回归(频率学派-最大似然估计)与岭回归(贝叶斯角度-最大后验估计)的概率解释 | https://blog.csdn.net/z_feng12489/article/details/101388745 |
| 机器学习笔记四:线性回归回顾与logistic回归 | https://blog.csdn.net/xierhacker/article/details/53316138 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#逻辑回归logistic-regression |
| 【机器学习面试总结】—— LR(逻辑回归) | https://zhuanlan.zhihu.com/p/100763009 |
| 【机器学习面试题】逻辑回归篇 | https://zhuanlan.zhihu.com/p/62653034 |
| 极大似然概率和最小损失函数,以及正则化简介 | https://www.jianshu.com/p/9d2686cd407e |
| GLM(广义线性模型) 与 LR(逻辑回归) 详解 | https://blog.csdn.net/Cdd2xd/article/details/75635688 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#支持向量机svm |
| 【机器学习面试总结】—— SVM | https://zhuanlan.zhihu.com/p/93715996 |
| SVM系列-从基础到掌握 | https://zhuanlan.zhihu.com/p/61123737 |
| SVM通俗导论 July | https://github.com/Mikoto10032/DeepLearning/blob/master/books/%E6%94%AF%E6%8C%81%E5%90%91%E9%87%8F%E6%9C%BA%E9%80%9A%E4%BF%97%E5%AF%BC%E8%AE%BA%EF%BC%88%E7%90%86%E8%A7%A3SVM%E7%9A%84%E4%B8%89%E5%B1%82%E5%A2%83%E7%95%8C%EF%BC%89LaTeX%E6%9C%80%E6%96%B0%E7%89%88_2015.1.9.pdf |
| 核函数 | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/blob/master |
| 机器学习有很多关于核函数的说法,核函数的定义和作用是什么? | https://www.zhihu.com/question/24627666 |
| SVM中,高斯核为什么会把原始维度映射到无穷多维? | https://www.zhihu.com/question/35602879 |
| svm核函数的理解和选择 | https://blog.csdn.net/leonis_v/article/details/50688766 |
| 核函数和径向基核函数 (Radial Basis Function)--RBF | https://blog.csdn.net/huang1024rui/article/details/51510611 |
| SVM核函数 | https://blog.csdn.net/xiaowei_cqu/article/details/35993729 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#提升方法adaboost |
| 当我们在谈论GBDT:从 AdaBoost 到 Gradient Boosting | https://zhuanlan.zhihu.com/p/25096501 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#梯度提升决策树gbdt |
| LightGBM大战XGBoost | https://zhuanlan.zhihu.com/p/35645973 |
| 概述XGBoost、Light GBM和CatBoost的同与不同 | https://zhuanlan.zhihu.com/p/34698733 |
| XGBoost、LightGBM、Catboost总结 | https://www.cnblogs.com/lvdongjie/p/11391245.html |
| XGBoost、Light GBM和CatBoost的参数及性能比较 | https://zhuanlan.zhihu.com/p/34698733 |
| 梯度提升决策树 | https://zhuanlan.zhihu.com/p/36339161 |
| GBDT原理及应用 | https://zhuanlan.zhihu.com/p/30339807 |
| XGBOOST原理篇 | https://zhuanlan.zhihu.com/p/31654000 |
| xgboost入门与实战(原理篇) | https://blog.csdn.net/sb19931201/article/details/52557382 |
| xgboost入门与实战(实战调参篇) | https://blog.csdn.net/sb19931201/article/details/52577592 |
| 【干货合集】通俗理解kaggle比赛大杀器xgboost | https://zhuanlan.zhihu.com/p/41417638 |
| GBDT分类的原理及Python实现 | https://blog.csdn.net/bf02jgtrs00xktcx/article/details/82719765 |
| GBDT原理及利用GBDT构造新的特征-Python实现 | https://blog.csdn.net/shine19930820/article/details/71713680 |
| Python+GBDT算法实战——预测实现100%准确率 | https://www.jianshu.com/p/47e73a985ba1 |
| xgboost之近似分位数算法(直方图算法)详解 | https://blog.csdn.net/m0_37870649/article/details/104561431 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#em期望最大化 |
| 人人都懂的EM算法 | https://zhuanlan.zhihu.com/p/36331115 |
