René's URL Explorer Experiment


Title: Basal Gp78-dependent mitophagy promotes mitochondrial health and limits mitochondrial ROS | Cellular and Molecular Life Sciences | Springer Nature Link

Open Graph Title: Basal Gp78-dependent mitophagy promotes mitochondrial health and limits mitochondrial ROS - Cellular and Molecular Life Sciences

X Title: Basal Gp78-dependent mitophagy promotes mitochondrial health and limits mitochondrial ROS

Description: Mitochondria are major sources of cytotoxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, that when uncontrolled contribute to c

Open Graph Description: Mitochondria are major sources of cytotoxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, that when uncontrolled contribute to cancer progression. Maintaining a finely tuned, healthy mitochondrial population is essential for cellular homeostasis and survival. Mitophagy, the selective elimination of mitochondria by autophagy, monitors and maintains mitochondrial health and integrity, eliminating damaged ROS-producing mitochondria. However, mechanisms underlying mitophagic control of mitochondrial homeostasis under basal conditions remain poorly understood. E3 ubiquitin ligase Gp78 is an endoplasmic reticulum membrane protein that induces mitochondrial fission and mitophagy of depolarized mitochondria. Here, we report that CRISPR/Cas9 knockout of Gp78 in HT-1080 fibrosarcoma cells increased mitochondrial volume, elevated ROS production and rendered cells resistant to carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced mitophagy. These effects were phenocopied by knockdown of the essential autophagy protein ATG5 in wild-type HT-1080 cells. Use of the mito-Keima mitophagy probe confirmed that Gp78 promoted both basal and damage-induced mitophagy. Application of a spot detection algorithm (SPECHT) to GFP-mRFP tandem fluorescent-tagged LC3 (tfLC3)-positive autophagosomes reported elevated autophagosomal maturation in wild-type HT-1080 cells relative to Gp78 knockout cells, predominantly in proximity to mitochondria. Mitophagy inhibition by either Gp78 knockout or ATG5 knockdown reduced mitochondrial potential and increased mitochondrial ROS. Live cell analysis of tfLC3 in HT-1080 cells showed the preferential association of autophagosomes with mitochondria of reduced potential. Xenograft tumors of HT-1080 knockout cells show increased labeling for mitochondria and the cell proliferation marker Ki67 and reduced labeling for the TUNEL cell death reporter. Basal Gp78-dependent mitophagic flux is, therefore, selectively associated with reduced potential mitochondria promoting maintenance of a healthy mitochondrial population, limiting ROS production and tumor cell proliferation.

X Description: Cellular and Molecular Life Sciences - Mitochondria are major sources of cytotoxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, that when uncontrolled contribute to...

Mail addresses
irnabi@mail.ubc.ca

Opengraph URL: https://link.springer.com/article/10.1007/s00018-022-04585-8

X: @SpringerLink

direct link

Domain: link.springer.com


Hey, it has json ld scripts:
{"mainEntity":{"headline":"Basal Gp78-dependent mitophagy promotes mitochondrial health and limits mitochondrial ROS","description":"Mitochondria are major sources of cytotoxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, that when uncontrolled contribute to cancer progression. Maintaining a finely tuned, healthy mitochondrial population is essential for cellular homeostasis and survival. Mitophagy, the selective elimination of mitochondria by autophagy, monitors and maintains mitochondrial health and integrity, eliminating damaged ROS-producing mitochondria. However, mechanisms underlying mitophagic control of mitochondrial homeostasis under basal conditions remain poorly understood. E3 ubiquitin ligase Gp78 is an endoplasmic reticulum membrane protein that induces mitochondrial fission and mitophagy of depolarized mitochondria. Here, we report that CRISPR/Cas9 knockout of Gp78 in HT-1080 fibrosarcoma cells increased mitochondrial volume, elevated ROS production and rendered cells resistant to carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced mitophagy. These effects were phenocopied by knockdown of the essential autophagy protein ATG5 in wild-type HT-1080 cells. Use of the mito-Keima mitophagy probe confirmed that Gp78 promoted both basal and damage-induced mitophagy. Application of a spot detection algorithm (SPECHT) to GFP-mRFP tandem fluorescent-tagged LC3 (tfLC3)-positive autophagosomes reported elevated autophagosomal maturation in wild-type HT-1080 cells relative to Gp78 knockout cells, predominantly in proximity to mitochondria. Mitophagy inhibition by either Gp78 knockout or ATG5 knockdown reduced mitochondrial potential and increased mitochondrial ROS. Live cell analysis of tfLC3 in HT-1080 cells showed the preferential association of autophagosomes with mitochondria of reduced potential. Xenograft tumors of HT-1080 knockout cells show increased labeling for mitochondria and the cell proliferation marker Ki67 and reduced labeling for the TUNEL cell death reporter. Basal Gp78-dependent mitophagic flux is, therefore, selectively associated with reduced potential mitochondria promoting maintenance of a healthy mitochondrial population, limiting ROS production and tumor cell proliferation.","datePublished":"2022-10-25T00:00:00Z","dateModified":"2022-10-25T00:00:00Z","pageStart":"1","pageEnd":"20","license":"http://creativecommons.org/licenses/by/4.0/","sameAs":"https://doi.org/10.1007/s00018-022-04585-8","keywords":["Gp78 ubiquitin ligase","Mitochondria","Mitophagy","Reactive oxygen species","GFP-mRFP tandem fluorescent-tagged LC3","Spot detection","SPECHT","Cell Biology","Biomedicine","general","Life Sciences","Biochemistry"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00018-022-04585-8/MediaObjects/18_2022_4585_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00018-022-04585-8/MediaObjects/18_2022_4585_Fig2_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00018-022-04585-8/MediaObjects/18_2022_4585_Fig3_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00018-022-04585-8/MediaObjects/18_2022_4585_Fig4_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00018-022-04585-8/MediaObjects/18_2022_4585_Fig5_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00018-022-04585-8/MediaObjects/18_2022_4585_Fig6_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00018-022-04585-8/MediaObjects/18_2022_4585_Fig7_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00018-022-04585-8/MediaObjects/18_2022_4585_Fig8_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00018-022-04585-8/MediaObjects/18_2022_4585_Fig9_HTML.png"],"isPartOf":{"name":"Cellular and Molecular Life Sciences","issn":["1420-9071","1420-682X"],"volumeNumber":"79","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Springer International Publishing","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Parsa Alan","affiliation":[{"name":"University of British Columbia","address":{"name":"Life Sciences Institute, Department of Cellular and Physiological Sciences, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Kurt R. Vandevoorde","affiliation":[{"name":"University of British Columbia","address":{"name":"Life Sciences Institute, Department of Cellular and Physiological Sciences, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Bharat Joshi","affiliation":[{"name":"University of British Columbia","address":{"name":"Life Sciences Institute, Department of Cellular and Physiological Sciences, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Ben Cardoen","affiliation":[{"name":"Simon Fraser University","address":{"name":"School of Computing Science, Simon Fraser University, Burnaby, Canada","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Guang Gao","affiliation":[{"name":"University of British Columbia","address":{"name":"Life Sciences Institute, Department of Cellular and Physiological Sciences, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Yahya Mohammadzadeh","affiliation":[{"name":"University of British Columbia","address":{"name":"Life Sciences Institute, Department of Cellular and Physiological Sciences, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Ghassan Hamarneh","affiliation":[{"name":"Simon Fraser University","address":{"name":"School of Computing Science, Simon Fraser University, Burnaby, Canada","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Ivan R. Nabi","url":"http://orcid.org/0000-0002-0670-0513","affiliation":[{"name":"University of British Columbia","address":{"name":"Life Sciences Institute, Department of Cellular and Physiological Sciences, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada","@type":"PostalAddress"},"@type":"Organization"}],"email":"irnabi@mail.ubc.ca","@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}

