| Skip to content | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#start-of-content |
|
| https://patch-diff.githubusercontent.com/ |
|
Sign in
| https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2FSherlockGuo%2FKnowledgeGraphCourse |
| GitHub CopilotWrite better code with AI | https://github.com/features/copilot |
| GitHub SparkBuild and deploy intelligent apps | https://github.com/features/spark |
| GitHub ModelsManage and compare prompts | https://github.com/features/models |
| MCP RegistryNewIntegrate external tools | https://github.com/mcp |
| ActionsAutomate any workflow | https://github.com/features/actions |
| CodespacesInstant dev environments | https://github.com/features/codespaces |
| IssuesPlan and track work | https://github.com/features/issues |
| Code ReviewManage code changes | https://github.com/features/code-review |
| GitHub Advanced SecurityFind and fix vulnerabilities | https://github.com/security/advanced-security |
| Code securitySecure your code as you build | https://github.com/security/advanced-security/code-security |
| Secret protectionStop leaks before they start | https://github.com/security/advanced-security/secret-protection |
| Why GitHub | https://github.com/why-github |
| Documentation | https://docs.github.com |
| Blog | https://github.blog |
| Changelog | https://github.blog/changelog |
| Marketplace | https://github.com/marketplace |
| View all features | https://github.com/features |
| Enterprises | https://github.com/enterprise |
| Small and medium teams | https://github.com/team |
| Startups | https://github.com/enterprise/startups |
| Nonprofits | https://github.com/solutions/industry/nonprofits |
| App Modernization | https://github.com/solutions/use-case/app-modernization |
| DevSecOps | https://github.com/solutions/use-case/devsecops |
| DevOps | https://github.com/solutions/use-case/devops |
| CI/CD | https://github.com/solutions/use-case/ci-cd |
| View all use cases | https://github.com/solutions/use-case |
| Healthcare | https://github.com/solutions/industry/healthcare |
| Financial services | https://github.com/solutions/industry/financial-services |
| Manufacturing | https://github.com/solutions/industry/manufacturing |
| Government | https://github.com/solutions/industry/government |
| View all industries | https://github.com/solutions/industry |
| View all solutions | https://github.com/solutions |
| AI | https://github.com/resources/articles?topic=ai |
| Software Development | https://github.com/resources/articles?topic=software-development |
| DevOps | https://github.com/resources/articles?topic=devops |
| Security | https://github.com/resources/articles?topic=security |
| View all topics | https://github.com/resources/articles |
| Customer stories | https://github.com/customer-stories |
| Events & webinars | https://github.com/resources/events |
| Ebooks & reports | https://github.com/resources/whitepapers |
| Business insights | https://github.com/solutions/executive-insights |
| GitHub Skills | https://skills.github.com |
| Documentation | https://docs.github.com |
| Customer support | https://support.github.com |
| Community forum | https://github.com/orgs/community/discussions |
| Trust center | https://github.com/trust-center |
| Partners | https://github.com/partners |
| GitHub SponsorsFund open source developers | https://github.com/sponsors |
| Security Lab | https://securitylab.github.com |
| Maintainer Community | https://maintainers.github.com |
| Accelerator | https://github.com/accelerator |
| Archive Program | https://archiveprogram.github.com |
| Topics | https://github.com/topics |
| Trending | https://github.com/trending |
| Collections | https://github.com/collections |
| Enterprise platformAI-powered developer platform | https://github.com/enterprise |
| GitHub Advanced SecurityEnterprise-grade security features | https://github.com/security/advanced-security |
| Copilot for BusinessEnterprise-grade AI features | https://github.com/features/copilot/copilot-business |
| Premium SupportEnterprise-grade 24/7 support | https://github.com/premium-support |
| Pricing | https://github.com/pricing |
| Search syntax tips | https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax |
| documentation | https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax |
|
Sign in
| https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2FSherlockGuo%2FKnowledgeGraphCourse |
|
Sign up
| https://patch-diff.githubusercontent.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=SherlockGuo%2FKnowledgeGraphCourse |
| Reload | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse |
| Reload | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse |
| Reload | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse |
|
SherlockGuo
| https://patch-diff.githubusercontent.com/SherlockGuo |
| KnowledgeGraphCourse | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse |
| npubird/KnowledgeGraphCourse | https://patch-diff.githubusercontent.com/npubird/KnowledgeGraphCourse |
|
Notifications
| https://patch-diff.githubusercontent.com/login?return_to=%2FSherlockGuo%2FKnowledgeGraphCourse |
|
Fork
0
| https://patch-diff.githubusercontent.com/login?return_to=%2FSherlockGuo%2FKnowledgeGraphCourse |
|
Star
0
| https://patch-diff.githubusercontent.com/login?return_to=%2FSherlockGuo%2FKnowledgeGraphCourse |
|
0
stars
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/stargazers |
|
1.1k
forks
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/forks |
|
Branches
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/branches |
|
Tags
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/tags |
|
Activity
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/activity |
|
Star
| https://patch-diff.githubusercontent.com/login?return_to=%2FSherlockGuo%2FKnowledgeGraphCourse |
|
Notifications
| https://patch-diff.githubusercontent.com/login?return_to=%2FSherlockGuo%2FKnowledgeGraphCourse |
|
Code
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse |
|
Pull requests
0
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/pulls |
|
Actions
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/actions |
|
Projects
0
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/projects |
|
Security
0
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/security |
|
Insights
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/pulse |
|
Code
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse |
|
Pull requests
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/pulls |
|
Actions
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/actions |
|
Projects
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/projects |
|
Security
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/security |
|
Insights
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/pulse |
| Branches | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/branches |
| Tags | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/tags |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/branches |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/tags |
| 37 Commits | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/commits/master/ |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/commits/master/ |
| README.md | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/README.md |
| README.md | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/README.md |
| pub-1知识图谱概论A.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAA.pdf |
| pub-1知识图谱概论A.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAA.pdf |
| pub-1知识图谱概论B.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAB.pdf |
| pub-1知识图谱概论B.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAB.pdf |
| pub-1知识图谱概论C.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAC.pdf |
| pub-1知识图谱概论C.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAC.pdf |
| pub-2知识表示.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-2%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA.pdf |
| pub-2知识表示.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-2%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA.pdf |
| pub-3知识建模.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-3%E7%9F%A5%E8%AF%86%E5%BB%BA%E6%A8%A1.pdf |
| pub-3知识建模.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-3%E7%9F%A5%E8%AF%86%E5%BB%BA%E6%A8%A1.pdf |
| pub-4知识抽取-问题和方法.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-4%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E9%97%AE%E9%A2%98%E5%92%8C%E6%96%B9%E6%B3%95.pdf |