| EM算法入门文章 | https://zhuanlan.zhihu.com/p/61768577 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#高斯混合模型gmm |
| 高斯混合模型与EM算法的数学原理及应用实例 | https://zhuanlan.zhihu.com/p/67107370 |
| 高斯混合模型(GMM) | https://zhuanlan.zhihu.com/p/30483076 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#马尔科夫决策过程mdp |
| 马尔科夫决策过程之Markov Processes(马尔科夫过程) | https://zhuanlan.zhihu.com/p/35124726 |
| 马尔科夫决策过程之Markov Reward Process(马尔科夫奖励过程) | https://zhuanlan.zhihu.com/p/35231424 |
| 马尔科夫决策过程之Bellman Equation(贝尔曼方程) | https://zhuanlan.zhihu.com/p/35261164 |
| 马尔科夫决策过程之Markov Decision Process(马尔科夫决策过程) | https://zhuanlan.zhihu.com/p/35354956 |
| 马尔科夫决策过程之最优价值函数与最优策略 | https://zhuanlan.zhihu.com/p/35373905 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#条件随机场crf-判别式模型 |
| 如何轻松愉快地理解条件随机场 | https://zhuanlan.zhihu.com/p/104562658 |
| 如何用简单易懂的例子解释条件随机场(CRF)模型?它和HMM有什么区别? | https://www.zhihu.com/question/35866596 |
| HMM ,MHMM,CRF 优缺点与区别 | https://blog.csdn.net/u013378306/article/details/55213029 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#降维算法 |
| 数据降维算法-从PCA到LargeVis | https://zhuanlan.zhihu.com/p/62470700 |
| 12种降维方法终极指南(含Python代码) | https://zhuanlan.zhihu.com/p/43225794 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#主成分分析pca |
| 主成分分析(PCA)原理详解 | https://blog.csdn.net/program_developer/article/details/80632779 |
| 图文并茂的PCA教程 | https://blog.csdn.net/hustqb/article/details/78394058 |
| PCA数学原理 | http://www.360doc.com/content/13/1124/02/9482_331688889.shtml |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#奇异值分解svd |
| 强大的矩阵奇异值分解(SVD)及其应用 | https://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html |
| 奇异值分解(SVD) | https://zhuanlan.zhihu.com/p/29846048 |
| 奇异值分解(SVD)原理详解及推导 | https://blog.csdn.net/zhongkejingwang/article/details/43053513 |
| SVD在推荐系统中的应用详解以及算法推导 | https://blog.csdn.net/zhongkejingwang/article/details/43083603 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#线性判别分析lda |
| 教科书上的LDA为什么长这个样子? | https://zhuanlan.zhihu.com/p/42238953 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#标签传播算法label-propagation-algorithm-- |
| 标签传播算法(Label Propagation)及Python实现 | https://blog.csdn.net/zouxy09/article/details/49105265 |
| 参考资料 | https://github.com/Mikoto10032/DeepLearning/blob/master/books/Semi-Supervised%20Learning%20with%20Graphs.pdf |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#蒙塔卡罗树搜索mcts |
| 蒙特卡洛树搜索入门指南 | https://zhuanlan.zhihu.com/p/34950988 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#集成ensemble |
| 集成学习之bagging,stacking,boosting概念理解 | https://zhuanlan.zhihu.com/p/41809927 |
| Bagging和Boosting的总结 | https://www.zhihu.com/follow |
| 集成学习法之bagging方法和boosting方法 | https://blog.csdn.net/qq_30189255/article/details/51532442 |
| Bagging,Boosting,Stacking | https://blog.csdn.net/Mr_tyting/article/details/72957853 |
| 常用的模型集成方法介绍:bagging、boosting 、stacking | https://zhuanlan.zhihu.com/p/65888174 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#t分布随机邻居嵌入tsne |