None3
applicable-devicepc,mobile
accessYes
360-site-verification1268d79b5e96aecf3ff2a7dac04ad990
twitter:cardsummary_large_image
twitter:image:altContent cover image
twitter:imagehttps://static-content.springer.com/image/art:10.1007/s00018-022-04585-8/MediaObjects/18_2022_4585_Fig1_HTML.png
journal_id18
dc.titleBasal Gp78-dependent mitophagy promotes mitochondrial health and limits mitochondrial ROS
dc.sourceCellular and Molecular Life Sciences 2022 79:11
dc.formattext/html
dc.publisherSpringer
dc.date2022-10-25
dc.typeOriginalPaper
dc.languageEn
dc.copyright2022 The Author(s)
dc.rights2022 The Author(s)
dc.rightsAgentjournalpermissions@springernature.com
dc.descriptionMitochondria are major sources of cytotoxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, that when uncontrolled contribute to cancer progression. Maintaining a finely tuned, healthy mitochondrial population is essential for cellular homeostasis and survival. Mitophagy, the selective elimination of mitochondria by autophagy, monitors and maintains mitochondrial health and integrity, eliminating damaged ROS-producing mitochondria. However, mechanisms underlying mitophagic control of mitochondrial homeostasis under basal conditions remain poorly understood. E3 ubiquitin ligase Gp78 is an endoplasmic reticulum membrane protein that induces mitochondrial fission and mitophagy of depolarized mitochondria. Here, we report that CRISPR/Cas9 knockout of Gp78 in HT-1080 fibrosarcoma cells increased mitochondrial volume, elevated ROS production and rendered cells resistant to carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-induced mitophagy. These effects were phenocopied by knockdown of the essential autophagy protein ATG5 in wild-type HT-1080 cells. Use of the mito-Keima mitophagy probe confirmed that Gp78 promoted both basal and damage-induced mitophagy. Application of a spot detection algorithm (SPECHT) to GFP-mRFP tandem fluorescent-tagged LC3 (tfLC3)-positive autophagosomes reported elevated autophagosomal maturation in wild-type HT-1080 cells relative to Gp78 knockout cells, predominantly in proximity to mitochondria. Mitophagy inhibition by either Gp78 knockout or ATG5 knockdown reduced mitochondrial potential and increased mitochondrial ROS. Live cell analysis of tfLC3 in HT-1080 cells showed the preferential association of autophagosomes with mitochondria of reduced potential. Xenograft tumors of HT-1080 knockout cells show increased labeling for mitochondria and the cell proliferation marker Ki67 and reduced labeling for the TUNEL cell death reporter. Basal Gp78-dependent mitophagic flux is, therefore, selectively associated with reduced potential mitochondria promoting maintenance of a healthy mitochondrial population, limiting ROS production and tumor cell proliferation.
prism.issn1420-9071
prism.publicationNameCellular and Molecular Life Sciences
prism.publicationDate2022-10-25
prism.volume79
prism.number11
prism.sectionOriginalPaper
prism.startingPage565
prism.copyright2022 The Author(s)
prism.rightsAgentjournalpermissions@springernature.com
prism.urlhttps://link.springer.com/article/10.1007/s00018-022-04585-8
prism.doidoi:10.1007/s00018-022-04585-8
citation_pdf_urlhttps://link.springer.com/content/pdf/10.1007/s00018-022-04585-8.pdf
citation_fulltext_html_urlhttps://link.springer.com/article/10.1007/s00018-022-04585-8
citation_journal_titleCellular and Molecular Life Sciences
citation_journal_abbrevCell. Mol. Life Sci.
citation_publisherSpringer International Publishing
citation_issn1420-9071
citation_titleBasal Gp78-dependent mitophagy promotes mitochondrial health and limits mitochondrial ROS
citation_volume79
citation_issue11
citation_publication_date2022/11
citation_online_date2022/10/25
citation_firstpage565
citation_article_typeOriginal Article
citation_languageen
dc.identifierdoi:10.1007/s00018-022-04585-8
DOI10.1007/s00018-022-04585-8
size214076
citation_doi10.1007/s00018-022-04585-8
citation_springer_api_urlhttp://api.springer.com/xmldata/jats?q=doi:10.1007/s00018-022-04585-8&api_key=
dc.creatorNabi, Ivan R.
dc.subjectBiochemistry, general
citation_referencecitation_journal_title=IEEE Trans Med Imaging; citation_title=ERGO: efficient recurrent graph optimized emitter density estimation in single molecule localization microscopy; citation_author=B Cardoen; citation_volume=39; citation_issue=6; citation_publication_date=2020; citation_pages=1942-1956; citation_doi=10.1109/TMI.2019.2962361; citation_id=CR77
citation_authorNabi, Ivan R.
citation_author_institutionLife Sciences Institute, Department of Cellular and Physiological Sciences, School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
citation_author_emailirnabi@mail.ubc.ca
format-detectiontelephone=no
citation_cover_date2022/11/01
og:typearticle
og:site_nameSpringerLink
og:imagehttps://static-content.springer.com/image/art:10.1007/s00018-022-04585-8/MediaObjects/18_2022_4585_Fig1_HTML.png
theme-color#e6e6e6

Links:

Skip to main contenthttps://link.springer.com/article/10.1007/s00018-022-04585-8#main
https://pubads.g.doubleclick.net/gampad/jump?iu=/270604982/springerlink/18/article&sz=728x90&pos=top&articleid=s00018-022-04585-8
https://link.springer.com
Log inhttps://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/article/10.1007/s00018-022-04585-8
Menu https://link.springer.com/article/10.1007/s00018-022-04585-8#eds-c-header-nav
Find a journal https://link.springer.com/journals/
Publish with us https://www.springernature.com/gp/authors
Track your research https://link.springernature.com/home/
Search https://link.springer.com/article/10.1007/s00018-022-04585-8#eds-c-header-popup-search
Saved research https://link.springer.com/saved-research
Cart https://order.springer.com/public/cart
Homehttps://link.springer.com/
Cellular and Molecular Life Scienceshttps://link.springer.com/journal/18
Open accesshttps://www.springernature.com/gp/open-science/about/the-fundamentals-of-open-access-and-open-research
Cite this articlehttps://link.springer.com/article/10.1007/s00018-022-04585-8#citeas
open accesshttps://www.springernature.com/gp/open-science/about/the-fundamentals-of-open-access-and-open-research
Download PDF https://link.springer.com/content/pdf/10.1007/s00018-022-04585-8.pdf
View saved research https://link.springer.com/saved-research
Cellular and Molecular Life Sciences https://link.springer.com/journal/18
Aims and scope https://link.springer.com/journal/18/aims-and-scope
Submit manuscript https://www.editorialmanager.com/life/default2.aspx
Download PDF https://link.springer.com/content/pdf/10.1007/s00018-022-04585-8.pdf
Parsa Alanhttps://link.springer.com/article/10.1007/s00018-022-04585-8#auth-Parsa-Alan-Aff1
1https://link.springer.com/article/10.1007/s00018-022-04585-8#Aff1
na1https://link.springer.com/article/10.1007/s00018-022-04585-8#na1
Kurt R. Vandevoordehttps://link.springer.com/article/10.1007/s00018-022-04585-8#auth-Kurt_R_-Vandevoorde-Aff1
1https://link.springer.com/article/10.1007/s00018-022-04585-8#Aff1
na1https://link.springer.com/article/10.1007/s00018-022-04585-8#na1
Bharat Joshihttps://link.springer.com/article/10.1007/s00018-022-04585-8#auth-Bharat-Joshi-Aff1
1https://link.springer.com/article/10.1007/s00018-022-04585-8#Aff1
na1https://link.springer.com/article/10.1007/s00018-022-04585-8#na1
Ben Cardoenhttps://link.springer.com/article/10.1007/s00018-022-04585-8#auth-Ben-Cardoen-Aff2
2https://link.springer.com/article/10.1007/s00018-022-04585-8#Aff2
na1https://link.springer.com/article/10.1007/s00018-022-04585-8#na1
Guang Gaohttps://link.springer.com/article/10.1007/s00018-022-04585-8#auth-Guang-Gao-Aff1
1https://link.springer.com/article/10.1007/s00018-022-04585-8#Aff1
Yahya Mohammadzadehhttps://link.springer.com/article/10.1007/s00018-022-04585-8#auth-Yahya-Mohammadzadeh-Aff1
1https://link.springer.com/article/10.1007/s00018-022-04585-8#Aff1
Ghassan Hamarnehhttps://link.springer.com/article/10.1007/s00018-022-04585-8#auth-Ghassan-Hamarneh-Aff2
2https://link.springer.com/article/10.1007/s00018-022-04585-8#Aff2
Ivan R. Nabihttps://link.springer.com/article/10.1007/s00018-022-04585-8#auth-Ivan_R_-Nabi-Aff1
ORCID: orcid.org/0000-0002-0670-0513https://orcid.org/0000-0002-0670-0513
1https://link.springer.com/article/10.1007/s00018-022-04585-8#Aff1
Explore all metrics https://link.springer.com/article/10.1007/s00018-022-04585-8/metrics
Autophagy-competent mitochondrial translation elongation factor TUFM inhibits caspase-8-mediated apoptosis https://link.springer.com/10.1038/s41418-021-00868-y?fromPaywallRec=false
ATG12 deficiency leads to tumor cell oncosis owing to diminished mitochondrial biogenesis and reduced cellular bioenergetics https://link.springer.com/10.1038/s41418-019-0476-5?fromPaywallRec=false
Emerging role of LETM1/GRP78 axis in lung cancer https://link.springer.com/10.1038/s41419-022-04993-5?fromPaywallRec=false
Autophagyhttps://link.springer.com/subjects/autophagy
Autophagosomeshttps://link.springer.com/subjects/autophagosomes
Chaperone-mediated autophagyhttps://link.springer.com/subjects/chaperone-mediated-autophagy
Macroautophagyhttps://link.springer.com/subjects/macroautophagy
Mitophagyhttps://link.springer.com/subjects/mitophagy
Ribophagyhttps://link.springer.com/subjects/ribophagy
Autophagy Mechanisms in Cellular Health and Diseasehttps://link.springer.com/subjects/autophagy-mechanisms-in-cellular-health-and-disease
1https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR1
2https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR2
3https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR3
4https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR4
5https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR5
6https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR6
7https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR7
8https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR8
9https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR9
10https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR10
11https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR11
12https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR12
2https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR2
13https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR13
14https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR14
15https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR15
16https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR16
17https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR17
18https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR18
19https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR19
20https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR20
21https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR21
22https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR22
23https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR23
24https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR24
25https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR25
26https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR26
27https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR27
28https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR28
23https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR23
29https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR29
30https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR30
31https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR31
32https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR32
33https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR33
34https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR34
35https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR35
36https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR36
32https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR32
33https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR33
37https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR37
1https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR1
38https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR38
39https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR39
40https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR40
41https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR41
34https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR34
42https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR42
43https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR43
44https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR44
34https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR34
42https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR42
43https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR43
44https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR44
45https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR45
41https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR41
46https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR46
47https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR47
34https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR34
47https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR47
48https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR48
49https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR49
1https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig1
1https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig1
43https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR43
https://link.springer.com/article/10.1007/s00018-022-04585-8/figures/1