| pub-4知识抽取-问题和方法.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-4%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E9%97%AE%E9%A2%98%E5%92%8C%E6%96%B9%E6%B3%95.pdf |
| pub-5知识抽取-数据获取.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E6%95%B0%E6%8D%AE%E8%8E%B7%E5%8F%96.pdf |
| pub-5知识抽取-数据获取.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E6%95%B0%E6%8D%AE%E8%8E%B7%E5%8F%96.pdf |
| pub-6知识抽取-实体识别.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-6%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB.pdf |
| pub-6知识抽取-实体识别.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-6%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB.pdf |
| pub-8知识抽取-事件抽取.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-8%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BA%8B%E4%BB%B6%E6%8A%BD%E5%8F%96.pdf |
| pub-8知识抽取-事件抽取.pdf | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master/pub-8%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BA%8B%E4%BB%B6%E6%8A%BD%E5%8F%96.pdf |
| README | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#a-systematic-course-about-knowledge-graph-for-graduate-students-interested-researchers-and-engineers |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#课程内容 |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第1讲-知识图谱概论-2019-3-12019-3-8 |
| partA | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAA.pdf |
| partB | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAB.pdf |
| partC | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E6%A6%82%E8%AE%BAC.pdf |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第2讲-知识表示-2019-3-15 |
| partA | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-2%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA.pdf |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第3讲-知识建模-2019-3-152019-3-22 |
| partA | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-3%E7%9F%A5%E8%AF%86%E5%BB%BA%E6%A8%A1.pdf |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第4讲-知识抽取基础问题和方法2019-3-22 |
| partA | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-4%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E9%97%AE%E9%A2%98%E5%92%8C%E6%96%B9%E6%B3%95.pdf |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第5讲-知识抽取数据采集2019-3-29 |
| partA | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E6%95%B0%E6%8D%AE%E8%8E%B7%E5%8F%96.pdf |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第6讲-知识抽取实体识别2019-3-29 |
| partA | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-6%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB.pdf |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第7讲-知识抽取关系抽取2019-4-12 |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#第8讲-知识抽取事件抽取2019-3-29 |
| partA | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-8%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BA%8B%E4%BB%B6%E6%8A%BD%E5%8F%96.pdf |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#附录a经典文献选读 |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#知识图谱构建 |
| Knowledge vault: A web-scale approach to probabilistic knowledge fusion | https://ai.google/research/pubs/pub45634.pdf |
| Yago: a core of semantic knowledge | http://www2007.wwwconference.org/papers/paper391.pdf |
| YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia | https://people.mpi-inf.mpg.de/~kberberi/publications/2013-ai.pdf |
| BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network | http://web.informatik.uni-mannheim.de/ponzetto/pubs/navigli12b.pdf |
| Dbpedia: A nucleus for a web of open data | http://editthis.info/images/swim/d/d8/Dbpedia_-_open_data.pdf |
| Never-ending learning | https://dl.acm.org/ft_gateway.cfm?id=3191513&type=pdf |
| earlier work | https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewFile/1879/2201 |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#知识表示和建模 |
| Ontology Development 101: A Guide to Creating Your First Ontology | http://ftp.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness.pdf |
| another version | http://www.corais.org/sites/default/files/ontology_development_101_aguide_to_creating_your_first_ontology.pdf |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#知识抽取 |
| Web-scale information extraction in knowitall:(preliminary results) | http://www2004.org/proceedings/docs/1p100.pdf |
