René's URL Explorer Experiment


Title: GitHub - SherlockGuo/KnowledgeGraphCourse: 东南大学《知识图谱》研究生课程

Open Graph Title: GitHub - SherlockGuo/KnowledgeGraphCourse: 东南大学《知识图谱》研究生课程

X Title: GitHub - SherlockGuo/KnowledgeGraphCourse: 东南大学《知识图谱》研究生课程

Description: 东南大学《知识图谱》研究生课程. Contribute to SherlockGuo/KnowledgeGraphCourse development by creating an account on GitHub.

Open Graph Description: 东南大学《知识图谱》研究生课程. Contribute to SherlockGuo/KnowledgeGraphCourse development by creating an account on GitHub.

X Description: 东南大学《知识图谱》研究生课程. Contribute to SherlockGuo/KnowledgeGraphCourse development by creating an account on GitHub.

Opengraph URL: https://github.com/SherlockGuo/KnowledgeGraphCourse

X: @github

direct link

Domain: patch-diff.githubusercontent.com

route-pattern/:user_id/:repository
route-controllerfiles
route-actiondisambiguate
fetch-noncev2:df28e085-c47f-d421-259d-bfb1411da957
current-catalog-service-hashf3abb0cc802f3d7b95fc8762b94bdcb13bf39634c40c357301c4aa1d67a256fb
request-idD8F6:DF9A3:3C57192:4DD887F:69910D83
html-safe-noncee5a212846c319cf27495e7410e7858bb7c4c86b00e5f6d0e4a59d310444c1937
visitor-payloadeyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJEOEY2OkRGOUEzOjNDNTcxOTI6NEREODg3Rjo2OTkxMEQ4MyIsInZpc2l0b3JfaWQiOiI4MDg4NzY1NTE1ODE0NzM1MjM1IiwicmVnaW9uX2VkZ2UiOiJpYWQiLCJyZWdpb25fcmVuZGVyIjoiaWFkIn0=
visitor-hmac03089d4d3ceda4e65b9a2dfc40594e8f762d6648d8f475ae829f73cb68f2a2f3
hovercard-subject-tagrepository:178790702
github-keyboard-shortcutsrepository,copilot
google-site-verificationApib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I
octolytics-urlhttps://collector.github.com/github/collect
analytics-location//
fb:app_id1401488693436528
apple-itunes-appapp-id=1477376905, app-argument=https://github.com/SherlockGuo/KnowledgeGraphCourse
twitter:imagehttps://opengraph.githubassets.com/3ff54afc09219b01696ae138983eb0882192602d1e1e07c5fda82c66e44e0fc9/SherlockGuo/KnowledgeGraphCourse
twitter:cardsummary_large_image
og:imagehttps://opengraph.githubassets.com/3ff54afc09219b01696ae138983eb0882192602d1e1e07c5fda82c66e44e0fc9/SherlockGuo/KnowledgeGraphCourse
og:image:alt东南大学《知识图谱》研究生课程. Contribute to SherlockGuo/KnowledgeGraphCourse development by creating an account on GitHub.
og:image:width1200
og:image:height600
og:site_nameGitHub
og:typeobject
hostnamegithub.com
expected-hostnamegithub.com
None42c603b9d642c4a9065a51770f75e5e27132fef0e858607f5c9cb7e422831a7b
turbo-cache-controlno-preview
go-importgithub.com/SherlockGuo/KnowledgeGraphCourse git https://github.com/SherlockGuo/KnowledgeGraphCourse.git
octolytics-dimension-user_id38394051
octolytics-dimension-user_loginSherlockGuo
octolytics-dimension-repository_id178790702
octolytics-dimension-repository_nwoSherlockGuo/KnowledgeGraphCourse
octolytics-dimension-repository_publictrue
octolytics-dimension-repository_is_forktrue
octolytics-dimension-repository_parent_id173133291
octolytics-dimension-repository_parent_nwonpubird/KnowledgeGraphCourse
octolytics-dimension-repository_network_root_id173133291
octolytics-dimension-repository_network_root_nwonpubird/KnowledgeGraphCourse
turbo-body-classeslogged-out env-production page-responsive
disable-turbofalse
browser-stats-urlhttps://api.github.com/_private/browser/stats
browser-errors-urlhttps://api.github.com/_private/browser/errors
release848bc6032dcc93a9a7301dcc3f379a72ba13b96e
ui-targetfull
theme-color#1e2327
color-schemelight dark