Full size imagehttps://link.springer.com/article/10.1007/s00018-022-04585-8/figures/1
1https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig1
34https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR34
38https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR38
46https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR46
1https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig1
1https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig1
2https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig2
44https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR44
2https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig2
1https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig1
2https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig2
2https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig2
https://link.springer.com/article/10.1007/s00018-022-04585-8/figures/2
Full size imagehttps://link.springer.com/article/10.1007/s00018-022-04585-8/figures/2
50https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR50
51https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR51
3https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig3
3https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig3
https://link.springer.com/article/10.1007/s00018-022-04585-8/figures/3
Full size imagehttps://link.springer.com/article/10.1007/s00018-022-04585-8/figures/3
4https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig4
1https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig1
52https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR52
53https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR53
https://link.springer.com/article/10.1007/s00018-022-04585-8/figures/4
Full size imagehttps://link.springer.com/article/10.1007/s00018-022-04585-8/figures/4
54https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR54
5https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig5
55https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR55
56https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR56
4https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig4
5https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig5
https://link.springer.com/article/10.1007/s00018-022-04585-8/figures/5
Full size imagehttps://link.springer.com/article/10.1007/s00018-022-04585-8/figures/5
57https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR57
45https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR45
58https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR58
5https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig5
4https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig4
5https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig5
5https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig5
5https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig5
6https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig6
6https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig6
https://link.springer.com/article/10.1007/s00018-022-04585-8/figures/6
Full size imagehttps://link.springer.com/article/10.1007/s00018-022-04585-8/figures/6
7https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig7
1https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig1
4https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig4
7https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig7
https://link.springer.com/article/10.1007/s00018-022-04585-8/figures/7
Full size imagehttps://link.springer.com/article/10.1007/s00018-022-04585-8/figures/7
https://depmap.org/portal/https://depmap.org/portal/
7https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig7
7https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig7
8https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig8
8https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig8
https://link.springer.com/article/10.1007/s00018-022-04585-8/figures/8
Full size imagehttps://link.springer.com/article/10.1007/s00018-022-04585-8/figures/8
41https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR41
9https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig9
9https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig9
https://link.springer.com/article/10.1007/s00018-022-04585-8/figures/9
Full size imagehttps://link.springer.com/article/10.1007/s00018-022-04585-8/figures/9
59https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR59
9https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig9
9https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig9
60https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR60
61https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR61
62https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR62
63https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR63
64https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR64
65https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR65
66https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR66
23https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR23
50https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR50
67https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR67
68https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR68
57https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR57
53https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR53
23https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR23
50https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR50
67https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR67
68https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR68
57https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR57
69https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR69
45https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR45
70https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR70
45https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR45
34https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR34
47https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR47
44https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR44
23https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR23
29https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR29
71https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR71
72https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR72
73https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR73
40https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR40
41https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR41
34https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR34
41https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR41
41https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR41
74https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR74
75https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR75
www.addgene.org/21074http://www.addgene.org/21074
54https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR54
www.addgene.org/56018http://www.addgene.org/56018
https://www.addgene.org/49152/https://www.addgene.org/49152/
www.tcag.ca/facilities/geneticAnalysis.htmlhttp://www.tcag.ca/facilities/geneticAnalysis.html
http://crispr.mit.eduhttp://crispr.mit.edu
http://www.rgenome.net/cas-offinder/http://www.rgenome.net/cas-offinder/
74https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR74
https://imagej.nih.gov/ij/docs/faqs.html#citehttps://imagej.nih.gov/ij/docs/faqs.html#cite
5https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig5
6https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig6
7https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig7
8https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig8
76https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR76
50https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR50
51https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR51
45https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR45
77https://link.springer.com/article/10.1007/s00018-022-04585-8#ref-CR77
6https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig6
8https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig8
8https://link.springer.com/article/10.1007/s00018-022-04585-8#Fig8
https://github.com/bencardoen/SPECHT.jlhttps://github.com/bencardoen/SPECHT.jl
http://gepia.cancer-pku.cn/about.htmlhttp://gepia.cancer-pku.cn/about.html
Articlehttps://doi.org/10.1515%2Fhsz-2017-0206
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28976890
