René's URL Explorer Experiment


Title: GitHub - PerformanceEstimation/PEPit: PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

Open Graph Title: GitHub - PerformanceEstimation/PEPit: PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

X Title: GitHub - PerformanceEstimation/PEPit: PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

Description: PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods. - PerformanceEstimation/PEPit

Open Graph Description: PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods. - PerformanceEstimation/PEPit

X Description: PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods. - PerformanceEstimation/PEPit

Opengraph URL: https://github.com/PerformanceEstimation/PEPit

X: @github

direct link

Domain: patch-diff.githubusercontent.com

route-pattern/:user_id/:repository
route-controllerfiles
route-actiondisambiguate
fetch-noncev2:428bdf61-d9f4-9df6-c982-75ef0b99b6d1
current-catalog-service-hashf3abb0cc802f3d7b95fc8762b94bdcb13bf39634c40c357301c4aa1d67a256fb
request-idE704:302CF5:3F63F71:56E92F7:698CC117
html-safe-noncee49d879ca2e6a2f527d63feddc251d9c4338250042b97397ed49bc16a7e60153
visitor-payloadeyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJFNzA0OjMwMkNGNTozRjYzRjcxOjU2RTkyRjc6Njk4Q0MxMTciLCJ2aXNpdG9yX2lkIjoiODQ2NjU5NzU1MTIzNDkyNDgyMyIsInJlZ2lvbl9lZGdlIjoiaWFkIiwicmVnaW9uX3JlbmRlciI6ImlhZCJ9
visitor-hmac6823b36d68361612c9bf7ae36a54e7fe8e4c39c36639d43bb449521735d28e29
hovercard-subject-tagrepository:374828876
github-keyboard-shortcutsrepository,copilot
google-site-verificationApib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I
octolytics-urlhttps://collector.github.com/github/collect
analytics-location//
fb:app_id1401488693436528
apple-itunes-appapp-id=1477376905, app-argument=https://github.com/PerformanceEstimation/PEPit
twitter:imagehttps://opengraph.githubassets.com/17ddbb82ebbcb2cf4af81eded9834afa00ec80fc65a632d718e3a2165aa8785b/PerformanceEstimation/PEPit
twitter:cardsummary_large_image
og:imagehttps://opengraph.githubassets.com/17ddbb82ebbcb2cf4af81eded9834afa00ec80fc65a632d718e3a2165aa8785b/PerformanceEstimation/PEPit
og:image:altPEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods. - PerformanceEstimation/PEPit
og:image:width1200
og:image:height600
og:site_nameGitHub
og:typeobject
hostnamegithub.com
expected-hostnamegithub.com
None640eeb7b6ff4d8d106235d228c0c286e82592d4d2403227b5b2b4fc5832297a4
turbo-cache-controlno-preview
go-importgithub.com/PerformanceEstimation/PEPit git https://github.com/PerformanceEstimation/PEPit.git
octolytics-dimension-user_id100099370
octolytics-dimension-user_loginPerformanceEstimation
octolytics-dimension-repository_id374828876
octolytics-dimension-repository_nwoPerformanceEstimation/PEPit
octolytics-dimension-repository_publictrue
octolytics-dimension-repository_is_forkfalse
octolytics-dimension-repository_network_root_id374828876
octolytics-dimension-repository_network_root_nwoPerformanceEstimation/PEPit
turbo-body-classeslogged-out env-production page-responsive
disable-turbofalse
browser-stats-urlhttps://api.github.com/_private/browser/stats
browser-errors-urlhttps://api.github.com/_private/browser/errors
release3d444f0a47beeeac94cddbb51c91ab408befe8d4
ui-targetfull
theme-color#1e2327
color-schemelight dark

Links:

Skip to contenthttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#start-of-content
https://patch-diff.githubusercontent.com/
Sign in https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2FPerformanceEstimation%2FPEPit
GitHub CopilotWrite better code with AIhttps://github.com/features/copilot
GitHub SparkBuild and deploy intelligent appshttps://github.com/features/spark
GitHub ModelsManage and compare promptshttps://github.com/features/models
MCP RegistryNewIntegrate external toolshttps://github.com/mcp
ActionsAutomate any workflowhttps://github.com/features/actions
CodespacesInstant dev environmentshttps://github.com/features/codespaces
IssuesPlan and track workhttps://github.com/features/issues
Code ReviewManage code changeshttps://github.com/features/code-review
GitHub Advanced SecurityFind and fix vulnerabilitieshttps://github.com/security/advanced-security
Code securitySecure your code as you buildhttps://github.com/security/advanced-security/code-security
Secret protectionStop leaks before they starthttps://github.com/security/advanced-security/secret-protection
Why GitHubhttps://github.com/why-github
Documentationhttps://docs.github.com
Bloghttps://github.blog
Changeloghttps://github.blog/changelog
Marketplacehttps://github.com/marketplace
View all featureshttps://github.com/features
Enterpriseshttps://github.com/enterprise
Small and medium teamshttps://github.com/team
Startupshttps://github.com/enterprise/startups
Nonprofitshttps://github.com/solutions/industry/nonprofits
App Modernizationhttps://github.com/solutions/use-case/app-modernization
DevSecOpshttps://github.com/solutions/use-case/devsecops
DevOpshttps://github.com/solutions/use-case/devops
CI/CDhttps://github.com/solutions/use-case/ci-cd
View all use caseshttps://github.com/solutions/use-case
Healthcarehttps://github.com/solutions/industry/healthcare
Financial serviceshttps://github.com/solutions/industry/financial-services
Manufacturinghttps://github.com/solutions/industry/manufacturing
Governmenthttps://github.com/solutions/industry/government
View all industrieshttps://github.com/solutions/industry
View all solutionshttps://github.com/solutions
AIhttps://github.com/resources/articles?topic=ai
Software Developmenthttps://github.com/resources/articles?topic=software-development
DevOpshttps://github.com/resources/articles?topic=devops
Securityhttps://github.com/resources/articles?topic=security
View all topicshttps://github.com/resources/articles
Customer storieshttps://github.com/customer-stories
Events & webinarshttps://github.com/resources/events
Ebooks & reportshttps://github.com/resources/whitepapers
Business insightshttps://github.com/solutions/executive-insights
GitHub Skillshttps://skills.github.com
Documentationhttps://docs.github.com
Customer supporthttps://support.github.com
Community forumhttps://github.com/orgs/community/discussions
Trust centerhttps://github.com/trust-center
Partnershttps://github.com/partners
GitHub SponsorsFund open source developershttps://github.com/sponsors
Security Labhttps://securitylab.github.com
Maintainer Communityhttps://maintainers.github.com
Acceleratorhttps://github.com/accelerator
Archive Programhttps://archiveprogram.github.com
Topicshttps://github.com/topics
Trendinghttps://github.com/trending
Collectionshttps://github.com/collections
Enterprise platformAI-powered developer platformhttps://github.com/enterprise
GitHub Advanced SecurityEnterprise-grade security featureshttps://github.com/security/advanced-security
Copilot for BusinessEnterprise-grade AI featureshttps://github.com/features/copilot/copilot-business
Premium SupportEnterprise-grade 24/7 supporthttps://github.com/premium-support
Pricinghttps://github.com/pricing
Search syntax tipshttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
documentationhttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
Sign in https://patch-diff.githubusercontent.com/login?return_to=https%3A%2F%2Fgithub.com%2FPerformanceEstimation%2FPEPit
Sign up https://patch-diff.githubusercontent.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=PerformanceEstimation%2FPEPit
Reloadhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit
Reloadhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit
Reloadhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit
PerformanceEstimation https://patch-diff.githubusercontent.com/PerformanceEstimation
PEPithttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit
Notifications https://patch-diff.githubusercontent.com/login?return_to=%2FPerformanceEstimation%2FPEPit
Fork 16 https://patch-diff.githubusercontent.com/login?return_to=%2FPerformanceEstimation%2FPEPit
Star 98 https://patch-diff.githubusercontent.com/login?return_to=%2FPerformanceEstimation%2FPEPit
pepit.readthedocs.io/en/latest/https://pepit.readthedocs.io/en/latest/
MIT license https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/LICENSE
98 stars https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/stargazers
16 forks https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/forks
Branches https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/branches
Tags https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/tags
Activity https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/activity
Star https://patch-diff.githubusercontent.com/login?return_to=%2FPerformanceEstimation%2FPEPit
Notifications https://patch-diff.githubusercontent.com/login?return_to=%2FPerformanceEstimation%2FPEPit
Code https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit
Issues 2 https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/issues
Pull requests 4 https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/pulls
Discussions https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/discussions
Actions https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/actions
Projects 0 https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/projects
Security 0 https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/security
Insights https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/pulse
Code https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit
Issues https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/issues
Pull requests https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/pulls
Discussions https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/discussions
Actions https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/actions
Projects https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/projects
Security https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/security
Insights https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/pulse
Brancheshttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/branches
Tagshttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/tags
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/branches
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/tags
1,135 Commitshttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/commits/master/
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/commits/master/
.github/workflowshttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/tree/master/.github/workflows
.github/workflowshttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/tree/master/.github/workflows
PEPithttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/tree/master/PEPit
PEPithttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/tree/master/PEPit
docshttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/tree/master/docs
docshttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/tree/master/docs
ressources/demohttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/tree/master/ressources/demo
ressources/demohttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/tree/master/ressources/demo
testshttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/tree/master/tests
testshttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/tree/master/tests
.gitignorehttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/.gitignore
.gitignorehttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/.gitignore
.readthedocs.yamlhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/.readthedocs.yaml
.readthedocs.yamlhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/.readthedocs.yaml
LICENSEhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/LICENSE
LICENSEhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/LICENSE
README.mdhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/README.md
README.mdhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/README.md
codecov.yamlhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/codecov.yaml
codecov.yamlhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/codecov.yaml
pyproject.tomlhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/pyproject.toml
pyproject.tomlhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/pyproject.toml