Links:

Skip to contenthttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#start-of-content
https://patch-diff.githubusercontent.com/
Sign in https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2FSherlockGuo%2FKnowledgeGraphCourse
GitHub CopilotWrite better code with AIhttps://github.com/features/copilot
GitHub SparkBuild and deploy intelligent appshttps://github.com/features/spark
GitHub ModelsManage and compare promptshttps://github.com/features/models
MCP RegistryNewIntegrate external toolshttps://github.com/mcp
ActionsAutomate any workflowhttps://github.com/features/actions
CodespacesInstant dev environmentshttps://github.com/features/codespaces
IssuesPlan and track workhttps://github.com/features/issues
Code ReviewManage code changeshttps://github.com/features/code-review
GitHub Advanced SecurityFind and fix vulnerabilitieshttps://github.com/security/advanced-security
Code securitySecure your code as you buildhttps://github.com/security/advanced-security/code-security
Secret protectionStop leaks before they starthttps://github.com/security/advanced-security/secret-protection
Why GitHubhttps://github.com/why-github
Documentationhttps://docs.github.com
Bloghttps://github.blog
Changeloghttps://github.blog/changelog
Marketplacehttps://github.com/marketplace
View all featureshttps://github.com/features
Enterpriseshttps://github.com/enterprise
Small and medium teamshttps://github.com/team
Startupshttps://github.com/enterprise/startups
Nonprofitshttps://github.com/solutions/industry/nonprofits
App Modernizationhttps://github.com/solutions/use-case/app-modernization
DevSecOpshttps://github.com/solutions/use-case/devsecops
DevOpshttps://github.com/solutions/use-case/devops
CI/CDhttps://github.com/solutions/use-case/ci-cd
View all use caseshttps://github.com/solutions/use-case
Healthcarehttps://github.com/solutions/industry/healthcare
Financial serviceshttps://github.com/solutions/industry/financial-services
Manufacturinghttps://github.com/solutions/industry/manufacturing
Governmenthttps://github.com/solutions/industry/government
View all industrieshttps://github.com/solutions/industry
View all solutionshttps://github.com/solutions
AIhttps://github.com/resources/articles?topic=ai
Software Developmenthttps://github.com/resources/articles?topic=software-development
DevOpshttps://github.com/resources/articles?topic=devops
Securityhttps://github.com/resources/articles?topic=security
View all topicshttps://github.com/resources/articles
Customer storieshttps://github.com/customer-stories
Events & webinarshttps://github.com/resources/events
Ebooks & reportshttps://github.com/resources/whitepapers
Business insightshttps://github.com/solutions/executive-insights
GitHub Skillshttps://skills.github.com
Documentationhttps://docs.github.com
Customer supporthttps://support.github.com
Community forumhttps://github.com/orgs/community/discussions
Trust centerhttps://github.com/trust-center
Partnershttps://github.com/partners
GitHub SponsorsFund open source developershttps://github.com/sponsors
Security Labhttps://securitylab.github.com
Maintainer Communityhttps://maintainers.github.com
Acceleratorhttps://github.com/accelerator
Archive Programhttps://archiveprogram.github.com
Topicshttps://github.com/topics
Trendinghttps://github.com/trending
Collectionshttps://github.com/collections
Enterprise platformAI-powered developer platformhttps://github.com/enterprise
GitHub Advanced SecurityEnterprise-grade security featureshttps://github.com/security/advanced-security
Copilot for BusinessEnterprise-grade AI featureshttps://github.com/features/copilot/copilot-business
Premium SupportEnterprise-grade 24/7 supporthttps://github.com/premium-support
Pricinghttps://github.com/pricing
Search syntax tipshttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
documentationhttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
Sign in https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2FSherlockGuo%2FKnowledgeGraphCourse
Sign up https://patch-diff.githubusercontent.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=SherlockGuo%2FKnowledgeGraphCourse
Reloadhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse
Reloadhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse
Reloadhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse
SherlockGuo https://patch-diff.githubusercontent.com/SherlockGuo
KnowledgeGraphCoursehttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse
npubird/KnowledgeGraphCoursehttps://patch-diff.githubusercontent.com/npubird/KnowledgeGraphCourse
Notifications https://patch-diff.githubusercontent.com/login?return_to=%2FSherlockGuo%2FKnowledgeGraphCourse