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=How%20to%20get%20rid%20of%20mitochondria%3A%20crosstalk%20and%20regulation%20of%20multiple%20mitophagy%20pathways&journal=Biol%20Chem&doi=10.1515%2Fhsz-2017-0206&volume=399&issue=1&pages=29-45&publication_year=2017&author=Zimmermann%2CM&author=Reichert%2CAS
Articlehttps://doi.org/10.1016%2Fj.semcancer.2017.04.008
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXmslajt78%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28450176
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654704
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Expanding%20perspectives%20on%20the%20significance%20of%20mitophagy%20in%20cancer&journal=Semin%20Cancer%20Biol&doi=10.1016%2Fj.semcancer.2017.04.008&volume=47&pages=110-124&publication_year=2017&author=Drake%2CLE
Articlehttps://doi.org/10.1038%2Fnrm.2017.129
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsVeksLY%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29358684
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Building%20and%20decoding%20ubiquitin%20chains%20for%20mitophagy&journal=Nat%20Rev%20Mol%20Cell%20Biol&doi=10.1038%2Fnrm.2017.129&volume=19&issue=2&pages=93-108&publication_year=2018&author=Harper%2CJW&author=Ordureau%2CA&author=Heo%2CJM
Articlehttps://doi.org/10.1002%2Fpath.4774
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC28Xhs1yqsr3P
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27453450
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC5071152
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=In%20brief%3A%20mitophagy%3A%20mechanisms%20and%20role%20in%20human%20disease&journal=J%20Pathol&doi=10.1002%2Fpath.4774&volume=240&issue=3&pages=253-255&publication_year=2016&author=Springer%2CMZ&author=Macleod%2CKF
Articlehttps://doi.org/10.1038%2Fnrd4002
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhvVGqs7%2FI
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24287781
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Modulation%20of%20oxidative%20stress%20as%20an%20anticancer%20strategy&journal=Nat%20Rev%20Drug%20Discov&doi=10.1038%2Fnrd4002&volume=12&issue=12&pages=931-947&publication_year=2013&author=Gorrini%2CC&author=Harris%2CIS&author=Mak%2CTW
Articlehttps://doi.org/10.1042%2FBJ20081386
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXhsV2lt77F
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19061483
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=How%20mitochondria%20produce%20reactive%20oxygen%20species&journal=Biochem%20J&doi=10.1042%2FBJ20081386&volume=417&issue=1&pages=1-13&publication_year=2009&author=Murphy%2CMP
Articlehttps://doi.org/10.1016%2Fj.redox.2017.09.020
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhs1aktLrL
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29017115
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=A%20review%20of%20the%20basics%20of%20mitochondrial%20bioenergetics%2C%20metabolism%2C%20and%20related%20signaling%20pathways%20in%20cancer%20cells%3A%20Therapeutic%20targeting%20of%20tumor%20mitochondria%20with%20lipophilic%20cationic%20compounds&journal=Redox%20Biol&doi=10.1016%2Fj.redox.2017.09.020&volume=14&pages=316-327&publication_year=2018&author=Kalyanaraman%2CB
Articlehttps://doi.org/10.1074%2Fjbc.R117.789271
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhs1Gjsr%2FL
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28842493
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641882
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Production%20of%20superoxide%20and%20hydrogen%20peroxide%20from%20specific%20mitochondrial%20sites%20under%20different%20bioenergetic%20conditions&journal=J%20Biol%20Chem&doi=10.1074%2Fjbc.R117.789271&volume=292&issue=41&pages=16804-16809&publication_year=2017&author=Wong%2CHS
Articlehttps://doi.org/10.1016%2Fj.redox.2018.101084
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXjs1Wgug%3D%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30612957
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=ROS%20and%20the%20DNA%20damage%20response%20in%20cancer&journal=Redox%20Biol&doi=10.1016%2Fj.redox.2018.101084&volume=25&publication_year=2019&author=Srinivas%2CUS
Articlehttps://doi.org/10.3390%2Fbiom9110735
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXitlOrt7bE
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31766246
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920770
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Role%20of%20reactive%20oxygen%20species%20in%20cancer%20progression%3A%20molecular%20mechanisms%20and%20recent%20advancements&journal=Biomolecules&doi=10.3390%2Fbiom9110735&volume=9&issue=11&publication_year=2019&author=Aggarwal%2CV
Articlehttps://doi.org/10.1101%2Fsqb.2012.76.011015
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xht1ChsbfK
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22442109
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Autophagy%2C%20stress%2C%20and%20cancer%20metabolism%3A%20what%20doesn%27t%20kill%20you%20makes%20you%20stronger&journal=Cold%20Spring%20Harb%20Symp%20Quant%20Biol&doi=10.1101%2Fsqb.2012.76.011015&volume=76&pages=389-396&publication_year=2011&author=Mathew%2CR&author=White%2CE
Articlehttps://doi.org/10.1016%2Fj.redox.2014.12.003
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXitVyktbrL
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25590798
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Interplay%20between%20ROS%20and%20autophagy%20in%20cancer%20cells%2C%20from%20tumor%20initiation%20to%20cancer%20therapy&journal=Redox%20Biol&doi=10.1016%2Fj.redox.2014.12.003&volume=4&pages=184-192&publication_year=2015&author=Poillet-Perez%2CL
Articlehttps://doi.org/10.1074%2Fjbc.M800102200
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXksFagtbk%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18281291
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447655
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Mitochondrial%20autophagy%20is%20an%20HIF-1-dependent%20adaptive%20metabolic%20response%20to%20hypoxia&journal=J%20Biol%20Chem&doi=10.1074%2Fjbc.M800102200&volume=283&issue=16&pages=10892-10903&publication_year=2008&author=Zhang%2CH
Articlehttps://doi.org/10.1038%2Fcdd.2009.16
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXnsV2qs7Y%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19229244
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Role%20of%20BNIP3%20and%20NIX%20in%20cell%20death%2C%20autophagy%2C%20and%20mitophagy&journal=Cell%20Death%20Differ&doi=10.1038%2Fcdd.2009.16&volume=16&issue=7&pages=939-946&publication_year=2009&author=Zhang%2CJ&author=Ney%2CPA
Articlehttps://doi.org/10.1089%2Fars.2020.8058
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXjs1yjsbY%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32079408
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Mitochondrial%20reactive%20oxygen%20species%20and%20mitophagy%3A%20a%20complex%20and%20nuanced%20relationship&journal=Antioxid%20Redox%20Signal&doi=10.1089%2Fars.2020.8058&volume=34&issue=7&pages=517-530&publication_year=2021&author=Schofield%2CJH&author=Schafer%2CZT
Articlehttps://doi.org/10.1016%2Fj.neuron.2014.12.007
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhsFSjsL4%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25611507
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764997
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=The%20roles%20of%20PINK1%2C%20parkin%2C%20and%20mitochondrial%20fidelity%20in%20Parkinson%E2%80%99s%20disease&journal=Neuron&doi=10.1016%2Fj.neuron.2014.12.007&volume=85&issue=2&pages=257-273&publication_year=2015&author=Pickrell%2CAM&author=Youle%2CRJ
Articlehttps://doi.org/10.1073%2Fpnas.1506593112
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXotFCmsrg%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25969509
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450373
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Defining%20roles%20of%20PARKIN%20and%20ubiquitin%20phosphorylation%20by%20PINK1%20in%20mitochondrial%20quality%20control%20using%20a%20ubiquitin%20replacement%20strategy&journal=Proc%20Natl%20Acad%20Sci%20U%20S%20A&doi=10.1073%2Fpnas.1506593112&volume=112&issue=21&pages=6637-6642&publication_year=2015&author=Ordureau%2CA
Articlehttps://doi.org/10.1038%2Fnature14893
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtlaju73P
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26266977
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018156
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=The%20ubiquitin%20kinase%20PINK1%20recruits%20autophagy%20receptors%20to%20induce%20mitophagy&journal=Nature&doi=10.1038%2Fnature14893&volume=524&issue=7565&pages=309-314&publication_year=2015&author=Lazarou%2CM