requirements.txthttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/requirements.txt
requirements.txthttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/requirements.txt
setup.cfghttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/setup.cfg
setup.cfghttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/setup.cfg
setup.pyhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/setup.py
setup.pyhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/blob/master/setup.py
READMEhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit
MIT licensehttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#pepit-performance-estimation-in-python
https://github.com/PerformanceEstimation/PEPit/actions
https://codecov.io/gh/PerformanceEstimation/PEPit
https://pepit.readthedocs.io/en/latest/?badge=latest
https://pypi.python.org/pypi/PEPit/
https://pepy.tech/project/pepit
https://github.com/PerformanceEstimation/PEPit/blob/master/LICENSE
blog posthttps://francisbach.com/computer-aided-analyses/
PESTOhttps://github.com/AdrienTaylor/Performance-Estimation-Toolbox
https://pepit.readthedocs.io/https://pepit.readthedocs.io/en/latest/
https://github.com/PerformanceEstimation/PEPithttps://github.com/PerformanceEstimation/PEPit
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#using-and-citing-the-toolbox
referencehttps://arxiv.org/pdf/2201.04040.pdf
https://colab.research.google.com/github/PerformanceEstimation/PEPit/blob/master/ressources/demo/PEPit_demo.ipynb
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#demo-
notebookhttps://github.com/PerformanceEstimation/PEPit/blob/master/ressources/demo/PEPit_demo.ipynb
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#installation
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#pip-installation
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#post-installation-check
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#online-environment
https://mybinder.org/v2/gh/PerformanceEstimation/PEPit/HEAD
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#example
Exampleshttps://pepit.readthedocs.io/en/latest/examples.html
GradientMethodhttps://pepit.readthedocs.io/en/latest/examples/a.html#gradient-descent
https://render.githubusercontent.com/render/math?math=N
https://render.githubusercontent.com/render/math?math=f(x_N)-f_\star
https://render.githubusercontent.com/render/math?math=x_N
https://render.githubusercontent.com/render/math?math=\|x_0-x_\star\|=1
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#included-tools
stepshttps://pepit.readthedocs.io/en/latest/api/steps.html
Inexact gradient stephttps://pepit.readthedocs.io/en/latest/api/steps.html#inexact-gradient-step
Exact line-search stephttps://pepit.readthedocs.io/en/latest/api/steps.html#exact-line-search-step
Proximal stephttps://pepit.readthedocs.io/en/latest/api/steps.html#proximal-step
Inexact proximal stephttps://pepit.readthedocs.io/en/latest/api/steps.html#inexact-proximal-step
Bregman gradient stephttps://pepit.readthedocs.io/en/latest/api/steps.html#bregman-gradient-step
Bregman proximal stephttps://pepit.readthedocs.io/en/latest/api/steps.html#bregman-proximal-step
Linear optimization stephttps://pepit.readthedocs.io/en/latest/api/steps.html#linear-optimization-step
Linearly shifted optimization stephttps://pepit.readthedocs.io/en/latest/api/steps.html#linearly-shifted-optimization-step
Epsilon-subgradient stephttps://pepit.readthedocs.io/en/latest/api/steps.html#epsilon-subgradient-step
function classeshttps://pepit.readthedocs.io/en/latest/api/functions.html
Convexhttps://pepit.readthedocs.io/en/latest/api/functions.html#convex
Strongly convexhttps://pepit.readthedocs.io/en/latest/api/functions.html#strongly-convex
Smoothhttps://pepit.readthedocs.io/en/latest/api/functions.html#smooth
Convex and smoothhttps://pepit.readthedocs.io/en/latest/api/functions.html#convex-and-smooth
Convex and block-smoothhttps://pepit.readthedocs.io/en/latest/api/functions.htmlconvex-and-smooth-by-block
stronger varianthttps://pepit.readthedocs.io/en/latest/api/functions.html#convex-and-smooth-by-block-refined-expensive-version
Strongly convex and smoothhttps://pepit.readthedocs.io/en/latest/api/functions.html#strongly-convex-and-smooth
Convex and Lipschitz continuoushttps://pepit.readthedocs.io/en/latest/api/functions.html#convex-and-lipschitz-continuous
Convex indicatorhttps://pepit.readthedocs.io/en/latest/api/functions.html#convex-indicator
Convex supporthttps://pepit.readthedocs.io/en/latest/api/functions.html#convex-support-functions