| 流形学习-高维数据的降维与可视化 | https://blog.csdn.net/u012162613/article/details/45920827 |
| tSNE | https://blog.csdn.net/flyingzhan/article/details/79521765 |
| 使用t-SNE可视化图像embedding | https://zhuanlan.zhihu.com/p/81400277 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#谱聚类spectral-clustering |
| 谱聚类(Spectral Clustering)算法介绍 | https://blog.csdn.net/qq_24519677/article/details/82291867 |
| 聚类5--谱和谱聚类 | https://blog.csdn.net/xueyingxue001/article/details/51966980 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#异常点检测 |
| 数据挖掘中常见的「异常检测」算法有哪些? | https://www.zhihu.com/question/280696035/answer/417091151 |
| 异常点检测算法综述 | https://zhuanlan.zhihu.com/p/30169110 |
| 异常检测的N种方法,其中有一个你一定想不到 | https://mp.weixin.qq.com/s/RYLlUJiYbWqGIhzflbRGEg |
| 异常检测资源汇总:anomaly-detection-resources | https://zhuanlan.zhihu.com/p/158349346 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#机器学习实战篇 |
| 机器学习中,有哪些特征选择的工程方法? | https://www.zhihu.com/question/28641663 |
| 机器学习(四):数据预处理--特征工程概述 | https://zhuanlan.zhihu.com/p/103070096 |
| 特征工程完全手册 - 从预处理、构造、选择、降维、不平衡处理,到放弃 | https://zhuanlan.zhihu.com/p/94994902 |
| 特征工程中的「归一化」有什么作用 | https://www.zhihu.com/question/20455227 |
| 15分钟带你入门sklearn与机器学习——分类算法篇 | https://mp.weixin.qq.com/s?__biz=Mzg5NzAxMDgwNg==&mid=2247484110&idx=1&sn=b016e270d7b7707e6ad41a81ca45fc28&chksm=c0791fd7f70e96c103a8a2aebee166ce14f5648b3b889dd85dd9786f48b6b8269f11e5e27e1c&scene=21#wechat_redirect |
| 如何为你的回归问题选择最合适的机器学习方法? | https://zhuanlan.zhihu.com/p/62034592 |
| 十分钟上手sklearn:安装,获取数据,数据预处理 | https://zhuanlan.zhihu.com/p/105039597 |
| 十分钟上手sklearn:特征提取,常用模型,交叉验证 | https://zhuanlan.zhihu.com/p/105041301 |
| MachineLearning_Python | https://github.com/lawlite19/MachineLearning_Python |
| Machine Learning Course with Python | https://github.com/machinelearningmindset/machine-learning-course |
| Statistical-Learning-Method_Code | https://github.com/Dod-o/Statistical-Learning-Method_Code |
| Python3机器学习 | https://blog.csdn.net/c406495762/column/info/16415 |
| 含大牛总结的分类模型一般需要调节的参数 | https://www.jianshu.com/p/9d2452fc93c2 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#机器学习深度学习的一些研究方向 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#多任务学习multi-task-learning |
| 模型汇总-14 多任务学习-Multitask Learning概述 | https://zhuanlan.zhihu.com/p/27421983 |
| (译)深度神经网络的多任务学习概览(An Overview of Multi-task Learning in Deep Neural Networks) | http://www.cnblogs.com/shuzirank/p/7141017.html |
| Multi-task Learning and Beyond: 过去,现在与未来 | https://zhuanlan.zhihu.com/p/138597214 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#零次学习zero-shot-learning |
| 零次学习(Zero-Shot Learning)入门 | https://zhuanlan.zhihu.com/p/34656727 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#小样本学习few-shot-learning |
| few-shot learning是什么 | https://blog.csdn.net/xhw205/article/details/79491649 |
| 零次学习(Zero-Shot Learning)入门 | https://zhuanlan.zhihu.com/p/34656727 |
| 小样本学习(Few-shot Learning)综述 | https://zhuanlan.zhihu.com/p/61215293 |