Fork 0 https://patch-diff.githubusercontent.com/login?return_to=%2FSherlockGuo%2FKnowledgeGraphCourse
Star 0 https://patch-diff.githubusercontent.com/login?return_to=%2FSherlockGuo%2FKnowledgeGraphCourse
0 stars https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/stargazers
1.1k forks https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/forks
Branches https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/branches
Tags https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/tags
Activity https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/activity
Star https://patch-diff.githubusercontent.com/login?return_to=%2FSherlockGuo%2FKnowledgeGraphCourse
Notifications https://patch-diff.githubusercontent.com/login?return_to=%2FSherlockGuo%2FKnowledgeGraphCourse
Code https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse
Pull requests 0 https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/pulls
Actions https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/actions
Projects 0 https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/projects
Security 0 https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/security
Insights https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/pulse
Code https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse
Pull requests https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/pulls
Actions https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/actions
Projects https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/projects
Security https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/security
Insights https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/pulse
Brancheshttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/branches
Tagshttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/tags
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/branches
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/tags
37 Commitshttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/commits/master/
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/commits/master/
README.mdhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/README.md
README.mdhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/README.md
pub-1知识图谱概论A.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAA.pdf
pub-1知识图谱概论A.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAA.pdf
pub-1知识图谱概论B.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAB.pdf
pub-1知识图谱概论B.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAB.pdf
pub-1知识图谱概论C.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAC.pdf
pub-1知识图谱概论C.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAC.pdf
pub-2知识表示.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-2%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA.pdf
pub-2知识表示.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-2%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA.pdf
pub-3知识建模.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-3%E7%9F%A5%E8%AF%86%E5%BB%BA%E6%A8%A1.pdf
pub-3知识建模.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-3%E7%9F%A5%E8%AF%86%E5%BB%BA%E6%A8%A1.pdf
pub-4知识抽取-问题和方法.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-4%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E9%97%AE%E9%A2%98%E5%92%8C%E6%96%B9%E6%B3%95.pdf
pub-4知识抽取-问题和方法.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-4%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E9%97%AE%E9%A2%98%E5%92%8C%E6%96%B9%E6%B3%95.pdf
pub-5知识抽取-数据获取.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E6%95%B0%E6%8D%AE%E8%8E%B7%E5%8F%96.pdf
pub-5知识抽取-数据获取.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E6%95%B0%E6%8D%AE%E8%8E%B7%E5%8F%96.pdf
pub-6知识抽取-实体识别.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-6%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB.pdf
pub-6知识抽取-实体识别.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-6%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB.pdf
pub-8知识抽取-事件抽取.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-8%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BA%8B%E4%BB%B6%E6%8A%BD%E5%8F%96.pdf
pub-8知识抽取-事件抽取.pdfhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-8%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BA%8B%E4%BB%B6%E6%8A%BD%E5%8F%96.pdf
READMEhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#a-systematic-course-about-knowledge-graph-for-graduate-students-interested-researchers-and-engineers
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#课程内容
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第1讲-知识图谱概论-2019-3-12019-3-8
partAhttps://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAA.pdf
