Title: P(X = x) for continuous data is problematic · Issue #6 · GeostatsGuy/DataScienceInteractivePython · GitHub
Open Graph Title: P(X = x) for continuous data is problematic · Issue #6 · GeostatsGuy/DataScienceInteractivePython
X Title: P(X = x) for continuous data is problematic · Issue #6 · GeostatsGuy/DataScienceInteractivePython
Description: DataScienceInteractivePython/Interactive_Model_Fitting.ipynb Line 56 in adf0515 "P(X | \\hat{f}_{\\beta}) = \\prod_{\\alpha = 1}^{n} P(X_{\\alpha}|\\hat{f}_{\\beta}(X)), \\alpha = 1,\\ldots,n\n", The notebook useses the P(X | ... ) notat...
Open Graph Description: DataScienceInteractivePython/Interactive_Model_Fitting.ipynb Line 56 in adf0515 "P(X | \\hat{f}_{\\beta}) = \\prod_{\\alpha = 1}^{n} P(X_{\\alpha}|\\hat{f}_{\\beta}(X)), \\alpha = 1,\\ldots,n\n", T...
X Description: DataScienceInteractivePython/Interactive_Model_Fitting.ipynb Line 56 in adf0515 "P(X | \\hat{f}_{\\beta}) = \\prod_{\\alpha = 1}^{n} P(X_{\\alpha}|\\hat{f}_{\\beta}(X)), \\alpha = 1,\\ldots,n\...
Opengraph URL: https://github.com/GeostatsGuy/DataScienceInteractivePython/issues/6
X: @github
Domain: patch-diff.githubusercontent.com
{"@context":"https://schema.org","@type":"DiscussionForumPosting","headline":"P(X = x) for continuous data is problematic","articleBody":"https://github.com/GeostatsGuy/DataScienceInteractivePython/blob/adf0515484c587a900d6991d81c504e99171611f/Interactive_Model_Fitting.ipynb#L56\r\n\r\nThe notebook useses the P(X | ... ) notation, which I would interpret as the conditional probability of the data. However, linear models would typically be used for continuous response data where P(X_i = \u003cvalue\u003e | ... ) is zero. Instead, one would use the densities, i.e. small p or f. \r\n\r\nFurthermore, since a product is used, this implies that the observations are independent from each other. Hence, as written a little further down:\r\n\r\n*OLS: - assumes that the errors have a mean of zero, constant variance and are independent of eachother (no correlation in error).*\r\n\r\nIs incomplete, because the same was assumed for the ML approach.\r\n\r\nAltogether, I find that the post a little confusion. As far as I know: For a Gaussian response distribution with KNOWN $\\sigma$ the OLS and MLE should be identical. I fail to completely understand what the exact data generating mechanism is in the example due to a lot of code, but for a simple normal X_1,...,X_n \\iid N(\\mu, \\sigma^2) there are explicit solutions available? As a suggestion: Maybe write the data generating mechanism clearer in math notation.","author":{"url":"https://github.com/mhoehle","@type":"Person","name":"mhoehle"},"datePublished":"2024-09-18T11:15:47.000Z","interactionStatistic":{"@type":"InteractionCounter","interactionType":"https://schema.org/CommentAction","userInteractionCount":0},"url":"https://github.com/6/DataScienceInteractivePython/issues/6"}
| route-pattern | /_view_fragments/issues/show/:user_id/:repository/:id/issue_layout(.:format) |
| route-controller | voltron_issues_fragments |
| route-action | issue_layout |
| fetch-nonce | v2:4b521d59-b5a0-617b-521c-3eb38077c579 |
| current-catalog-service-hash | 81bb79d38c15960b92d99bca9288a9108c7a47b18f2423d0f6438c5b7bcd2114 |
| request-id | EC80:13AF96:7FA419:ADD6F4:698F2998 |
| html-safe-nonce | e5b28e242265994fbc8c2679bd6e7563b240a842076f26f6080e700e7469be3e |
| visitor-payload | eyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJFQzgwOjEzQUY5Njo3RkE0MTk6QURENkY0OjY5OEYyOTk4IiwidmlzaXRvcl9pZCI6Ijg4MjQyNzEzODA5OTAwNzczMzciLCJyZWdpb25fZWRnZSI6ImlhZCIsInJlZ2lvbl9yZW5kZXIiOiJpYWQifQ== |
| visitor-hmac | 7d3d0d9165e001ca829fbbfd0bd542f59d6e31f50ce07790ce0c8bb10106ef4a |
| hovercard-subject-tag | issue:2533446725 |
| github-keyboard-shortcuts | repository,issues,copilot |
| google-site-verification | Apib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I |
| octolytics-url | https://collector.github.com/github/collect |
| analytics-location | / |
| fb:app_id | 1401488693436528 |
| apple-itunes-app | app-id=1477376905, app-argument=https://github.com/_view_fragments/issues/show/GeostatsGuy/DataScienceInteractivePython/6/issue_layout |
| twitter:image | https://opengraph.githubassets.com/25e04333d54b85e5d1aade82fffa60d01c95da22306f1f0ace2c5344c1251c2b/GeostatsGuy/DataScienceInteractivePython/issues/6 |
| twitter:card | summary_large_image |
| og:image | https://opengraph.githubassets.com/25e04333d54b85e5d1aade82fffa60d01c95da22306f1f0ace2c5344c1251c2b/GeostatsGuy/DataScienceInteractivePython/issues/6 |
| og:image:alt | DataScienceInteractivePython/Interactive_Model_Fitting.ipynb Line 56 in adf0515 "P(X | \\hat{f}_{\\beta}) = \\prod_{\\alpha = 1}^{n} P(X_{\\alpha}|\\hat{f}_{\\beta}(X)), \\alpha = 1,\\ldots,n\n", T... |
| og:image:width | 1200 |
| og:image:height | 600 |
| og:site_name | GitHub |
| og:type | object |
| og:author:username | mhoehle |
| hostname | github.com |
| expected-hostname | github.com |
| None | 6102991c714c1a6a27d05fb4f96ea6ca87a6750b4f093b95cc57ed1b84b145a1 |
| turbo-cache-control | no-preview |
| go-import | github.com/GeostatsGuy/DataScienceInteractivePython git https://github.com/GeostatsGuy/DataScienceInteractivePython.git |
| octolytics-dimension-user_id | 32042483 |
| octolytics-dimension-user_login | GeostatsGuy |
| octolytics-dimension-repository_id | 777806478 |
| octolytics-dimension-repository_nwo | GeostatsGuy/DataScienceInteractivePython |
| octolytics-dimension-repository_public | true |
| octolytics-dimension-repository_is_fork | false |
| octolytics-dimension-repository_network_root_id | 777806478 |
| octolytics-dimension-repository_network_root_nwo | GeostatsGuy/DataScienceInteractivePython |
| turbo-body-classes | logged-out env-production page-responsive |
| disable-turbo | false |
| browser-stats-url | https://api.github.com/_private/browser/stats |
| browser-errors-url | https://api.github.com/_private/browser/errors |
| release | d52a41ad9b9ffb9b63a1b4a600a6054be8b70b36 |
| ui-target | canary-1 |
| theme-color | #1e2327 |
| color-scheme | light dark |
Links:
Viewport: width=device-width