Title: zero sequence impedance of transformer · PowerGridModel · Discussion #72 · GitHub
Open Graph Title: zero sequence impedance of transformer · PowerGridModel · Discussion #72
X Title: zero sequence impedance of transformer · PowerGridModel · Discussion #72
Description: zero sequence impedance of transformer
Open Graph Description: How is a transformer modeled for zero sequence? There's no way to specify R0 and X0 as for a line.
X Description: How is a transformer modeled for zero sequence? There's no way to specify R0 and X0 as for a line.
Opengraph URL: https://github.com/orgs/PowerGridModel/discussions/72
X: @github
Domain: patch-diff.githubusercontent.com
{"@context":"https://schema.org","@type":"QAPage","mainEntity":{"@type":"Question","name":"zero sequence impedance of transformer","text":"How is a transformer modeled for zero sequence? There's no way to specify R0 and X0 as for a line.
","upvoteCount":1,"answerCount":2,"acceptedAnswer":{"@type":"Answer","text":"To start with positive and negative sequence admittance is modelled from the transformer rating in a pi model with each leg equal.
\nSimply put, zero sequence parameters are modelled equally as positive sequence parameters in transformers in pi model with extra conditions as follows:
\n\n- The grounding admittance is added to zero sequence based on whether ground is available or not.
\n- The admittances are added at respective ends only if the winding permits so. ie. there is a Yn or Zn connection. For rest the admittance is zero.
\nDetailed explanation of a any branch's modelling is below. (Skip to zero sequence for your question.) \n
\n\nNomenclature
\n\n- \n
$Y_{se} =$ series admittance
\n \n- \n
$Y_{sh} =$ shunt admittance
\n \n- \n
$k =$ branch transformation ratio (Turns ratio for transformer)
\n \n- \n
$\\phi =$ branch phase shift (Winding clock configuration for transformer)
\n \n- \n
$Z_{g,from}=$ grounding impedance at from side
\n \n- \n
$Z_{g,to}=$ grounding impedance at to side
\n \n- \n
$Y_{1,se} =$ positive sequence series admittance
\n \n- \n
$Y_{1,sh} =$ positive sequence shunt admittance
\n \n- \n
$Y_{0,se} =$ zero sequence series admittance
\n \n- \n
$Y_{0,sh} =$ zero sequence shunt admittance
\n \n
\nSymmetric modelling for any branch in PGM
\nConnected branches
\npi-model for all branches in PGM
\n$$Y_{ff} = \\frac{(Y_{se} + 0.5 * Y_{sh})}{k^2}$$ \n$$Y_{ft} = -\\frac{Y_{se}}{k} \\cdot e^{-j\\phi}$$ \n$$Y_{tf} = -\\frac{Y_{se}}{k} \\cdot e^{j\\phi}$$ \n$$Y_{tt} = Y_{se} + 0.5 * Y_{sh}$$
\nFrom side disconnected
\n$$Y_{tt} = 0.5 * Y_{sh} + \\frac{1}{(\\frac{1}{Y_{se}} + \\frac{1}{0.5 * Y_{sh}})}$$ \n$$Y_{ff} = Y_{ft} = Y_{tf} = 0$$
\nTo side disconnected
\n$$Y_{ff} = \\frac{0.5 * Y_{sh}}{k^2} + \\frac{1}{(\\frac{1}{Y_{se}} + \\frac{1}{0.5 * Y_{sh}})}$$ \n$$Y_{tt} = Y_{ft} = Y_{tf} = 0$$
\nAsymmetric Modelling for Transformers
\nPositive sequence
\nSame as symmetrical modelling with following:
\n$Y_{se} = Y_{1,se} $
\n$Y_{sh} = Y_{1,sh} $
\n$\\phi = \\phi_1$
\nNegative sequence
\nSame as symmetrical modelling with following:
\n$Y_{se} = Y_{1,se} $
\n$Y_{sh} = Y_{1,sh} $
\n$\\phi = - \\phi_1$
\nZero Sequence
\nZero sequence admittances for a transformer depends on the winding configuration.