Convex quadratically growinghttps://pepit.readthedocs.io/en/latest/api/functions.html#convex-and-quadratically-upper-bounded
Functions verifying restricted secant inequality and upper error boundhttps://pepit.readthedocs.io/en/latest/api/functions.html#restricted-secant-inequality-and-error-bound
Smooth function satisfying a quadratic Lojasiewicz inequalityhttps://pepit.readthedocs.io/en/latest/api/functions.html#smooth-function-satisfying-quadratic-lojasiewicz-inequality-cheap-version
stronger varianthttps://pepit.readthedocs.io/en/latest/api/functions.html#smooth-function-satisfying-quadratic-lojasiewicz-inequality-expensive-version
operator classeshttps://pepit.readthedocs.io/en/latest/api/operators.html
Monotonehttps://pepit.readthedocs.io/en/latest/api/operators.html#monotone
Strongly monotonehttps://pepit.readthedocs.io/en/latest/api/operators.html#strongly-monotone
Lipschitz continuoushttps://pepit.readthedocs.io/en/latest/api/operators.html#lipschitz-continuous
Strongly monotone and Lipschitz continuoushttps://pepit.readthedocs.io/en/latest/api/operators.html#strongly-monotone-and-lipschitz-continuous-cheap-version
stronger varianthttps://pepit.readthedocs.io/en/latest/api/functions.html#strongly-monotone-and-lipschitz-continuous-expensive-version
Cocoercivehttps://pepit.readthedocs.io/en/latest/api/operators.html#cocoercive
Strongly monotone and cocoercivehttps://pepit.readthedocs.io/en/latest/api/operators.html#cocoercive-and-strongly-monotone-cheap-version
stronger varianthttps://pepit.readthedocs.io/en/latest/api/operators.html#cocoercive-and-strongly-monotone-expensive-version
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#contributors
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#creators
Baptiste Goujaudhttps://www.linkedin.com/in/baptiste-goujaud-b60060b3/
Céline Moucerhttps://cmoucer.github.io
Julien Hendrickxhttps://perso.uclouvain.be/julien.hendrickx/index.html
François Glineurhttps://perso.uclouvain.be/francois.glineur/
Adrien Taylorhttps://adrientaylor.github.io/
Aymeric Dieuleveuthttp://www.cmap.polytechnique.fr/~aymeric.dieuleveut/
https://www.inria.fr
https://www.polytechnique.edu/
https://www.uclouvain.be/
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#external-contributions
contribution guidelineshttps://pepit.readthedocs.io/en/latest/contributing.html
Gyumin Rohhttps://rkm0959.tistory.com/
Jisun Parkhttps://jisunp515.github.io
Nizar Bousselmihttps://nizarbousselmi.github.io
Henry Shugarthttps://statistics.wharton.upenn.edu/profile/hshugart/
Julien Weibelhttps://www.normalesup.org/~jweibel/
Pierre Gaillardhttp://pierre.gaillard.me/
Wouter Koolenhttps://wouterkoolen.info/
Anne Rubbenshttps://www.uclouvain.be/fr/people/anne.rubbens
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#acknowledgments
Rémi Flamaryhttps://remi.flamary.com/
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#funding
https://erc.europa.eu/homepage
https://anr.fr/
https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#references
Performance of first-order methods for smooth convex minimization: a novel approachhttps://arxiv.org/pdf/1206.3209.pdf
Smooth strongly convex interpolation and exact worst-case performance of first-order methodshttps://arxiv.org/pdf/1502.05666.pdf
Exact worst-case performance of first-order methods for composite convex optimizationhttps://arxiv.org/pdf/1512.07516.pdf
Performance Estimation Toolbox (PESTO): automated worst-case analysis of first-order optimization methodshttps://adrientaylor.github.io/share/PESTO_CDC_2017.pdf
PEPit: computer-assisted worst-case analyses of first-order optimization methods in Pythonhttps://arxiv.org/pdf/2201.04040
Monotone operators and the proximal point algorithmhttps://epubs.siam.org/doi/pdf/10.1137/0314056
An accelerated hybrid proximal extragradient method for convex optimization and its implications to second-order methodshttps://epubs.siam.org/doi/abs/10.1137/110833786
Inexact and accelerated proximal point algorithmshttp://www.optimization-online.org/DB_FILE/2011/08/3128.pdf
Principled analyses and design of first-order methods with inexact proximal operatorshttps://arxiv.org/pdf/2006.06041v3.pdf
Acceleration Methodshttps://arxiv.org/pdf/2101.09545.pdf
DC programming and DCA: thirty years of developmentshttps://link.springer.com/article/10.1007/s10107-018-1235-y
Efficient first-order methods for convex minimization: a constructive approachhttps://arxiv.org/pdf/1803.05676.pdf