| Open information extraction from the web | https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-429.pdf |
| Information extraction | http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.442.2007&rep=rep1&type=pdf |
| Identifying relations for open information extraction | https://aclanthology.info/pdf/D/D11/D11-1142.pdf |
| Automatic knowledge extraction from documents | http://brenocon.com/watson_special_issue/05%20automatic%20knowledge%20extration.pdf |
| Automatic acquisition of hyponyms from large text corpora | http://www.aclweb.org/anthology/C92-2082 |
| A survey of named entity recognition and classification | https://www.jbe-platform.com/content/journals/10.1075/li.30.1.03nad |
| Neural architectures for named entity recognition | https://arxiv.org/pdf/1603.01360.pdf |
| Bidirectional LSTM-CRF models for sequence tagging | https://arxiv.org/pdf/1508.01991.pdf |
| Graph ranking for collective named entity disambiguation | http://www.aclweb.org/anthology/P14-2013 |
| Named entity recognition through classifier combination | http://www.aclweb.org/anthology/W03-0425 |
| Named entity recognition with bidirectional LSTM-CNNs | https://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00104 |
| Learning multilingual named entity recognition from Wikipedia | https://www.sciencedirect.com/science/article/pii/S0004370212000276 |
| Boosting named entity recognition with neural character embeddings | https://arxiv.org/pdf/1505.05008 |
| Domain adaptation of rule-based annotators for named-entity recognition tasks | http://www.aclweb.org/anthology/D10-1098 |
| A survey of arabic named entity recognition and classification | https://www.mitpressjournals.org/doi/full/10.1162/COLI_a_00178 |
| Ensemble learning for named entity recognition | https://svn.aksw.org/papers/2014/ISWC_EL4NER/public.pdf |
| Deep learning with word embeddings improves biomedical named entity recognition | https://academic.oup.com/bioinformatics/article/33/14/i37/3953940 |
| Relation extraction and scoring in DeepQA | http://brenocon.com/watson_special_issue/09%20relation%20extraction%20and%20scoring.pdf |
| Event extraction via dynamic multi-pooling convolutional neural networks | http://www.aclweb.org/anthology/P15-1017 |
| Event detection and domain adaptation with convolutional neural networks | http://www.aclweb.org/anthology/P15-2060 |
| An overview of event extraction from text | http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.369.7040&rep=rep1&type=pdf |
| Improving information extraction by acquiring external evidence with reinforcement learning | https://arxiv.org/pdf/1603.07954.pdf |
| Joint event extraction via recurrent neural networks | http://www.aclweb.org/anthology/N16-1034 |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#知识融合 |
| Ontology matching: state of the art and future challenges | https://hal.inria.fr/hal-00917910/document |
| Algorithm and tool for automated ontology merging and alignment | https://www.aaai.org/Papers/AAAI/2000/AAAI00-069.pdf |
| COMA: a system for flexible combination of schema matching approaches | http://www.vldb.org/conf/2002/S17P03.pdf |
| Learning to map between ontologies on the semantic web | http://secs.ceas.uc.edu/~mazlack/CS716.f2006/Semantic.Web.Ontology.Papers/Doan.02.pdf |
| QOM–quick ontology mapping | http://www.scs.carleton.ca/~armyunis/knowledge-managment/papers/QOM-Quick%20Ontology%20Mapping.pdf |
| Constructing virtual documents for ontology matching | https://www.researchgate.net/profile/Yuzhong_Qu/publication/221022499_Lecture_Notes_in_Computer_Science/links/5483bb9f0cf25dbd59eb0ff0/Lecture-Notes-in-Computer-Science.pdf |
| RiMOM: A dynamic multistrategy ontology alignment framework | https://ieeexplore.ieee.org/abstract/document/4633358/ |
| An adaptive ontology mapping approach with neural network based constraint satisfaction | http://gesispanel.gesis.org/preprints/index.php/ps/article/download/209/368 |
| Matching large ontologies: A divide-and-conquer approach | http://dit.unitn.it/~p2p/RelatedWork/Matching/MatchingLargeOntologies.pdf |
| A blocking framework for entity resolution in highly heterogeneous information spaces | http://disi.unitn.it/~themis/publications/erframework-tr12.pdf |