| Few-Shot Learning in CVPR 2019 | https://towardsdatascience.com/few-shot-learning-in-cvpr19-6c6892fc8c5 |
| 当小样本遇上机器学习 fewshot learning | https://blog.csdn.net/mao_feng/article/details/78939864 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#多视觉学习multi-view-learning |
| Multi-view Learning 多视角学习入门 | https://blog.csdn.net/danliwoo/article/details/79278574 |
| 多视角学习 (Multi-View Learning) | https://blog.csdn.net/shine19930820/article/details/77426599 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#嵌入embedding |
| 万物皆Embedding,从经典的word2vec到深度学习基本操作item2vec | https://zhuanlan.zhihu.com/p/53194407 |
| YJango的Word Embedding--介绍 | https://zhuanlan.zhihu.com/p/27830489 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#迁移学习transfer-learning |
| 1. 迁移学习:经典算法解析 | https://blog.csdn.net/linolzhang/article/details/73358219 |
| 2. 什么是迁移学习 (Transfer Learning)?这个领域历史发展前景如何? | https://www.zhihu.com/question/41979241 |
| 3. 迁移学习个人笔记 | https://github.com/Mikoto10032/DeepLearning/blob/master/notes/%E6%97%A5%E5%B8%B8%E9%98%85%E8%AF%BB%E7%AC%94%E8%AE%B0/2018_4_12_%E8%BF%81%E7%A7%BB%E5%AD%A6%E4%B9%A0.pdf |
| 迁移学习总结(One Shot Learning, Zero Shot Learning) | https://blog.csdn.net/XJTU_NOC_Wei/article/details/77850221 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#域自适应domain-adaptation |
| Domain Adaptation视频教程(附PPT)及经典论文分享 | https://zhuanlan.zhihu.com/p/27519182 |
| 模型汇总15 领域适应性Domain Adaptation、One-shot/zero-shot Learning概述 | https://zhuanlan.zhihu.com/p/27449079 |
| 【深度学习】论文导读:无监督域适应(Deep Transfer Network: Unsupervised Domain Adaptation) | https://blog.csdn.net/mao_xiao_feng/article/details/54426101 |
| 【论文阅读笔记】基于反向传播的无监督域自适应研究 | https://zhuanlan.zhihu.com/p/37298073 |
| 【Valse大会首发】领域自适应及其在人脸识别中的应用 | https://zhuanlan.zhihu.com/p/21441807 |
| CVPR 2018:基于域适应弱监督学习的目标检测 | https://zhuanlan.zhihu.com/p/41126114 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#元学习meta-learning |
| OpenAI提出新型元学习方法EPG,调整损失函数实现新任务上的快速训练 | https://zhuanlan.zhihu.com/p/35869158?group_id=970310501209645056 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#强化学习reinforcement-learning |
| 强化学习(Reinforcement Learning)知识整理 | https://zhuanlan.zhihu.com/p/25498081 |
| 强化学习从入门到放弃的资料 | https://zhuanlan.zhihu.com/p/34918639 |
| 强化学习入门 | https://zhuanlan.zhihu.com/p/25498081 |
| 强化学习入门 第一讲 MDP | https://zhuanlan.zhihu.com/p/25498081 |
| 强化学习——从Q-Learning到DQN到底发生了什么? | https://zhuanlan.zhihu.com/p/35882937 |
| 从强化学习到深度强化学习(上) | https://zhuanlan.zhihu.com/p/35688924 |
| 从强化学习到深度强化学习(下) | https://zhuanlan.zhihu.com/p/35965070 |
| 一文带你理解Q-Learning的搜索策略 | https://zhuanlan.zhihu.com/p/37048004 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#推荐系统recommendation-system |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#论文列表 |
| Embedding从入门到专家必读的十篇论文 | https://zhuanlan.zhihu.com/p/58805184 |
| Reco-papers | https://github.com/wzhe06/Reco-papers |
| Ad-papers | https://github.com/wzhe06/Ad-papers |