Articlehttps://link.springer.com/doi/10.1186/s12915-017-0470-7
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29325568
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795276
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=PINK1%20import%20regulation%3B%20a%20fine%20system%20to%20convey%20mitochondrial%20stress%20to%20the%20cytosol&journal=BMC%20Biol&doi=10.1186%2Fs12915-017-0470-7&volume=16&issue=1&publication_year=2018&author=Sekine%2CS&author=Youle%2CRJ
Articlehttps://doi.org/10.1074%2Fjbc.M117.787739
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhs1Wgs77L
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28848050
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC5633131
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Reactive%20oxygen%20species%20trigger%20Parkin%2FPINK1%20pathway-dependent%20mitophagy%20by%20inducing%20mitochondrial%20recruitment%20of%20Parkin&journal=J%20Biol%20Chem&doi=10.1074%2Fjbc.M117.787739&volume=292&issue=40&pages=16697-16708&publication_year=2017&author=Xiao%2CB
Articlehttps://doi.org/10.1146%2Fannurev-biochem-052709-094552
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXptVCns70%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21548784
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Biogenesis%20and%20cargo%20selectivity%20of%20autophagosomes&journal=Annu%20Rev%20Biochem&doi=10.1146%2Fannurev-biochem-052709-094552&volume=80&issue=1&pages=125-156&publication_year=2011&author=Weidberg%2CH&author=Shvets%2CE&author=Elazar%2CZ
Articlehttps://doi.org/10.1016%2FS0165-3806%2801%2900234-6
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXnslCjuro%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11675120
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Differential%20expression%20and%20tissue%20distribution%20of%20parkin%20isoforms%20during%20mouse%20development&journal=Brain%20Res%20Dev%20Brain%20Res&doi=10.1016%2FS0165-3806%2801%2900234-6&volume=130&issue=2&pages=173-181&publication_year=2001&author=Huynh%2CDP
Articlehttps://doi.org/10.1016%2Fj.cmet.2017.12.008
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtVejurw%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29337137
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807059
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Basal%20mitophagy%20occurs%20independently%20of%20PINK1%20in%20mouse%20tissues%20of%20high%20metabolic%20demand&journal=Cell%20Metab&doi=10.1016%2Fj.cmet.2017.12.008&volume=27&issue=2&pages=439-449&publication_year=2018&author=McWilliams%2CTG
Articlehttps://doi.org/10.1016%2Fj.celrep.2017.08.087
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhsFeqsrfP
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28930681
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Parkin-independent%20mitophagy%20controls%20chemotherapeutic%20response%20in%20cancer%20cells&journal=Cell%20Rep&doi=10.1016%2Fj.celrep.2017.08.087&volume=20&issue=12&pages=2846-2859&publication_year=2017&author=Villa%2CE
Articlehttps://doi.org/10.1083%2Fjcb.200809125
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXhsVOjtrjJ
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19029340
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2592826
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Parkin%20is%20recruited%20selectively%20to%20impaired%20mitochondria%20and%20promotes%20their%20autophagy&journal=J%20Cell%20Biol&doi=10.1083%2Fjcb.200809125&volume=183&issue=5&pages=795-803&publication_year=2008&author=Narendra%2CD
Articlehttps://doi.org/10.1371%2Fjournal.pbio.1000298
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20126261
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811155
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=PINK1%20is%20selectively%20stabilized%20on%20impaired%20mitochondria%20to%20activate%20Parkin&journal=PLoS%20Biol&doi=10.1371%2Fjournal.pbio.1000298&volume=8&issue=1&publication_year=2010&author=Narendra%2CDP
Articlehttps://doi.org/10.1074%2Fjbc.M114.620906
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhvVeku7c%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25527497
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=PINK1%20kinase%20catalytic%20activity%20is%20regulated%20by%20phosphorylation%20on%20serines%20228%20and%20402&journal=J%20Biol%20Chem&doi=10.1074%2Fjbc.M114.620906&volume=290&issue=5&pages=2798-2811&publication_year=2015&author=Aerts%2CL
Articlehttps://doi.org/10.1098%2Frsob.120080
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22724072
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376738
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=PINK1%20is%20activated%20by%20mitochondrial%20membrane%20potential%20depolarization%20and%20stimulates%20Parkin%20E3%20ligase%20activity%20by%20phosphorylating%20serine%2065&journal=Open%20Biol&doi=10.1098%2Frsob.120080&volume=2&issue=5&publication_year=2012&author=Kondapalli%2CC
Articlehttps://doi.org/10.1083%2Fjcb.201801044
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXhvVWnsrnO
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29500189
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940313
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Basal%20mitophagy%20is%20widespread%20in%20drosophila%20but%20minimally%20affected%20by%20loss%20of%20pink1%20or%20parkin&journal=J%20Cell%20Biol&doi=10.1083%2Fjcb.201801044&volume=217&issue=5&pages=1613-1622&publication_year=2018&author=Lee%2CJJ
Articlehttps://doi.org/10.1371%2Fjournal.pone.0024367
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXht1GisrzO
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21931693
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3170314
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=RNF185%2C%20a%20novel%20mitochondrial%20ubiquitin%20E3%20ligase%2C%20regulates%20autophagy%20through%20interaction%20with%20BNIP1&journal=PLoS%20ONE&doi=10.1371%2Fjournal.pone.0024367&volume=6&issue=9&publication_year=2011&author=Tang%2CF
Articlehttps://doi.org/10.1038%2Fs41467-018-05722-3
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30217973
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC6138665
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=HUWE1%20E3%20ligase%20promotes%20PINK1%2FPARKIN-independent%20mitophagy%20by%20regulating%20AMBRA1%20activation%20via%20IKK%CE%B1&journal=Nat%20Commun&doi=10.1038%2Fs41467-018-05722-3&volume=9&issue=1&publication_year=2018&author=Rita%2CA
Articlehttps://doi.org/10.7554%2FeLife.01958
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24898855
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4044952
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=MUL1%20acts%20in%20parallel%20to%20the%20PINK1%2Fparkin%20pathway%20in%20regulating%20mitofusin%20and%20compensates%20for%20loss%20of%20PINK1%2Fparkin&journal=Elife&doi=10.7554%2FeLife.01958&volume=3&publication_year=2014&author=Yun%2CJ
Articlehttps://doi.org/10.1091%2Fmbc.e12-08-0607
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXmtFartrc%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23427266
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3623636
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Regulation%20of%20mitophagy%20by%20the%20Gp78%20E3%20ubiquitin%20ligase&journal=Mol%20Biol%20Cell&doi=10.1091%2Fmbc.e12-08-0607&volume=24&issue=8&pages=1153-1162&publication_year=2013&author=Fu%2CM
Articlehttps://doi.org/10.1038%2Fnature10546
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXhtlGks7fJ
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22020285
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229641
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Image-based%20genome-wide%20siRNA%20screen%20identifies%20selective%20autophagy%20factors&journal=Nature&doi=10.1038%2Fnature10546&volume=480&issue=7375&pages=113-117&publication_year=2011&author=Orvedahl%2CA
Articlehttps://doi.org/10.4161%2Fauto.32177
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25483962
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502719
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Choline%20dehydrogenase%20interacts%20with%20SQSTM1%2Fp62%20to%20recruit%20LC3%20and%20stimulate%20mitophagy&journal=Autophagy&doi=10.4161%2Fauto.32177&volume=10&issue=11&pages=1906-1920&publication_year=2014&author=Park%2CS
Articlehttps://doi.org/10.1093%2Fhmg%2Fddw189
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXktlWmu74%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27334109