| Matching large ontologies based on reduction anchors | https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/download/3145/3697 |
| An effective rule miner for instance matching in a web of data | http://xingniu.org/pub/ruleminer_cikm12.pdf |
| A blocking framework for entity resolution in highly heterogeneous information spaces | http://disi.unitn.it/~themis/publications/erframework-tr12.pdf |
| Large scale instance matching via multiple indexes and candidate selection | http://disi.unitn.it/~p2p/RelatedWork/Matching/KBS13-Li-et-al-large-instance.pdf |
| A self-training approach for resolving object coreference on the semantic web | http://dit.unitn.it/~p2p/RelatedWork/Matching/A%20self-training%20approach_Hu_www11.pdf |
| A unified probabilistic framework for name disambiguation in digital library | http://keg.cs.tsinghua.edu.cn/jietang/publications/TKDE12-Tang-Name-Disambiguation.pdf |
| Name Disambiguation in AMiner: Clustering, Maintenance, and Human in the Loop | http://keg.cs.tsinghua.edu.cn/jietang/publications/kdd18_yutao-AMiner-Name-Disambiguation.pdf |
| LIMES—a time-efficient approach for large-scale link discovery on the web of data | https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/viewFile/3125/3692 |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#知识图谱嵌入 |
| Knowledge graph embedding: A survey of approaches and applications | http://download.xuebalib.com/3at6CEQL3eBi.pdf |
| Translating embeddings for modeling multi-relational data | http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf |
| Distributed representations of words and phrases and their compositionality | https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf |
| Learning entity and relation embeddings for knowledge graph completion | https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9571/9523 |
| Knowledge graph embedding by translating on hyperplanes | https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/viewFile/8531/8546 |
| Knowledge graph and text jointly embedding | http://www.aclweb.org/anthology/D14-1167 |
| Knowledge graph embedding via dynamic mapping matrix | http://www.aclweb.org/anthology/P15-1067 |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#知识推理知识挖掘 |
| A Three-Way Model for Collective Learning on Multi-Relational Data | http://www.cip.ifi.lmu.de/~nickel/data/slides-icml2011.pdf |
| Reasoning with neural tensor networks for knowledge base completion | https://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf |
| Relational retrieval using a combination of path-constrained random walks | https://link.springer.com/content/pdf/10.1007/s10994-010-5205-8.pdf |
| Modeling relation paths for representation learning of knowledge bases | http://www.emnlp2015.org/proceedings/EMNLP/pdf/EMNLP082.pdf |
| Incorporating vector space similarity in random walk inference over knowledge bases | http://www.aclweb.org/anthology/D14-1044 |
| DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning | http://www.aclweb.org/anthology/D17-1060 |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#知识存储知识查询 |
| Building an efficient RDF store over a relational database | https://www.researchgate.net/profile/Patrick_Dantressangle/publication/262162010_Building_an_efficient_RDF_store_over_a_relational_database/links/54f718680cf210398e9184bc/Building-an-efficient-RDF-store-over-a-relational-database.pdf |
| Scalable SPARQL querying of large RDF graphs | http://www.cs.umd.edu/~abadi/papers/sw-graph-scale.pdf |
| gStore: a graph-based SPARQL query engine | http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.386.7427&rep=rep1&type=pdf |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#人机交互 |
| Introduction to “this is watson” | https://ieeexplore.ieee.org/abstract/document/6177724/ |
| Question analysis: How Watson reads a clue | http://www.patwardhans.net/papers/LallyEtAl12.pdf |
| Commonsense Knowledge Aware Conversation Generation with Graph Attention | https://www.ijcai.org/proceedings/2018/0643.pdf |
| Building a large-scale multimodal knowledge base system for answering visual queries | https://pdfs.semanticscholar.org/9563/d6fafb6ba09c082a57e8d9b31494029a45ac.pdf |
| Joint language and translation modeling with recurrent neural networks | http://www.aclweb.org/anthology/D13-1106 |