partBhttps://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAB.pdf
partChttps://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAC.pdf
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第2讲-知识表示-2019-3-15
partAhttps://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-2%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA.pdf
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第3讲-知识建模-2019-3-152019-3-22
partAhttps://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-3%E7%9F%A5%E8%AF%86%E5%BB%BA%E6%A8%A1.pdf
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第4讲-知识抽取基础问题和方法2019-3-22
partAhttps://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-4%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E9%97%AE%E9%A2%98%E5%92%8C%E6%96%B9%E6%B3%95.pdf
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第5讲-知识抽取数据采集2019-3-29
partAhttps://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E6%95%B0%E6%8D%AE%E8%8E%B7%E5%8F%96.pdf
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第6讲-知识抽取实体识别2019-3-29
partAhttps://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-6%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB.pdf
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第7讲-知识抽取关系抽取2019-4-12
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第8讲-知识抽取事件抽取2019-3-29
partAhttps://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-8%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BA%8B%E4%BB%B6%E6%8A%BD%E5%8F%96.pdf
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#附录a经典文献选读
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#知识图谱构建
Knowledge vault: A web-scale approach to probabilistic knowledge fusionhttps://ai.google/research/pubs/pub45634.pdf
Yago: a core of semantic knowledgehttp://www2007.wwwconference.org/papers/paper391.pdf
YAGO2: A spatially and temporally enhanced knowledge base from Wikipediahttps://people.mpi-inf.mpg.de/~kberberi/publications/2013-ai.pdf
BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic networkhttp://web.informatik.uni-mannheim.de/ponzetto/pubs/navigli12b.pdf
Dbpedia: A nucleus for a web of open datahttp://editthis.info/images/swim/d/d8/Dbpedia_-_open_data.pdf
Never-ending learninghttps://dl.acm.org/ft_gateway.cfm?id=3191513&type=pdf
earlier workhttps://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewFile/1879/2201
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#知识表示和建模
Ontology Development 101: A Guide to Creating Your First Ontologyhttp://ftp.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness.pdf
another versionhttp://www.corais.org/sites/default/files/ontology_development_101_aguide_to_creating_your_first_ontology.pdf
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#知识抽取
Web-scale information extraction in knowitall:(preliminary results)http://www2004.org/proceedings/docs/1p100.pdf
Open information extraction from the webhttps://www.aaai.org/Papers/IJCAI/2007/IJCAI07-429.pdf
Information extractionhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.442.2007&rep=rep1&type=pdf
Identifying relations for open information extractionhttps://aclanthology.info/pdf/D/D11/D11-1142.pdf
Automatic knowledge extraction from documentshttp://brenocon.com/watson_special_issue/05%20automatic%20knowledge%20extration.pdf
Automatic acquisition of hyponyms from large text corporahttp://www.aclweb.org/anthology/C92-2082
A survey of named entity recognition and classificationhttps://www.jbe-platform.com/content/journals/10.1075/li.30.1.03nad
Neural architectures for named entity recognitionhttps://arxiv.org/pdf/1603.01360.pdf
Bidirectional LSTM-CRF models for sequence tagginghttps://arxiv.org/pdf/1508.01991.pdf
Graph ranking for collective named entity disambiguationhttp://www.aclweb.org/anthology/P14-2013
Named entity recognition through classifier combinationhttp://www.aclweb.org/anthology/W03-0425
Named entity recognition with bidirectional LSTM-CNNshttps://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00104
Learning multilingual named entity recognition from Wikipediahttps://www.sciencedirect.com/science/article/pii/S0004370212000276
Boosting named entity recognition with neural character embeddingshttps://arxiv.org/pdf/1505.05008
Domain adaptation of rule-based annotators for named-entity recognition taskshttp://www.aclweb.org/anthology/D10-1098
A survey of arabic named entity recognition and classificationhttps://www.mitpressjournals.org/doi/full/10.1162/COLI_a_00178
Ensemble learning for named entity recognitionhttps://svn.aksw.org/papers/2014/ISWC_EL4NER/public.pdf
Deep learning with word embeddings improves biomedical named entity recognitionhttps://academic.oup.com/bioinformatics/article/33/14/i37/3953940