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=The%20PINK1%2C%20synphilin-1%20and%20SIAH-1%20complex%20constitutes%20a%20novel%20mitophagy%20pathway&journal=Hum%20Mol%20Genet&doi=10.1093%2Fhmg%2Fddw189&volume=25&issue=16&pages=3476-3490&publication_year=2016&author=Szargel%2CR
Articlehttps://doi.org/10.1073%2Fpnas.251401598
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXptFCltLc%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11724934
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC64697
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=The%20tumor%20autocrine%20motility%20factor%20receptor%2C%20gp78%2C%20is%20a%20ubiquitin%20protein%20ligase%20implicated%20in%20degradation%20from%20the%20endoplasmic%20reticulum&journal=Proc%20Natl%20Acad%20Sci%20U%20S%20A&doi=10.1073%2Fpnas.251401598&volume=98&issue=25&pages=14422-14427&publication_year=2001&author=Fang%2CS
Articlehttps://doi.org/10.1038%2Fncb2383
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22119785
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250479
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Defining%20human%20ERAD%20networks%20through%20an%20integrative%20mapping%20strategy&journal=Nat%20Cell%20Biol&doi=10.1038%2Fncb2383&volume=14&issue=1&pages=93-105&publication_year=2011&author=Christianson%2CJC
Articlehttps://doi.org/10.1371%2Fjournal.pone.0118448
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25789613
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4366401
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Gp78%2C%20an%20E3%20ubiquitin%20ligase%20acts%20as%20a%20gatekeeper%20suppressing%20nonalcoholic%20steatohepatitis%20%28NASH%29%20and%20liver%20cancer&journal=PLoS%20ONE&doi=10.1371%2Fjournal.pone.0118448&volume=10&issue=3&publication_year=2015&author=Zhang%2CT
Articlehttps://doi.org/10.1038%2Fnm1686
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtl2gs7jP
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18037895
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=The%20ubiquitin%20ligase%20gp78%20promotes%20sarcoma%20metastasis%20by%20targeting%20KAI1%20for%20degradation&journal=Nat%20Med&doi=10.1038%2Fnm1686&volume=13&issue=12&pages=1504-1509&publication_year=2007&author=Tsai%2CYC
Articlehttps://doi.org/10.1096%2Ffj.201701413RRR
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXovFOntbc%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30230921
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Calmodulin%20regulates%20MGRN1-GP78%20interaction%20mediated%20ubiquitin%20proteasomal%20degradation%20system&journal=FASEB%20J&doi=10.1096%2Ffj.201701413RRR&volume=33&issue=2&pages=1927-1945&publication_year=2019&author=Mukherjee%2CR
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhtFWmsLbE
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26743086
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Ubiquitin-mediated%20regulation%20of%20the%20E3%20ligase%20GP78%20by%20MGRN1%20in%20trans%20affects%20mitochondrial%20homeostasis&journal=J%20Cell%20Sci&volume=129&issue=4&pages=757-773&publication_year=2016&author=Mukherjee%2CR&author=Chakrabarti%2CO
Articlehttps://doi.org/10.1080%2F15548627.2020.1783118
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhsVGktbzL
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32559118
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=RETREG1%2FFAM134B%20mediated%20autophagosomal%20degradation%20of%20AMFR%2FGP78%20and%20OPA1%20-a%20dual%20organellar%20turnover%20mechanism&journal=Autophagy&doi=10.1080%2F15548627.2020.1783118&volume=17&issue=7&pages=1729-1752&publication_year=2021&author=Mookherjee%2CD
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC38XpsVyrsrc%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22328510
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Peripheral%20endoplasmic%20reticulum%20localization%20of%20the%20Gp78%20ubiquitin%20ligase%20activity&journal=J%20Cell%20Sci&volume=125&issue=Pt%207&pages=1727-1737&publication_year=2012&author=St-Pierre%2CP
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhs1OitL7M
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26065430
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Distinct%20mechanisms%20controlling%20rough%20and%20smooth%20endoplasmic%20reticulum%20contacts%20with%20mitochondria&journal=J%20Cell%20Sci&volume=128&issue=15&pages=2759-2765&publication_year=2015&author=Wang%2CPT
Articlehttps://doi.org/10.1038%2Fcdd.2010.181
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXlvFCrtbc%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21252914
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131941
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Autocrine%20motility%20factor%2Fphosphoglucose%20isomerase%20regulates%20ER%20stress%20and%20cell%20death%20through%20control%20of%20ER%20calcium%20release&journal=Cell%20Death%20Differ&doi=10.1038%2Fcdd.2010.181&volume=18&issue=6&pages=1057-1070&publication_year=2011&author=Fu%2CM
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhsFajurzP
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23690547
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Raft%20endocytosis%20of%20AMF%20regulates%20mitochondrial%20dynamics%20through%20Rac1%20signaling%20and%20the%20Gp78%20ubiquitin%20ligase&journal=J%20Cell%20Sci&volume=126&issue=Pt%2015&pages=3295-3304&publication_year=2013&author=Shankar%2CJ
Articlehttps://doi.org/10.1016%2Fj.chembiol.2011.05.013
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXhtV2itLfP
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21867919
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=A%20sensitive%20and%20quantitative%20technique%20for%20detecting%20autophagic%20events%20based%20on%20lysosomal%20delivery&journal=Chem%20Biol&doi=10.1016%2Fj.chembiol.2011.05.013&volume=18&issue=8&pages=1042-1052&publication_year=2011&author=Katayama%2CH
Articlehttps://doi.org/10.1016%2Fj.mad.2019.111196
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXisVGgtb3O
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31843465
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961211
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Semi-automated%20quantitation%20of%20mitophagy%20in%20cells%20and%20tissues&journal=Mech%20Ageing%20Dev&doi=10.1016%2Fj.mad.2019.111196&volume=185&pages=111196-111196&publication_year=2020&author=Montava-Garriga%2CL
Articlehttps://doi.org/10.1016%2Fj.ab.2015.02.020
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXksFWhsL4%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25747848
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Routine%20Western%20blot%20to%20check%20autophagic%20flux%3A%20cautions%20and%20recommendations&journal=Anal%20Biochem&doi=10.1016%2Fj.ab.2015.02.020&volume=477&pages=13-20&publication_year=2015&author=Gomez-Sanchez%2CR
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29909716
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC6103398
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Measuring%20autophagosome%20flux&journal=Autophagy&volume=14&issue=6&pages=1060-1071&publication_year=2018&author=Toit%2CA
Articlehttps://doi.org/10.4161%2Fauto.4451
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtVGrtb%2FN
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17534139
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Dissection%20of%20the%20autophagosome%20maturation%20process%20by%20a%20novel%20reporter%20protein%2C%20tandem%20fluorescent-tagged%20LC3&journal=Autophagy&doi=10.4161%2Fauto.4451&volume=3&issue=5&pages=452-460&publication_year=2007&author=Kimura%2CS&author=Noda%2CT&author=Yoshimori%2CT
Articlehttps://doi.org/10.1247%2Fcsf.07011
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXhsVyhsrfE
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18256512
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=GFP-like%20proteins%20stably%20accumulate%20in%20lysosomes&journal=Cell%20Struct%20Funct&doi=10.1247%2Fcsf.07011&volume=33&issue=1&pages=1-12&publication_year=2008&author=Katayama%2CH
Articlehttps://doi.org/10.1002%2Fpath.2694
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXnvFKjtbw%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20225337
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2989884
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Autophagy%3A%20assays%20and%20artifacts&journal=J%20Pathol&doi=10.1002%2Fpath.2694&volume=221&issue=2&pages=117-124&publication_year=2010&author=Barth%2CS&author=Glick%2CD&author=Macleod%2CKF
Articlehttps://doi.org/10.1080%2F15548627.2015.1100356