Worst-case convergence analysis of inexact gradient and Newton methods through semidefinite programming performance estimationhttps://arxiv.org/pdf/1709.05191.pdf
An algorithm for quadratic programminghttps://arxiv.org/pdf/1608.04826.pdf
Relative-error approximate versions of Douglas–Rachford splitting and special cases of the ADMMhttps://link.springer.com/article/10.1007/s10107-017-1160-5
Principled analyses and design of first-order methods with inexact proximal operators, arXiv 2006https://arxiv.org/pdf/2006.06041v2.pdf
A note on approximate accelerated forward-backward methods with absolute and relative errors, and possibly strongly convex objectiveshttps://arxiv.org/pdf/2106.15536v2.pdf
Complexity guarantees for Polyak steps with momentumhttps://arxiv.org/pdf/2002.00915.pdf
Proximal minimization algorithm with D-functionshttps://link.springer.com/content/pdf/10.1007/BF00940051.pdf
A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applicationshttps://cmps-people.ok.ubc.ca/bauschke/Research/103.pdf
Optimal complexity and certification of Bregman first-order methodshttps://arxiv.org/pdf/1911.08510.pdf
A three-operator splitting scheme and its optimization applicationshttps://arxiv.org/pdf/1504.01032.pdf
Exact worst-case convergence rates of the proximal gradient method for composite convex minimizationhttps://arxiv.org/pdf/1705.04398.pdf
Introduction to Optimizationhttps://www.researchgate.net/profile/Boris-Polyak-2/publication/342978480_Introduction_to_Optimization/links/5f1033e5299bf1e548ba4636/Introduction-to-Optimization.pdf
A primer on monotone operator methodshttps://web.stanford.edu/~boyd/papers/pdf/monotone_primer.pdf
Analysis and design of optimization algorithms via integral quadratic constraintshttps://arxiv.org/pdf/1408.3595.pdf
Revisiting Frank-Wolfe: Projection-free sparse convex optimizationhttp://proceedings.mlr.press/v28/jaggi13.pdf
Douglas-Rachford splitting: Complexity estimates and accelerated variantshttps://arxiv.org/pdf/1407.6723.pdf
Interior gradient and proximal methods for convex and conic optimizationhttps://epubs.siam.org/doi/pdf/10.1137/S1052623403427823
A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problemshttps://www.ceremade.dauphine.fr/~carlier/FISTA
Operator splitting performance estimation: Tight contraction factors and optimal parameter selectionhttps://arxiv.org/pdf/1812.00146.pdf
Linear convergence and metric selection in Douglas-Rachford splitting and ADMMhttps://arxiv.org/pdf/1410.8479.pdf
Accelerated Infeasibility Detection of Constrained Optimization and Fixed-Point Iterationshttps://arxiv.org/pdf/2303.15876.pdf
Fixed points of nonexpanding mapshttps://www.ams.org/journals/bull/1967-73-06/S0002-9904-1967-11864-0/S0002-9904-1967-11864-0.pdf
On the convergence rate of the Halpern-iterationhttp://www.optimization-online.org/DB_FILE/2017/11/6336.pdf
Projection Based Methods for Conic Linear Programming Optimal First Order Complexities and Norm Constrained Quasi Newton Methodshttps://docserv.uni-duesseldorf.de/servlets/DerivateServlet/Derivate-49971/Dissertation.pdf
Exact Optimal Accelerated Complexity for Fixed-Point Iterationshttps://proceedings.mlr.press/v162/park22c/park22c.pdf
Analysis of biased stochastic gradient descent using sequential semidefinite programshttps://arxiv.org/pdf/1711.00987.pdf
Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functionshttps://arxiv.org/pdf/1902.00947.pdf
A simple practical accelerated method for finite sumshttps://proceedings.neurips.cc/paper/2016/file/4f6ffe13a5d75b2d6a3923922b3922e5-Paper.pdf
SAGA: A fast incremental gradient method with support for non-strongly convex composite objectiveshttp://papers.nips.cc/paper/2014/file/ede7e2b6d13a41ddf9f4bdef84fdc737-Paper.pdf
Une propriété topologique des sous-ensembles analytiques réelshttps://aif.centre-mersenne.org/item/10.5802/aif.1384.pdf
Gradient methods for the minimisation of functionals USSR Computational Mathematics and Mathematical Physics 3(4), 864–878https://www.sciencedirect.com/science/article/abs/pii/0041555363903823
The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systemshttps://bolte.perso.math.cnrs.fr/Loja.pdf
Conditions for linear convergence of the gradient method for non-convex optimizationhttps://arxiv.org/pdf/2204.00647
A constructive approach to strengthen algebraic descriptions of function and operator classeshttps://arxiv.org/pdf/2504.14377.pdf
On the rate of convergence of the difference-of-convex algorithm (DCA)https://arxiv.org/pdf/2109.13566