Relation extraction and scoring in DeepQAhttp://brenocon.com/watson_special_issue/09%20relation%20extraction%20and%20scoring.pdf
Event extraction via dynamic multi-pooling convolutional neural networkshttp://www.aclweb.org/anthology/P15-1017
Event detection and domain adaptation with convolutional neural networkshttp://www.aclweb.org/anthology/P15-2060
An overview of event extraction from texthttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.369.7040&rep=rep1&type=pdf
Improving information extraction by acquiring external evidence with reinforcement learninghttps://arxiv.org/pdf/1603.07954.pdf
Joint event extraction via recurrent neural networkshttp://www.aclweb.org/anthology/N16-1034
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#知识融合
Ontology matching: state of the art and future challengeshttps://hal.inria.fr/hal-00917910/document
Algorithm and tool for automated ontology merging and alignmenthttps://www.aaai.org/Papers/AAAI/2000/AAAI00-069.pdf
COMA: a system for flexible combination of schema matching approacheshttp://www.vldb.org/conf/2002/S17P03.pdf
Learning to map between ontologies on the semantic webhttp://secs.ceas.uc.edu/~mazlack/CS716.f2006/Semantic.Web.Ontology.Papers/Doan.02.pdf
QOM–quick ontology mappinghttp://www.scs.carleton.ca/~armyunis/knowledge-managment/papers/QOM-Quick%20Ontology%20Mapping.pdf
Constructing virtual documents for ontology matchinghttps://www.researchgate.net/profile/Yuzhong_Qu/publication/221022499_Lecture_Notes_in_Computer_Science/links/5483bb9f0cf25dbd59eb0ff0/Lecture-Notes-in-Computer-Science.pdf
RiMOM: A dynamic multistrategy ontology alignment frameworkhttps://ieeexplore.ieee.org/abstract/document/4633358/
An adaptive ontology mapping approach with neural network based constraint satisfactionhttp://gesispanel.gesis.org/preprints/index.php/ps/article/download/209/368
Matching large ontologies: A divide-and-conquer approachhttp://dit.unitn.it/~p2p/RelatedWork/Matching/MatchingLargeOntologies.pdf
A blocking framework for entity resolution in highly heterogeneous information spaceshttp://disi.unitn.it/~themis/publications/erframework-tr12.pdf
Matching large ontologies based on reduction anchorshttps://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/download/3145/3697
An effective rule miner for instance matching in a web of datahttp://xingniu.org/pub/ruleminer_cikm12.pdf
A blocking framework for entity resolution in highly heterogeneous information spaceshttp://disi.unitn.it/~themis/publications/erframework-tr12.pdf
Large scale instance matching via multiple indexes and candidate selectionhttp://disi.unitn.it/~p2p/RelatedWork/Matching/KBS13-Li-et-al-large-instance.pdf
A self-training approach for resolving object coreference on the semantic webhttp://dit.unitn.it/~p2p/RelatedWork/Matching/A%20self-training%20approach_Hu_www11.pdf
A unified probabilistic framework for name disambiguation in digital libraryhttp://keg.cs.tsinghua.edu.cn/jietang/publications/TKDE12-Tang-Name-Disambiguation.pdf
Name Disambiguation in AMiner: Clustering, Maintenance, and Human in the Loophttp://keg.cs.tsinghua.edu.cn/jietang/publications/kdd18_yutao-AMiner-Name-Disambiguation.pdf
LIMES—a time-efficient approach for large-scale link discovery on the web of datahttps://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/viewFile/3125/3692
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#知识图谱嵌入
Knowledge graph embedding: A survey of approaches and applicationshttp://download.xuebalib.com/3at6CEQL3eBi.pdf
Translating embeddings for modeling multi-relational datahttp://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf
Distributed representations of words and phrases and their compositionalityhttps://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
Learning entity and relation embeddings for knowledge graph completionhttps://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9571/9523
Knowledge graph embedding by translating on hyperplaneshttps://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/viewFile/8531/8546
Knowledge graph and text jointly embeddinghttp://www.aclweb.org/anthology/D14-1167
Knowledge graph embedding via dynamic mapping matrixhttp://www.aclweb.org/anthology/P15-1067
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#知识推理知识挖掘
A Three-Way Model for Collective Learning on Multi-Relational Datahttp://www.cip.ifi.lmu.de/~nickel/data/slides-icml2011.pdf
Reasoning with neural tensor networks for knowledge base completionhttps://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
