René's URL Explorer Experiment


Title: Home - Computer Vision & Learning Group

Open Graph Title: Home - Computer Vision & Learning Group

Description: Prof. Björn Ommer's Machine Vision and Learning group at Ludwig Maximilian University (LMU) of Munich.

Open Graph Description: Prof. Björn Ommer's Machine Vision and Learning group at Ludwig Maximilian University (LMU) of Munich.

Opengraph URL: https://ommer-lab.com/

Generator: WordPress 6.9.1

direct link

Domain: ommer-lab.com


Hey, it has json ld scripts:
{"@context":"https://schema.org","@graph":[{"@type":"WebPage","@id":"https://ommer-lab.com/","url":"https://ommer-lab.com/","name":"Home - Computer Vision & Learning Group","isPartOf":{"@id":"https://ommer-lab.com/#website"},"datePublished":"2021-10-14T07:18:04+00:00","dateModified":"2025-10-02T10:49:04+00:00","description":"Prof. Björn Ommer's Machine Vision and Learning group at Ludwig Maximilian University (LMU) of Munich.","breadcrumb":{"@id":"https://ommer-lab.com/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https://ommer-lab.com/"]}]},{"@type":"BreadcrumbList","@id":"https://ommer-lab.com/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home"}]},{"@type":"WebSite","@id":"https://ommer-lab.com/#website","url":"https://ommer-lab.com/","name":"Computer Vision & Learning Group","description":"Computer Vision & Learning Group @ LMU Munich","potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https://ommer-lab.com/?s={search_term_string}"},"query-input":{"@type":"PropertyValueSpecification","valueRequired":true,"valueName":"search_term_string"}}],"inLanguage":"en-US"}]}

NoneIE=10
og:localeen_US
og:typewebsite
og:site_nameComputer Vision & Learning Group
article:modified_time2025-10-02T10:49:04+00:00
twitter:cardsummary_large_image
google-site-verificationID5yw1cnPFh8oHhZ5FAmI9s1ORFfBWejJicdBt3h91k
msapplication-TileImagehttps://ommer-lab.com/wp-content/uploads/2021/08/favicon.png

Links:

Skip to contenthttps://ommer-lab.com/#content
Computer Vision & Learning Group https://ommer-lab.com/
https://lmu.de
Homehttps://ommer-lab.com/
Peoplehttps://ommer-lab.com/people/
Publicationshttps://ommer-lab.com/publications/
Researchhttps://ommer-lab.com/research/
Teachinghttps://ommer-lab.com/teaching/
Open Positionshttps://ommer-lab.com/jobs/
Contacthttps://ommer-lab.com/contact/
Menuhttps://ommer-lab.com/
CompVishttps://github.com/CompVis
Ludwig Maximilian University of Munichhttps://www.lmu.de
Computer Vision Grouphttps://hci.iwr.uni-heidelberg.de/compvis
Prof. Dr. Björn Ommerhttps://ommer-lab.com/people/ommer/
LMU Faculty of Mathematics, Computer Science, and Statisticshttps://www.ifi.uni-muenchen.de/forschung/index.html
Munich Center for Machine Learning (MCML)https://mcml.ai/
LMU School of Artshttps://www.en.kunstwissenschaften.uni-muenchen.de/index.html
ELLIShttps://ellis.eu/units/munich
Helmholtz foundationhttps://www.helmholtz-munich.de/
Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg Universityhttps://typo.iwr.uni-heidelberg.de/home
HCIhttps://hci.iwr.uni-heidelberg.de/
Foundation Model Initiativehttps://www.ai-bay.eu/
Stable Diffusionhttps://ommer-lab.com/research/latent-diffusion-models/
Stable Diffusion in the Presshttps://ommer-lab.com/research/latent-diffusion-models/press/
Open PhD and PostDoc Positionshttps://ommer-lab.com/openpositions_ommer-lab_munich/
ICLR’26https://arxiv.org/abs/2407.00783
T-PAMI survey paperhttps://arxiv.org/abs/2407.00783
NeurIPS’25https://neurips.cc/virtual/2025/loc/san-diego/poster/116434
ICCV’25https://iccv.thecvf.com/
SCFlowhttps://compvis.github.io/SCFlow/
Art-FMhttps://compvis.github.io/Art-fm/
TREADhttps://compvis.github.io/tread/
What Ifhttps://compvis.github.io/flow-poke-transformer/
Generative AI and the Future of Intelligencehttps://www.youtube.com/watch?v=rsECdSPUifs
The European Way. A Blueprint for Reclaiming Our Digital Futurehttps://papers.ssrn.com/sol3/papers.cfm?abstract_id=5251254
CVPR’25https://cvpr.thecvf.com/
CleanDIFThttps://compvis.github.io/cleandift/
Attribute Control in T2Ihttps://compvis.github.io/attribute-control/
Diff2Flowhttps://arxiv.org/abs/2506.02221
Latent Drifting in Diffusion for Counterfactual Synthesishttps://latentdrifting.github.io/
DepthFMhttps://depthfm.github.io/
DisCLIPhttps://arxiv.org/pdf/2412.11917
paperhttps://compvis.github.io/distilldift/
Technology-Prize of Eduard-Rhein-Foundationhttps://www.eduard-rhein-stiftung.de/preistrager/
Medical Physicshttps://aapm.onlinelibrary.wiley.com/doi/pdf/10.1002/mp.17413
Awarded German AI-Prize’24https://www.welt.de/videos/video253740430/Verleihung-des-KI-Innovationspreises-im-Rahmen-des-Deutschen-KI-Preises-2024.html
German Future Prize of the President of Germanyhttps://www.lmu.de/en/newsroom/news-overview/news/bjoern-ommer-nominated-for-deutscher-zukunftspreis.html
ECCV'24https://eccv.ecva.net/
Conditional LoRAs for 0-Shot Control & Altering of T2I-Modelshttps://compvis.github.io/LoRAdapter/
ZigMa: Zigzag Mamba Diffusion Modelhttps://arxiv.org/abs/2403.13802
3D Gaussian Splatting for 3D Stylization using Wasserstein-2 Distancehttps://compvis.github.io/wast3d/
Flow Matching for Boosting Latent Diffusionhttps://compvis.github.io/fm-boosting/
Eurographicshttps://arxiv.org/pdf/2310.07204
Medical Physicshttps://aapm.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.17379
GCPR'22 Honorable Mentionhttps://www.dagm.de/award-winners/gcpr-best-paper-awards
ArtFID: Quantitative Evaluation of Neural Style Transferhttps://github.com/matthias-wright/art-fid
NeurIPS'22 articlehttps://arxiv.org/abs/2204.11824
Nature articlehttps://www.nature.com/articles/s41586-022-04777-z
CVPR'22 tutorialhttps://dvsml2022-tutorial.github.io/index.html
T-PAMIhttps://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.3009620
PDF Downloadhttps://arxiv.org/pdf/2004.05582
CVPR'22https://ommer-lab.com/research/latent-diffusion-models
source code & modelshttps://github.com/CompVis/stable-diffusion
Interactive Retrieval in Art Collectionshttps://dx.doi.org/10.1371/journal.pone.0259718
NeurIPS'21https://nips.cc/
Multinomial Diffusion for Improving Autoregressive Image Synthesishttps://compvis.github.io/imagebart/
Analyzing OOD Generalization in Deep Metric Learninghttps://arxiv.org/abs/2107.09562
T-PAMI https://ieeexplore.ieee.org/document/9540303
PDF Downloadhttps://arxiv.org/pdf/2109.04003
Nature https://rdcu.be/ch6pL
ICCV'21http://iccv2021.thecvf.com/home
Transformers for Geometry-Free 3D Novel-View Synthesishttps://compvis.github.io/geometry-free-view-synthesis/
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesishttps://compvis.github.io/ipoke/
ICML'21https://arxiv.org/abs/2009.08348
CVPR'21http://cvpr2021.thecvf.com/
Taming Transformers for Hi-Res Image Synthesishttps://compvis.github.io/taming-transformers/
Learning Object Dynamics for Interactive Video Synthesishttps://compvis.github.io/interactive-image2video-synthesis/
Stochastic Image-to-Video Synthesishttps://arxiv.org/abs/2105.04551
Stroke-based Style Transferhttps://arxiv.org/abs/2103.17185
Behavior-driven Synthesis of Human Dynamicshttps://arxiv.org/abs/2103.04677
Learning Exposure Correctionhttps://arxiv.org/abs/2003.11596
ICRA'21http://www.icra2021.org/
NeurIPS'20https://compvis.github.io/net2net/
T-PAMIhttps://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.3009620
PLoS ONE https://doi.org/10.1371/journal.pone.0243039
GCPR'20 https://compvis.github.io/unsupervised-part-segmentation/
ECCV'20https://eccv2020.eu/
ICML'20https://icml.cc
CVPR'20http://cvpr2020.thecvf.com/
Explainable AIhttps://compvis.github.io/iin/
Reinforcement Learning for Deep Metric Learninghttps://arxiv.org/abs/2003.11113
Unsupervised Behavior Analyticshttps://compvis.github.io/magnify-posture-deviations/
ICCV'19http://iccv2019.thecvf.com
Best paper finalisthttps://compvis.github.io/unsupervised-disentangling/
CVPR'19http://cvpr2019.thecvf.com
Imprinthttps://ommer-lab.com/imprint/
Privacy Policyhttps://ommer-lab.com/privacy-policy/
SiteOriginhttps://siteorigin.com
https://ommer-lab.com/

Viewport: width=device-width, initial-scale=1

Robots: index, follow, max-image-preview:large, max-snippet:-1, max-video-preview:-1


URLs of crawlers that visited me.