| Neural machine translation by jointly learning to align and translate | https://arxiv.org/abs/1409.0473 |
| Learning phrase representations using RNN encoder-decoder for statistical machine translation | http://anthology.aclweb.org/D/D14/D14-1179.pdf |
| Empirical evaluation of gated recurrent neural networks on sequence modeling | https://arxiv.org/abs/1412.3555 |
| Generating sequences with recurrent neural networks | https://arxiv.org/abs/1308.0850 |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#附录b最新进展论文选读近1年内 |
| Finding Descriptive Support Passages for Knowledge Graph Relationships | http://sumitbhatia.net/papers/iswc18.pdf |
| Representativeness of Knowledge Bases with the Generalized Benford’s Law | https://a3nm.net/work/seminar/slides/20181115-soulet.pdf |
| Towards Empty Answers in SPARQL: Approximating Querying with RDF Embedding | https://link.springer.com/chapter/10.1007/978-3-030-00671-6_30 |
| Canonicalisation of monotone SPARQL queries | https://link.springer.com/chapter/10.1007/978-3-030-00671-6_35 |
| Ontology Driven Extraction of Research Processes | https://pages.cs.aueb.gr/ipl/nlp/pubs/iswc2018.pdf |
| Using link features for entity clustering in knowledge graphs | https://dbs.uni-leipzig.de/file/eswc_0.pdf |
| Modeling relational data with graph convolutional networks | https://arxiv.org/pdf/1703.06103 |
| The Design and Implementation of XiaoIce, an Empathetic Social Chatbot | https://arxiv.org/pdf/1812.08989 |
| HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding | http://www.aclweb.org/anthology/D18-1225 |
| EARL: Joint entity and relation linking for question answering over knowledge graphs | https://arxiv.org/pdf/1801.03825 |
| Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment | http://yellowstone.cs.ucla.edu/~muhao/slides/kdcoe.pdf |
| Impact analysis of data placement strategies on query efforts in distributed rdf stores | http://mail.websemanticsjournal.org/preprints/index.php/ps/article/view/516/533 |
| FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation | https://arxiv.org/pdf/1810.10147 |
| Sequence-to-Sequence Data Augmentation for Dialogue Language Understanding | http://www.aclweb.org/anthology/C18-1105 |
| Adversarial Domain Adaptation for Variational Neural Language Generation in Dialogue Systems | http://www.aclweb.org/anthology/C18-1103 |
| Context-Sensitive Generation of Open-Domain Conversational Responses | http://www.aclweb.org/anthology/C18-1206 |
| Sentiment Adaptive End-to-End Dialog Systems | http://www.aclweb.org/anthology/P18-1140 |
| Personalizing Dialogue Agents: I have a dog, do you have pets too? | http://www.aclweb.org/anthology/P18-1205 |
| Task-oriented dialogue system for automatic diagnosis | http://www.aclweb.org/anthology/P18-2033 |
| Conversation Model Fine-Tuning for Classifying Client Utterances in Counseling Dialogues | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/blob/master |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#实体识别 |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#acl |
| Parvez M R, Chakraborty S, Ray B, et al. Building language models for text with named entities[J]. arXiv preprint arXiv:1805.04836, 2018. | https://arxiv.org/pdf/1805.04836.pdf |
| Lin Y, Yang S, Stoyanov V, et al. A multi-lingual multi-task architecture for low-resource sequence labeling[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018, 1: 799-809. | http://www.aclweb.org/anthology/P18-1074 |
| Xu H, Liu B, Shu L, et al. Double embeddings and cnn-based sequence labeling for aspect extraction[J]. arXiv preprint arXiv:1805.04601, 2018. | https://arxiv.org/pdf/1805.04601.pdf |
| Ye Z X, Ling Z H. Hybrid semi-markov crf for neural sequence labeling[J]. arXiv preprint arXiv:1805.03838, 2018. | https://arxiv.org/pdf/1805.03838.pdf |
| Yang J, Zhang Y. Ncrf++: An open-source neural sequence labeling toolkit[J]. arXiv preprint arXiv:1806.05626, 2018. | https://arxiv.org/pdf/1806.05626.pdf |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#naacl |
| Ju M, Miwa M, Ananiadou S. A neural layered model for nested named entity recognition[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 2018, 1: 1446-1459. | http://www.aclweb.org/anthology/N18-1131 |