Relational retrieval using a combination of path-constrained random walkshttps://link.springer.com/content/pdf/10.1007/s10994-010-5205-8.pdf
Modeling relation paths for representation learning of knowledge baseshttp://www.emnlp2015.org/proceedings/EMNLP/pdf/EMNLP082.pdf
Incorporating vector space similarity in random walk inference over knowledge baseshttp://www.aclweb.org/anthology/D14-1044
DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoninghttp://www.aclweb.org/anthology/D17-1060
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#知识存储知识查询
Building an efficient RDF store over a relational databasehttps://www.researchgate.net/profile/Patrick_Dantressangle/publication/262162010_Building_an_efficient_RDF_store_over_a_relational_database/links/54f718680cf210398e9184bc/Building-an-efficient-RDF-store-over-a-relational-database.pdf
Scalable SPARQL querying of large RDF graphshttp://www.cs.umd.edu/~abadi/papers/sw-graph-scale.pdf
gStore: a graph-based SPARQL query enginehttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.386.7427&rep=rep1&type=pdf
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#人机交互
Introduction to “this is watson”https://ieeexplore.ieee.org/abstract/document/6177724/
Question analysis: How Watson reads a cluehttp://www.patwardhans.net/papers/LallyEtAl12.pdf
Commonsense Knowledge Aware Conversation Generation with Graph Attentionhttps://www.ijcai.org/proceedings/2018/0643.pdf
Building a large-scale multimodal knowledge base system for answering visual querieshttps://pdfs.semanticscholar.org/9563/d6fafb6ba09c082a57e8d9b31494029a45ac.pdf
Joint language and translation modeling with recurrent neural networkshttp://www.aclweb.org/anthology/D13-1106
Neural machine translation by jointly learning to align and translatehttps://arxiv.org/abs/1409.0473
Learning phrase representations using RNN encoder-decoder for statistical machine translationhttp://anthology.aclweb.org/D/D14/D14-1179.pdf
Empirical evaluation of gated recurrent neural networks on sequence modelinghttps://arxiv.org/abs/1412.3555
Generating sequences with recurrent neural networkshttps://arxiv.org/abs/1308.0850
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#附录b最新进展论文选读近1年内
Finding Descriptive Support Passages for Knowledge Graph Relationshipshttp://sumitbhatia.net/papers/iswc18.pdf
Representativeness of Knowledge Bases with the Generalized Benford’s Lawhttps://a3nm.net/work/seminar/slides/20181115-soulet.pdf
Towards Empty Answers in SPARQL: Approximating Querying with RDF Embeddinghttps://link.springer.com/chapter/10.1007/978-3-030-00671-6_30
Canonicalisation of monotone SPARQL querieshttps://link.springer.com/chapter/10.1007/978-3-030-00671-6_35
Ontology Driven Extraction of Research Processeshttps://pages.cs.aueb.gr/ipl/nlp/pubs/iswc2018.pdf
Using link features for entity clustering in knowledge graphshttps://dbs.uni-leipzig.de/file/eswc_0.pdf
Modeling relational data with graph convolutional networkshttps://arxiv.org/pdf/1703.06103
The Design and Implementation of XiaoIce, an Empathetic Social Chatbothttps://arxiv.org/pdf/1812.08989
HyTE: Hyperplane-based Temporally aware Knowledge Graph Embeddinghttp://www.aclweb.org/anthology/D18-1225
EARL: Joint entity and relation linking for question answering over knowledge graphshttps://arxiv.org/pdf/1801.03825
Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignmenthttp://yellowstone.cs.ucla.edu/~muhao/slides/kdcoe.pdf
Impact analysis of data placement strategies on query efforts in distributed rdf storeshttp://mail.websemanticsjournal.org/preprints/index.php/ps/article/view/516/533
FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluationhttps://arxiv.org/pdf/1810.10147
Sequence-to-Sequence Data Augmentation for Dialogue Language Understandinghttp://www.aclweb.org/anthology/C18-1105
Adversarial Domain Adaptation for Variational Neural Language Generation in Dialogue Systemshttp://www.aclweb.org/anthology/C18-1103
Context-Sensitive Generation of Open-Domain Conversational Responseshttp://www.aclweb.org/anthology/C18-1206
Sentiment Adaptive End-to-End Dialog Systemshttp://www.aclweb.org/anthology/P18-1140
Personalizing Dialogue Agents: I have a dog, do you have pets too?http://www.aclweb.org/anthology/P18-1205
Task-oriented dialogue system for automatic diagnosishttp://www.aclweb.org/anthology/P18-2033
Conversation Model Fine-Tuning for Classifying Client Utterances in Counseling Dialogueshttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#实体识别
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#acl
Parvez M R, Chakraborty S, Ray B, et al. Building language models for text with named entities[J]. arXiv preprint arXiv:1805.04836, 2018.https://arxiv.org/pdf/1805.04836.pdf