\nYNyn
\nSame as symmetrical modelling with following:
\n$Y_{se} = \\frac{1}{\\frac{1}{Y_{1,se}} + 3 \\cdot ( Z_{g,to} + \\frac{Z_{g,from}}{k^2})}$
\n$Y_{sh} = Y_{1,sh} $
\n$\\phi = 180^\\circ$ if winding connections are configured with clocks 2, 6, 10 otherwise $\\phi = 0$
\nYNd
\n$Y_{ff} = \\frac{1}{k^2} \\cdot (\\frac{1}{\\frac{1}{Y_{1,se}} + 3 \\cdot \\frac{Z_{g,from}}{k^2}} + Y_{1,sh})$
\n(If from side is connected otherwise $Y_{ff}=0$ )
\n$$Y_{tt} = Y_{ft} = Y_{tf} = 0$$
\nDyn
\n$Y_{tt} = \\frac{1}{\\frac{1}{Y_{1,se}} + 3 \\cdot Z_{g,to}} + Y_{1,sh}$
\n(If to side is connected otherwise $Y_{tt}=0$ )
\n$$Y_{ff} = Y_{ft} = Y_{tf} = 0$$
\nZN*
\n$Y_{ff} = \\frac{1}{k^2} \\cdot (\\frac{1}{\\frac{1}{Y_{1,se}} * 0.1 + 3 \\cdot \\frac{Z_{g,from}}{k^2}})$
\n(If from side is connected otherwise $Y_{ff}=0$ )
\n$$Y_{tt} = Y_{ft} = Y_{tf} = 0$$
\n(Note: Zero sequence impedance of zigzag winding is approximately 10% of positive sequence impedance)
\n*zn
\n$Y_{tt} = \\frac{1}{\\frac{1}{Y_{1,se}} * 0.1 + 3 \\cdot Z_{g,to}}$
\n(If to side is connected otherwise $Y_{tt}=0$ )
\n$$Y_{ff} = Y_{ft} = Y_{tf} = 0$$
\nAll other winding configurations
\n$$Y_{ff} =Y_{tt} = Y_{ft} = Y_{tf} = 0$$
\nPhase wise admittances
\nEventually these sequences admittances are converted into three phase values (012 -> abc) as PGM's solver operates on the phase domain.
","upvoteCount":4,"url":"https://github.com/orgs/PowerGridModel/discussions/72#discussioncomment-14860375"}}}
| route-pattern | /_view_fragments/Voltron::DiscussionsFragmentsController/show/orgs/:org/:discussion_number/discussion_layout(.:format) |
| route-controller | voltron_discussions_fragments |
| route-action | discussion_layout |
| fetch-nonce | v2:fa0c9a60-f7e1-86c5-5403-c0d39bac8f85 |
| current-catalog-service-hash | 9f0abe34da433c9b6db74bffa2466494a717b579a96b30a5d252e5090baea7be |
| request-id | DF8E:6F1CB:2629F:2F194:698EB414 |
| html-safe-nonce | 950e46a443127ce31dcee2d7699bc11d21ba3e49cedc2975a9a36ebb8e10983d |
| visitor-payload | eyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJERjhFOjZGMUNCOjI2MjlGOjJGMTk0OjY5OEVCNDE0IiwidmlzaXRvcl9pZCI6IjcwMjE1ODUxNDc3MTI0MTg4MzYiLCJyZWdpb25fZWRnZSI6ImlhZCIsInJlZ2lvbl9yZW5kZXIiOiJpYWQifQ== |
| visitor-hmac | 5af9ad0629a726a925d7df3b4edbcd56659c36b44c0a235b7069c2e99ac3fbb4 |
| hovercard-subject-tag | discussion:9092552 |
| github-keyboard-shortcuts | repository,copilot |
| google-site-verification | Apib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I |
| octolytics-url | https://collector.github.com/github/collect |
| analytics-location | / |
| fb:app_id | 1401488693436528 |
| apple-itunes-app | app-id=1477376905, app-argument=https://github.com/_view_fragments/Voltron::DiscussionsFragmentsController/show/orgs/PowerGridModel/72/discussion_layout |
| twitter:image | https://opengraph.githubassets.com/ab238d66871dc0f9f7279eb35f7f8fac4d898b957b9d6841f4d46f32fa88d04f/orgs/PowerGridModel/discussions/72 |
| twitter:card | summary_large_image |
| og:image | https://opengraph.githubassets.com/ab238d66871dc0f9f7279eb35f7f8fac4d898b957b9d6841f4d46f32fa88d04f/orgs/PowerGridModel/discussions/72 |
| og:image:alt | How is a transformer modeled for zero sequence? There's no way to specify R0 and X0 as for a line. |
| og:image:width | 1200 |
| og:image:height | 600 |
| og:site_name | GitHub |
| og:type | object |
| hostname | github.com |
| expected-hostname | github.com |
| None | cb2828a801ee6b7be618f3ac76fbf55def35bbc30f053a9c41bf90210b8b72ba |
| turbo-cache-control | no-preview |
| octolytics-dimension-user_id | 128388838 |
| octolytics-dimension-user_login | PowerGridModel |
| octolytics-dimension-repository_id | 616883724 |
| octolytics-dimension-repository_nwo | PowerGridModel/.github |
| octolytics-dimension-repository_public | true |
| octolytics-dimension-repository_is_fork | false |
| octolytics-dimension-repository_network_root_id | 616883724 |
| octolytics-dimension-repository_network_root_nwo | PowerGridModel/.github |
| turbo-body-classes | logged-out env-production page-responsive |
| disable-turbo | false |
| browser-stats-url | https://api.github.com/_private/browser/stats |
| browser-errors-url | https://api.github.com/_private/browser/errors |
| release | e6b91a7e6e46287d26887e3fb7a4161657bab8f7 |
| ui-target | full |
| theme-color | #1e2327 |
| color-scheme | light dark |
Links:
Viewport: width=device-width