| Wang Z, Qu Y, Chen L, et al. Label-aware double transfer learning for cross-specialty medical named entity recognition[J]. arXiv preprint arXiv:1804.09021, 2018. | https://arxiv.org/pdf/1804.09021.pdf |
| Moon S, Neves L, Carvalho V. Multimodal named entity recognition for short social ../media posts[J]. arXiv preprint arXiv:1802.07862, 2018. | https://arxiv.org/pdf/1802.07862.pdf |
| Katiyar A, Cardie C. Nested named entity recognition revisited[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 2018, 1: 861-871. | http://www.aclweb.org/anthology/N18-1079 |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#emnlp |
| Cao P, Chen Y, Liu K, et al. Adversarial Transfer Learning for Chinese Named Entity Recognition with Self-Attention Mechanism[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 182-192. | http://www.aclweb.org/anthology/D18-1017 |
| Xie J, Yang Z, Neubig G, et al. Neural cross-lingual named entity recognition with minimal resources[J]. arXiv preprint arXiv:1808.09861, 2018. | https://arxiv.org/pdf/1808.09861.pdf |
| Lin B Y, Lu W. Neural adaptation layers for cross-domain named entity recognition[J]. arXiv preprint arXiv:1810.06368, 2018. | https://arxiv.org/pdf/1810.06368.pdf |
| Shang J, Liu L, Ren X, et al. Learning Named Entity Tagger using Domain-Specific Dictionary[J]. arXiv preprint arXiv:1809.03599, 2018. | https://arxiv.org/pdf/1809.03599.pdf |
| Greenberg N, Bansal T, Verga P, et al. Marginal Likelihood Training of BiLSTM-CRF for Biomedical Named Entity Recognition from Disjoint Label Sets[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 2824-2829. | http://www.aclweb.org/anthology/D18-1306 |
| Sohrab M G, Miwa M. Deep Exhaustive Model for Nested Named Entity Recognition[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 2843-2849. | http://www.aclweb.org/anthology/D18-1309 |
| Yu X, Mayhew S, Sammons M, et al. On the Strength of Character Language Models for Multilingual Named Entity Recognition[J]. arXiv preprint arXiv:1809.05157, 2018. | https://arxiv.org/pdf/1809.05157.pdf |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#coling |
| Mai K, Pham T H, Nguyen M T, et al. An empirical study on fine-grained named entity recognition[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 711-722. | http://www.aclweb.org/anthology/C18-1060 |
| Nagesh A, Surdeanu M. An Exploration of Three Lightly-supervised Representation Learning Approaches for Named Entity Classification[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 2312-2324. | http://www.aclweb.org/anthology/C18-1196 |
| Bhutani N, Qian K, Li Y, et al. Exploiting Structure in Representation of Named Entities using Active Learning[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 687-699. | http://www.aclweb.org/anthology/C18-1058 |
| Yadav V, Bethard S. A survey on recent advances in named entity recognition from deep learning models[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 2145-2158. | http://www.aclweb.org/anthology/C18-1182 |
| Güngör O, Üsküdarlı S, Güngör T. Improving Named Entity Recognition by Jointly Learning to Disambiguate Morphological Tags[J]. arXiv preprint arXiv:1807.06683, 2018. | https://arxiv.org/pdf/1807.06683.pdf |
| Chen L, Moschitti A. Learning to Progressively Recognize New Named Entities with Sequence to Sequence Models[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 2181-2191. | http://www.aclweb.org/anthology/C18-1185 |
| Ghaddar A, Langlais P. Robust lexical features for improved neural network named-entity recognition[J]. arXiv preprint arXiv:1806.03489, 2018. | https://arxiv.org/pdf/1806.03489.pdf |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#事件抽取 |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#acl-1 |
| Choubey P K, Huang R. Improving Event Coreference Resolution by Modeling Correlations between Event Coreference Chains and Document Topic Structures[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018, 1: 485-495. | http://www.aclweb.org/anthology/P18-1045 |
| Lin H, Lu Y, Han X, et al. Nugget Proposal Networks for Chinese Event Detection[J]. arXiv preprint arXiv:1805.00249, 2018. | https://arxiv.org/pdf/1805.00249.pdf |
| Huang L, Ji H, Cho K, et al. Zero-shot transfer learning for event extraction[J]. arXiv preprint arXiv:1707.01066, 2017. | https://arxiv.org/pdf/1707.01066.pdf |