Lin Y, Yang S, Stoyanov V, et al. A multi-lingual multi-task architecture for low-resource sequence labeling[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018, 1: 799-809.http://www.aclweb.org/anthology/P18-1074
Xu H, Liu B, Shu L, et al. Double embeddings and cnn-based sequence labeling for aspect extraction[J]. arXiv preprint arXiv:1805.04601, 2018.https://arxiv.org/pdf/1805.04601.pdf
Ye Z X, Ling Z H. Hybrid semi-markov crf for neural sequence labeling[J]. arXiv preprint arXiv:1805.03838, 2018.https://arxiv.org/pdf/1805.03838.pdf
Yang J, Zhang Y. Ncrf++: An open-source neural sequence labeling toolkit[J]. arXiv preprint arXiv:1806.05626, 2018.https://arxiv.org/pdf/1806.05626.pdf
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#naacl
Ju M, Miwa M, Ananiadou S. A neural layered model for nested named entity recognition[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 2018, 1: 1446-1459.http://www.aclweb.org/anthology/N18-1131
Wang Z, Qu Y, Chen L, et al. Label-aware double transfer learning for cross-specialty medical named entity recognition[J]. arXiv preprint arXiv:1804.09021, 2018.https://arxiv.org/pdf/1804.09021.pdf
Moon S, Neves L, Carvalho V. Multimodal named entity recognition for short social ../media posts[J]. arXiv preprint arXiv:1802.07862, 2018.https://arxiv.org/pdf/1802.07862.pdf
Katiyar A, Cardie C. Nested named entity recognition revisited[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 2018, 1: 861-871.http://www.aclweb.org/anthology/N18-1079
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#emnlp
Cao P, Chen Y, Liu K, et al. Adversarial Transfer Learning for Chinese Named Entity Recognition with Self-Attention Mechanism[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 182-192.http://www.aclweb.org/anthology/D18-1017
Xie J, Yang Z, Neubig G, et al. Neural cross-lingual named entity recognition with minimal resources[J]. arXiv preprint arXiv:1808.09861, 2018.https://arxiv.org/pdf/1808.09861.pdf
Lin B Y, Lu W. Neural adaptation layers for cross-domain named entity recognition[J]. arXiv preprint arXiv:1810.06368, 2018.https://arxiv.org/pdf/1810.06368.pdf
Shang J, Liu L, Ren X, et al. Learning Named Entity Tagger using Domain-Specific Dictionary[J]. arXiv preprint arXiv:1809.03599, 2018.https://arxiv.org/pdf/1809.03599.pdf
Greenberg N, Bansal T, Verga P, et al. Marginal Likelihood Training of BiLSTM-CRF for Biomedical Named Entity Recognition from Disjoint Label Sets[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 2824-2829.http://www.aclweb.org/anthology/D18-1306
Sohrab M G, Miwa M. Deep Exhaustive Model for Nested Named Entity Recognition[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 2843-2849.http://www.aclweb.org/anthology/D18-1309
Yu X, Mayhew S, Sammons M, et al. On the Strength of Character Language Models for Multilingual Named Entity Recognition[J]. arXiv preprint arXiv:1809.05157, 2018.https://arxiv.org/pdf/1809.05157.pdf
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#coling
Mai K, Pham T H, Nguyen M T, et al. An empirical study on fine-grained named entity recognition[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 711-722.http://www.aclweb.org/anthology/C18-1060
Nagesh A, Surdeanu M. An Exploration of Three Lightly-supervised Representation Learning Approaches for Named Entity Classification[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 2312-2324.http://www.aclweb.org/anthology/C18-1196
Bhutani N, Qian K, Li Y, et al. Exploiting Structure in Representation of Named Entities using Active Learning[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 687-699.http://www.aclweb.org/anthology/C18-1058
Yadav V, Bethard S. A survey on recent advances in named entity recognition from deep learning models[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 2145-2158.http://www.aclweb.org/anthology/C18-1182
Güngör O, Üsküdarlı S, Güngör T. Improving Named Entity Recognition by Jointly Learning to Disambiguate Morphological Tags[J]. arXiv preprint arXiv:1807.06683, 2018.https://arxiv.org/pdf/1807.06683.pdf
Chen L, Moschitti A. Learning to Progressively Recognize New Named Entities with Sequence to Sequence Models[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 2181-2191.http://www.aclweb.org/anthology/C18-1185
Ghaddar A, Langlais P. Robust lexical features for improved neural network named-entity recognition[J]. arXiv preprint arXiv:1806.03489, 2018.https://arxiv.org/pdf/1806.03489.pdf
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#事件抽取
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#acl-1