| deep-recommender-system | https://github.com/chocoluffy/deep-recommender-system |
| CTR预估系列入门手册 | https://zhuanlan.zhihu.com/p/243243145 |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#教程-4 |
| 推荐系统从入门到接着入门 | https://zhuanlan.zhihu.com/p/27502172 |
| 深度学习推荐系统笔记 | https://zhuanlan.zhihu.com/p/133528693 |
| 推荐系统干货总结 | https://zhuanlan.zhihu.com/p/34004488 |
| 入门推荐系统,你不应该错过的知识清单 | https://zhuanlan.zhihu.com/p/54819505 |
| 从零开始了解推荐系统全貌 | https://zhuanlan.zhihu.com/p/259985388 |
| 推荐系统玩家 之 推荐系统入门——推荐系统的发展历程(上) | https://zhuanlan.zhihu.com/p/148207613 |
| 推荐系统技术演进趋势:从召回到排序再到重排 | https://zhuanlan.zhihu.com/p/100019681 |
| 深入理解推荐系统:召回 | https://zhuanlan.zhihu.com/p/115690499 |
| 深入理解推荐系统:排序 | https://zhuanlan.zhihu.com/p/138235048 |
| 召回算法有哪些 | https://www.zhihu.com/question/423384620/answer/1687201890 |
| 《深度学习推荐系统》总结系列一 | https://zhuanlan.zhihu.com/p/138446984 |
| 《深度学习推荐系统》总结系列二 | https://zhuanlan.zhihu.com/p/140894123 |
| 推荐系统--完整的架构设计和算法(协同过滤、隐语义) | https://zhuanlan.zhihu.com/p/81752025 |
| 从0到1打造推荐系统-架构篇 | https://zhuanlan.zhihu.com/p/123951784 |
| 协同过滤和基于内容推荐有什么区别? | https://www.zhihu.com/question/19971859 |
| CTR深度交叉特征入门总结 | https://zhuanlan.zhihu.com/p/257895631 |
| 推荐系统学习笔记 | https://blog.csdn.net/wuzhongqiang/category_10128687.html |
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#实战-1 |
| AI-RecommenderSystem | https://github.com/zhongqiangwu960812/AI-RecommenderSystem |
| team-learning-rs | https://github.com/datawhalechina/team-learning-rs |
| RecommendSystemPractice | https://github.com/Magic-Bubble/RecommendSystemPractice |
| Surprise | http://surpriselib.com/ |
|
Readme
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#readme-ov-file |
|
Apache-2.0 license
| https://patch-diff.githubusercontent.com/UHT2020/DeepLearning#Apache-2.0-1-ov-file |
| Please reload this page | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning |
|
Activity | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/activity |
|
0
stars | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/stargazers |
|
0
watching | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/watchers |
|
0
forks | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/forks |
|
Report repository
| https://patch-diff.githubusercontent.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2FUHT2020%2FDeepLearning&report=UHT2020+%28user%29 |
| Releases | https://patch-diff.githubusercontent.com/UHT2020/DeepLearning/releases |
| Packages
0 | https://patch-diff.githubusercontent.com/users/UHT2020/packages?repo_name=DeepLearning |
|
| https://github.com |
| Terms | https://docs.github.com/site-policy/github-terms/github-terms-of-service |
| Privacy | https://docs.github.com/site-policy/privacy-policies/github-privacy-statement |
| Security | https://github.com/security |
| Status | https://www.githubstatus.com/ |
| Community | https://github.community/ |
| Docs | https://docs.github.com/ |
| Contact | https://support.github.com?tags=dotcom-footer |