| Hong Y, Zhou W, Zhang J, et al. Self-regulation: Employing a Generative Adversarial Network to Improve Event Detection[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018, 1: 515-526. | http://www.aclweb.org/anthology/P18-1048 |
| Zhao Y, Jin X, Wang Y, et al. Document embedding enhanced event detection with hierarchical and supervised attention[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2018, 2: 414-419. | http://www.aclweb.org/anthology/P18-2066 |
| Yang H, Chen Y, Liu K, et al. DCFEE: A Document-level Chinese Financial Event Extraction System based on Automatically Labeled Training Data[J]. Proceedings of ACL 2018, System Demonstrations, 2018: 50-55. | http://www.aclweb.org/anthology/P18-4009 |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#naacl-1 |
| Ferguson J, Lockard C, Weld D S, et al. Semi-Supervised Event Extraction with Paraphrase Clusters[J]. arXiv preprint arXiv:1808.08622, 2018. | https://arxiv.org/pdf/1808.08622.pdf |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#emnlp-1 |
| Orr J W, Tadepalli P, Fern X. Event Detection with Neural Networks: A Rigorous Empirical Evaluation[J]. arXiv preprint arXiv:1808.08504, 2018. | https://arxiv.org/pdf/1808.08504.pdf |
| Liu S, Cheng R, Yu X, et al. Exploiting Contextual Information via Dynamic Memory Network for Event Detection[J]. arXiv preprint arXiv:1810.03449, 2018. | https://arxiv.org/pdf/1810.03449.pdf |
| Liu X, Luo Z, Huang H. Jointly multiple events extraction via attention-based graph information aggregation[J]. arXiv preprint arXiv:1809.09078, 2018. | https://arxiv.org/pdf/1809.09078.pdf |
| Chen Y, Yang H, Liu K, et al. Collective Event Detection via a Hierarchical and Bias Tagging Networks with Gated Multi-level Attention Mechanisms[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 1267-1276. | http://www.aclweb.org/anthology/D18-1158 |
| Lu W, Nguyen T H. Similar but not the Same: Word Sense Disambiguation Improves Event Detection via Neural Representation Matching[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 4822-4828. | http://www.aclweb.org/anthology/D18-1517 |
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#coling-1 |
| Araki J, Mitamura T. Open-Domain Event Detection using Distant Supervision[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 878-891. | http://www.aclweb.org/anthology/C18-1075 |
| Muis A O, Otani N, Vyas N, et al. Low-resource Cross-lingual Event Type Detection via Distant Supervision with Minimal Effort[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 70-82. | http://www.aclweb.org/anthology/C18-1007 |
| Kazeminejad G, Bonial C, Brown S W, et al. Automatically Extracting Qualia Relations for the Rich Event Ontology[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 2644-2652. | http://www.aclweb.org/anthology/C18-1224 |
| Liu Z, Mitamura T, Hovy E. Graph-Based Decoding for Event Sequencing and Coreference Resolution[J]. arXiv preprint arXiv:1806.05099, 2018. | https://arxiv.org/pdf/1806.05099.pdf |
|
Readme
| https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse#readme-ov-file |
| Please reload this page | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse |
|
Activity | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/activity |
|
0
stars | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/stargazers |
|
0
watching | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/watchers |
|
0
forks | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/forks |
|
Report repository
| https://patch-diff.githubusercontent.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2FSherlockGuo%2FKnowledgeGraphCourse&report=SherlockGuo+%28user%29 |
| Releases | https://patch-diff.githubusercontent.com/SherlockGuo/KnowledgeGraphCourse/releases |
| Packages
0 | https://patch-diff.githubusercontent.com/users/SherlockGuo/packages?repo_name=KnowledgeGraphCourse |
|
| https://github.com |
| Terms | https://docs.github.com/site-policy/github-terms/github-terms-of-service |
| Privacy | https://docs.github.com/site-policy/privacy-policies/github-privacy-statement |
| Security | https://github.com/security |
| Status | https://www.githubstatus.com/ |
| Community | https://github.community/ |
| Docs | https://docs.github.com/ |
| Contact | https://support.github.com?tags=dotcom-footer |