Tight Analysis of Difference-of-Convex Algorithm (DCA) Improves Convergence Rates for Proximal Gradient Descenthttps://arxiv.org/pdf/2503.04486
First order methods beyond convexity and Lipschitz gradient continuity with applications to quadratic inverse problemshttps://arxiv.org/pdf/1706.06461.pdf
Convex interpolation and performance estimation of first-order methods for convex optimizationhttps://dial.uclouvain.be/downloader/downloader.php?pid=boreal:182881&datastream=PDF_01
The exact worst-case convergence rate of the gradient method with fixed step lengths for L-smooth functionshttps://arxiv.org/pdf/2104.05468v3.pdf
Introduction to online convex optimizationhttps://arxiv.org/pdf/1912.13213
Optimized projection-free algorithms for online learning: construction and worst-case analysishttps://arxiv.org/pdf/2506.05855
Online Convex Optimization and Integral Quadratic Constraints: A new approach to regret analysishttps://arxiv.org/pdf/2503.23600
Potential-function proofs for gradient methodshttps://arxiv.org/pdf/1712.04581.pdf
A method for solving the convex programming problem with convergence rate O(1/k^2)http://www.mathnet.ru/links/9bcb158ed2df3d8db3532aafd551967d/dan46009.pdf
On the convergence of single-call stochastic extra-gradient methodshttps://arxiv.org/pdf/1908.08465.pdf
Last-Iterate Convergence of Optimistic Gradient Method for Monotone Variational Inequalitieshttps://arxiv.org/pdf/2205.08446.pdf
Douglas–Rachford Splitting for the Sum of a Lipschitz Continuous and a Strongly Monotone Operatorhttps://arxiv.org/pdf/1805.09396.pdf
Tight Last-Iterate Convergence of the Extragradient and the Optimistic Gradient Descent-Ascent Algorithm for Constrained Monotone Variational Inequalitieshttps://arxiv.org/pdf/2204.09228.pdf
Accelerated proximal point method for maximally monotone operatorshttps://arxiv.org/pdf/1905.05149v4.pdf
Tight sublinear convergence rate of the proximal point algorithm for maximal monotone inclusion problemhttps://epubs.siam.org/doi/pdf/10.1137/19M1299049
Gradient Descent Is Optimal Under Lower Restricted Secant Inequality And Upper Error Boundhttps://arxiv.org/pdf/2203.00342.pdf
On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functionshttps://link.springer.com/content/pdf/10.1007/s11590-016-1087-4.pdf
Global convergence of the Heavy-ball method for convex optimizationhttps://arxiv.org/pdf/1412.7457.pdf
Optimal first-order methods for convex functions with a quadratic upper boundhttps://arxiv.org/pdf/2205.15033.pdf
Introductory lectures on convex optimization: A basic coursehttps://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.693.855&rep=rep1&type=pdf
Subgradient Methods (lecture notes)https://web.stanford.edu/class/ee392o/subgrad_method.pdf
An optimal variant of Kelley's cutting-plane methodhttps://arxiv.org/pdf/1409.2636.pdf
Optimizing the efficiency of first-order methods for decreasing the gradient of smooth convex functionshttps://arxiv.org/pdf/1803.06600.pdf
Interpolation Conditions for Linear Operators and applications to Performance Estimation Problemshttps://arxiv.org/pdf/2302.08781.pdf
The exact information-based complexity of smooth convex minimizationhttps://arxiv.org/pdf/1606.01424.pdf
Acceleration by Stepsize Hedging I: Multi-Step Descent and the Silver Stepsize Schedulehttps://arxiv.org/abs/2309.07879
Acceleration by Stepsize Hedging II: Silver Stepsize Schedule for Smooth Convex Optimizationhttps://arxiv.org/abs/2309.16530
Inexact proximal epsilon-subgradient methods for composite convex optimization problemshttps://arxiv.org/pdf/1805.10120.pdf
Optimized first-order methods for smooth convex minimizationhttps://arxiv.org/pdf/1406.5468.pdf
A robust accelerated optimization algorithm for strongly convex functionshttps://arxiv.org/pdf/1710.04753.pdf
New proximal point algorithms for convex minimizationhttps://epubs.siam.org/doi/abs/10.1137/0802032?mobileUi=0
An optimal gradient method for smooth strongly convex minimizationhttps://arxiv.org/pdf/2101.09741.pdf
The fastest known globally convergent first-order method for minimizing strongly convex functionshttp://www.optimization-online.org/DB_FILE/2017/03/5908.pdf
A frequency-domain analysis of inexact gradient methodshttps://arxiv.org/pdf/1912.13494.pdf
Some methods of speeding up the convergence of iteration methodhttps://www.sciencedirect.com/science/article/pii/0041555364901375
Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matriceshttps://web.stanford.edu/~boyd/papers/pdf/rank_min_heur_hankel.pdf