Choubey P K, Huang R. Improving Event Coreference Resolution by Modeling Correlations between Event Coreference Chains and Document Topic Structures[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018, 1: 485-495.http://www.aclweb.org/anthology/P18-1045
Lin H, Lu Y, Han X, et al. Nugget Proposal Networks for Chinese Event Detection[J]. arXiv preprint arXiv:1805.00249, 2018.https://arxiv.org/pdf/1805.00249.pdf
Huang L, Ji H, Cho K, et al. Zero-shot transfer learning for event extraction[J]. arXiv preprint arXiv:1707.01066, 2017.https://arxiv.org/pdf/1707.01066.pdf
Hong Y, Zhou W, Zhang J, et al. Self-regulation: Employing a Generative Adversarial Network to Improve Event Detection[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018, 1: 515-526.http://www.aclweb.org/anthology/P18-1048
Zhao Y, Jin X, Wang Y, et al. Document embedding enhanced event detection with hierarchical and supervised attention[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2018, 2: 414-419.http://www.aclweb.org/anthology/P18-2066
Yang H, Chen Y, Liu K, et al. DCFEE: A Document-level Chinese Financial Event Extraction System based on Automatically Labeled Training Data[J]. Proceedings of ACL 2018, System Demonstrations, 2018: 50-55.http://www.aclweb.org/anthology/P18-4009
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#naacl-1
Ferguson J, Lockard C, Weld D S, et al. Semi-Supervised Event Extraction with Paraphrase Clusters[J]. arXiv preprint arXiv:1808.08622, 2018.https://arxiv.org/pdf/1808.08622.pdf
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#emnlp-1
Orr J W, Tadepalli P, Fern X. Event Detection with Neural Networks: A Rigorous Empirical Evaluation[J]. arXiv preprint arXiv:1808.08504, 2018.https://arxiv.org/pdf/1808.08504.pdf
Liu S, Cheng R, Yu X, et al. Exploiting Contextual Information via Dynamic Memory Network for Event Detection[J]. arXiv preprint arXiv:1810.03449, 2018.https://arxiv.org/pdf/1810.03449.pdf
Liu X, Luo Z, Huang H. Jointly multiple events extraction via attention-based graph information aggregation[J]. arXiv preprint arXiv:1809.09078, 2018.https://arxiv.org/pdf/1809.09078.pdf
Chen Y, Yang H, Liu K, et al. Collective Event Detection via a Hierarchical and Bias Tagging Networks with Gated Multi-level Attention Mechanisms[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 1267-1276.http://www.aclweb.org/anthology/D18-1158
Lu W, Nguyen T H. Similar but not the Same: Word Sense Disambiguation Improves Event Detection via Neural Representation Matching[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 4822-4828.http://www.aclweb.org/anthology/D18-1517
https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#coling-1
Araki J, Mitamura T. Open-Domain Event Detection using Distant Supervision[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 878-891.http://www.aclweb.org/anthology/C18-1075
Muis A O, Otani N, Vyas N, et al. Low-resource Cross-lingual Event Type Detection via Distant Supervision with Minimal Effort[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 70-82.http://www.aclweb.org/anthology/C18-1007
Kazeminejad G, Bonial C, Brown S W, et al. Automatically Extracting Qualia Relations for the Rich Event Ontology[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 2644-2652.http://www.aclweb.org/anthology/C18-1224
Liu Z, Mitamura T, Hovy E. Graph-Based Decoding for Event Sequencing and Coreference Resolution[J]. arXiv preprint arXiv:1806.05099, 2018.https://arxiv.org/pdf/1806.05099.pdf
Readme https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#readme-ov-file
Please reload this pagehttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse
Activityhttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/activity
0 starshttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/stargazers
0 watchinghttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/watchers
0 forkshttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/forks
Report repository https://patch-diff.githubusercontent.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2FSherlockGuo%2FKnowledgeGraphCourse&report=SherlockGuo+%28user%29
Releaseshttps://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/releases
Packages 0https://patch-diff.githubusercontent.com/users/SherlockGuo/packages?repo_name=KnowledgeGraphCourse
https://github.com
Termshttps://docs.github.com/site-policy/github-terms/github-terms-of-service
Privacyhttps://docs.github.com/site-policy/privacy-policies/github-privacy-statement
Securityhttps://github.com/security
Statushttps://www.githubstatus.com/
Communityhttps://github.community/
Docshttps://docs.github.com/
Contacthttps://support.github.com?tags=dotcom-footer

Viewport: width=device-width


URLs of crawlers that visited me.