Title: Add tweet ranking algorithm documentation and optimization guide by Copilot · Pull Request #1 · ScriptSynth/the-algorithm · GitHub
Open Graph Title: Add tweet ranking algorithm documentation and optimization guide by Copilot · Pull Request #1 · ScriptSynth/the-algorithm
X Title: Add tweet ranking algorithm documentation and optimization guide by Copilot · Pull Request #1 · ScriptSynth/the-algorithm
Description: Repository lacked user-facing documentation explaining how the ranking algorithm works and how to optimize content for it. Documentation Added docs/TWEET_RANKING_GUIDE.md (796 lines) - Complete technical breakdown of the ranking pipeline: 6-stage architecture: candidate generation → feature hydration → ML scoring → filtering → reranking → mixing ~6,000 features per candidate (author, content, engagement, graph, temporal) ML models: Heavy Ranker (Navi), Light Ranker, Phoenix scorer In-network vs out-of-network handling (OON gets 0.75x penalty) Practical optimization strategies for content creators Implementation guide for building similar systems with code examples docs/RANKING_QUICK_REFERENCE.md (299 lines) - Concise reference: Ranking signal impact table (likes/retweets/replies = high, "not interested" = very negative) Best practices and anti-patterns Minimal viable ranker implementation Key metrics to track README.md - Added "Understanding Tweet Ranking" section with links to guides Key Technical Details Documented Pipeline narrows ~1B tweets → ~100 shown via multi-stage filtering Candidate sources: Earlybird (in-network), UTEG (graph-based), TweetMixer (blended), FRS (follow recs) Feature systems: SimClusters, TwHIN embeddings, Real Graph, TweepCred Scoring uses multi-task neural networks predicting engagement probabilities Diversity filters enforce author balance, content variety, deduplication Example of simplified ranker from guide: def rank_content(user_id, candidates): scored = [] for item in candidates: recency = 1.0 / (1 + hours_since_post(item)) engagement = (item.likes + 2*item.retweets + 3*item.replies) / (1 + item.impressions) relevance = compute_relevance(user_id, item) score = 0.3*recency + 0.4*engagement + 0.3*relevance scored.append((item, score)) scored.sort(key=lambda x: x[1], reverse=True) return [item for item, score in scored[:100]] Targets two audiences: content creators optimizing for algorithmic reach, and engineers building recommendation systems. ✨ Let Copilot coding agent set things up for you — coding agent works faster and does higher quality work when set up for your repo.
Open Graph Description: Repository lacked user-facing documentation explaining how the ranking algorithm works and how to optimize content for it. Documentation Added docs/TWEET_RANKING_GUIDE.md (796 lines) - Complete t...
X Description: Repository lacked user-facing documentation explaining how the ranking algorithm works and how to optimize content for it. Documentation Added docs/TWEET_RANKING_GUIDE.md (796 lines) - Complete t...
Opengraph URL: https://github.com/ScriptSynth/the-algorithm/pull/1
X: @github
Domain: patch-diff.githubusercontent.com
| route-pattern | /:user_id/:repository/pull/:id/files(.:format) |
| route-controller | pull_requests |
| route-action | files |
| fetch-nonce | v2:b2f8a3ad-fe7e-f9c4-d881-70429cbc714e |
| current-catalog-service-hash | ae870bc5e265a340912cde392f23dad3671a0a881730ffdadd82f2f57d81641b |
| request-id | E86E:1291CA:F775A:155DFF:698EF531 |
| html-safe-nonce | d946f6af91310d8d34760fd963cb392203a4ac891eb916caf9b29b429a3d2f7f |
| visitor-payload | eyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJFODZFOjEyOTFDQTpGNzc1QToxNTVERkY6Njk4RUY1MzEiLCJ2aXNpdG9yX2lkIjoiODMyNjc2NTgwMjc2Mjk5MDg5NyIsInJlZ2lvbl9lZGdlIjoiaWFkIiwicmVnaW9uX3JlbmRlciI6ImlhZCJ9 |
| visitor-hmac | e5eba647bba057c1f0c9c0bb039d51c67f7d7d86567d868dcbc6cb4b2ca05cdb |
| hovercard-subject-tag | pull_request:3227335079 |
| github-keyboard-shortcuts | repository,pull-request-list,pull-request-conversation,pull-request-files-changed,copilot |
| google-site-verification | Apib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I |
| octolytics-url | https://collector.github.com/github/collect |
| analytics-location | / |
| fb:app_id | 1401488693436528 |
| apple-itunes-app | app-id=1477376905, app-argument=https://github.com/ScriptSynth/the-algorithm/pull/1/files |
| twitter:image | https://avatars.githubusercontent.com/in/1143301?s=400&v=4 |
| twitter:card | summary_large_image |
| og:image | https://avatars.githubusercontent.com/in/1143301?s=400&v=4 |
| og:image:alt | Repository lacked user-facing documentation explaining how the ranking algorithm works and how to optimize content for it. Documentation Added docs/TWEET_RANKING_GUIDE.md (796 lines) - Complete t... |
| og:site_name | GitHub |
| og:type | object |
| hostname | github.com |
| expected-hostname | github.com |
| None | 7f7bf82d8907f81525d95af82e60354b419d083df9534c8631d06bb9c0bf07ac |
| turbo-cache-control | no-preview |
| diff-view | unified |
| go-import | github.com/ScriptSynth/the-algorithm git https://github.com/ScriptSynth/the-algorithm.git |
| octolytics-dimension-user_id | 211514415 |
| octolytics-dimension-user_login | ScriptSynth |
| octolytics-dimension-repository_id | 1145888800 |
| octolytics-dimension-repository_nwo | ScriptSynth/the-algorithm |
| octolytics-dimension-repository_public | true |
| octolytics-dimension-repository_is_fork | true |
| octolytics-dimension-repository_parent_id | 619859161 |
| octolytics-dimension-repository_parent_nwo | twitter/the-algorithm |
| octolytics-dimension-repository_network_root_id | 619859161 |
| octolytics-dimension-repository_network_root_nwo | twitter/the-algorithm |
| turbo-body-classes | logged-out env-production page-responsive full-width |
| disable-turbo | true |
| browser-stats-url | https://api.github.com/_private/browser/stats |
| browser-errors-url | https://api.github.com/_private/browser/errors |
| release | bc36007ff5167349dcfee9a75c7fa7184ab272c4 |
| ui-target | full |
| theme-color | #1e2327 |
| color-scheme | light dark |
Links:
Viewport: width=device-width