A method for finding projections onto the intersection of convex sets in Hilbert spaceshttps://link.springer.com/chapter/10.1007/978-1-4613-9940-7_3
On the convergence analysis of the optimized gradient methodhttps://arxiv.org/pdf/1510.08573.pdf
On rings of operatorshttps://www.jstor.org/stable/1969463
A Lyapunov analysis of accelerated methods in optimizationhttps://jmlr.org/papers/volume22/20-195/20-195.pdf
The connections between Lyapunov functions for some optimization algorithms and differential equationshttps://arxiv.org/pdf/2009.00673.pdf
A systematic approach to Lyapunov analyses of continuous-time models in convex optimizationhttps://arxiv.org/pdf/2205.12772.pdf
A differential equation for modeling Nesterov's accelerated gradient method: Theory and insightshttps://jmlr.org/papers/volume17/15-084/15-084.pdf
Integration methods and accelerated optimization algorithmshttps://papers.nips.cc/paper/2017/file/bf62768ca46b6c3b5bea9515d1a1fc45-Paper.pdf
Uber die zusammenziehende und Lipschitzsche transformationenhttps://eudml.org/doc/212681
On the extension of a vector function so as to preserve a Lipschitz conditionhttps://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-49/issue-2
A Lipschitz condition preserving extension for a vector functionhttps://www.jstor.org/stable/2371917
Convex Analysis and Monotone Operator Theory in Hilbert Spaceshttps://link.springer.com/book/10.1007/978-3-319-48311-5
Convergence of proximal point and extragradient-based methods beyond monotonicity: the case of negative comonotonicityhttps://proceedings.mlr.press/v202/gorbunov23a/gorbunov23a.pdf
pepit.readthedocs.io/en/latest/https://pepit.readthedocs.io/en/latest/
python https://patch-diff.githubusercontent.com/topics/python
optimization https://patch-diff.githubusercontent.com/topics/optimization
semidefinite-programming https://patch-diff.githubusercontent.com/topics/semidefinite-programming
worst-case-analyses https://patch-diff.githubusercontent.com/topics/worst-case-analyses
first-order-methods https://patch-diff.githubusercontent.com/topics/first-order-methods
performance-estimation-problems https://patch-diff.githubusercontent.com/topics/performance-estimation-problems
Readme https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#readme-ov-file
MIT license https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit#MIT-1-ov-file
Please reload this pagehttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit
Activityhttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/activity
Custom propertieshttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/custom-properties
98 starshttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/stargazers
5 watchinghttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/watchers
16 forkshttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/forks
Report repository https://patch-diff.githubusercontent.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2FPerformanceEstimation%2FPEPit&report=PerformanceEstimation+%28user%29
Releases 9https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/releases
0.4.0 Latest Aug 10, 2025 https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/releases/tag/0.4.0
+ 8 releaseshttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/releases
Packages 0https://patch-diff.githubusercontent.com/orgs/PerformanceEstimation/packages?repo_name=PEPit
Please reload this pagehttps://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit
Contributors 9https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/graphs/contributors
https://github.com/bgoujaud
https://github.com/AdrienTaylor
https://github.com/CMoucer
https://github.com/adieulev
https://github.com/rflamary
https://github.com/NizarBousselmi
https://github.com/rkm0959
https://github.com/jisunp515
https://github.com/hshugart
Python 88.8% https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/search?l=python
Jupyter Notebook 11.2% https://patch-diff.githubusercontent.com/PerformanceEstimation/PEPit/search?l=jupyter-notebook
https://github.com
Termshttps://docs.github.com/site-policy/github-terms/github-terms-of-service
Privacyhttps://docs.github.com/site-policy/privacy-policies/github-privacy-statement
Securityhttps://github.com/security
Statushttps://www.githubstatus.com/
Communityhttps://github.community/
Docshttps://docs.github.com/
Contacthttps://support.github.com?tags=dotcom-footer

Viewport: width=device-width


URLs of crawlers that visited me.