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26799652
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835977
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Guidelines%20for%20the%20use%20and%20interpretation%20of%20assays%20for%20monitoring%20autophagy%20%283rd%20edition%29&journal=Autophagy&doi=10.1080%2F15548627.2015.1100356&volume=12&issue=1&pages=1-222&publication_year=2016&author=Klionsky%2CDJ
Articlehttps://doi.org/10.1016%2Fj.cub.2011.11.034
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC38XpsV2ntA%3D%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22240478
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Mechanisms%20of%20autophagosome%20biogenesis&journal=Curr%20Biol%20CB&doi=10.1016%2Fj.cub.2011.11.034&volume=22&issue=1&pages=R29-R34&publication_year=2012&author=Rubinsztein%2CDC&author=Shpilka%2CT&author=Elazar%2CZ
Articlehttps://link.springer.com/doi/10.1007/s00018-021-03774-1
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXjvF2ms7Y%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33580835
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259496
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Mitophagy%20in%20tumorigenesis%20and%20metastasis&journal=Cell%20Mol%20Life%20Sci&doi=10.1007%2Fs00018-021-03774-1&volume=78&issue=8&pages=3817-3851&publication_year=2021&author=Poole%2CLP&author=Macleod%2CKF
Articlehttps://doi.org/10.1016%2Fj.molcel.2019.03.033
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXnslOqsLw%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31006538
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Intrinsically%20disordered%20protein%20TEX264%20mediates%20ER-phagy&journal=Mol%20Cell&doi=10.1016%2Fj.molcel.2019.03.033&volume=74&issue=5&pages=909-921&publication_year=2019&author=Chino%2CH
Articlehttps://doi.org/10.1038%2Fnature07976
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXjvV2ks7s%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19339967
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676208
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Autophagy%20regulates%20lipid%20metabolism&journal=Nature&doi=10.1038%2Fnature07976&volume=458&issue=7242&pages=1131-1135&publication_year=2009&author=Singh%2CR
Articlehttps://doi.org/10.1080%2F15548627.2019.1646540
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhsV2is7%2FK
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31362563
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735500
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=TEX264%20is%20a%20major%20receptor%20for%20mammalian%20reticulophagy&journal=Autophagy&doi=10.1080%2F15548627.2019.1646540&volume=15&issue=10&pages=1677-1681&publication_year=2019&author=Delorme-Axford%2CE&author=Popelka%2CH&author=Klionsky%2CDJ
Articlehttps://doi.org/10.1080%2F15548627.2019.1646540
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhsV2is7%2FK
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31362563
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735500
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=TEX264%20is%20a%20major%20receptor%20for%20mammalian%20reticulophagy&journal=Autophagy&doi=10.1080%2F15548627.2019.1646540&volume=15&issue=10&pages=1677-1681&publication_year=2019&author=Delorme-Axford%2CE&author=Popelka%2CH&author=Klionsky%2CDJ
Articlehttps://doi.org/10.1210%2Fen.2019-00312
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhvFygur7L
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31314096
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Basal%20autophagy%20deficiency%20causes%20thyroid%20follicular%20epithelial%20cell%20death%20in%20mice&journal=Endocrinology&doi=10.1210%2Fen.2019-00312&volume=160&issue=9&pages=2085-2092&publication_year=2019&author=Kurashige%2CT
Articlehttps://doi.org/10.1038%2Fnature04724
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BD28XlvVGlsbc%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16625204
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Suppression%20of%20basal%20autophagy%20in%20neural%20cells%20causes%20neurodegenerative%20disease%20in%20mice&journal=Nature&doi=10.1038%2Fnature04724&volume=441&issue=7095&pages=885-889&publication_year=2006&author=Hara%2CT
Articlehttps://doi.org/10.1042%2FBST20170102
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXivFCnt74%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29305410
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Evolution%20of%20tools%20and%20methods%20for%20monitoring%20autophagic%20flux%20in%20mammalian%20cells&journal=Biochem%20Soc%20Trans&doi=10.1042%2FBST20170102&volume=46&issue=1&pages=97-110&publication_year=2018&author=Yang%2CKC
Articlehttps://doi.org/10.1096%2Ffj.201900073R
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXitVGjtrvO
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31120803
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Assessment%20of%20mitophagy%20in%20mt-Keima%20Drosophila%20revealed%20an%20essential%20role%20of%20the%20PINK1-Parkin%20pathway%20in%20mitophagy%20induction%20in%20vivo&journal=FASEB%20J&doi=10.1096%2Ffj.201900073R&volume=33&issue=9&pages=9742-9751&publication_year=2019&author=Kim%2CYY
Articlehttps://doi.org/10.1083%2Fjcb.201603039
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhvFWlu7nL
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27458135
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970326
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=mito-QC%20illuminates%20mitophagy%20and%20mitochondrial%20architecture%20in%20vivo&journal=J%20Cell%20Biol&doi=10.1083%2Fjcb.201603039&volume=214&issue=3&pages=333-345&publication_year=2016&author=McWilliams%2CTG
Articlehttps://doi.org/10.4161%2Fauto.25455
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXktF2rtbc%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23800949
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Characteristics%20and%20requirements%20of%20basal%20autophagy%20in%20HEK%20293%20cells&journal=Autophagy&doi=10.4161%2Fauto.25455&volume=9&issue=9&pages=1407-1417&publication_year=2013&author=Musiwaro%2CP
Articlehttps://doi.org/10.1080%2F15548627.2019.1580509
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXjsFeisLo%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30786807
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613837
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=A%20comparative%20map%20of%20macroautophagy%20and%20mitophagy%20in%20the%20vertebrate%20eye&journal=Autophagy&doi=10.1080%2F15548627.2019.1580509&volume=15&issue=7&pages=1296-1308&publication_year=2019&author=McWilliams%2CTG
Articlehttps://link.springer.com/doi/10.1007/s00018-020-03536-5
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXosVeltb8%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32358622
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=The%20multifaceted%20role%20of%20reactive%20oxygen%20species%20in%20tumorigenesis&journal=Cell%20Mol%20Life%20Sci&doi=10.1007%2Fs00018-020-03536-5&volume=77&issue=22&pages=4459-4483&publication_year=2020&author=Kirtonia%2CA&author=Sethi%2CG&author=Garg%2CM
Articlehttps://doi.org/10.15252%2Fembr.201540759
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXht1Kmt7bM
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26232272
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC4576983
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Mitophagy%20defects%20arising%20from%20BNip3%20loss%20promote%20mammary%20tumor%20progression%20to%20metastasis&journal=EMBO%20Rep&doi=10.15252%2Fembr.201540759&volume=16&issue=9&pages=1145-1163&publication_year=2015&author=Chourasia%2CAH
Articlehttps://doi.org/10.1128%2FMCB.02246-06
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXpvFGgt7Y%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17576813
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC1952167
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=BNIP3%20is%20an%20RB%2FE2F%20target%20gene%20required%20for%20hypoxia-induced%20autophagy&journal=Mol%20Cell%20Biol&doi=10.1128%2FMCB.02246-06&volume=27&issue=17&pages=6229-6242&publication_year=2007&author=Tracy%2CK
Articlehttps://doi.org/10.1074%2Fjbc.M109.074344
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXjtFShsLY%3D
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20089858
PubMed Centralhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838305
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=A%20role%20for%20KAI1%20in%20promotion%20of%20cell%20proliferation%20and%20mammary%20gland%20hyperplasia%20by%20the%20gp78%20ubiquitin%20ligase&journal=J%20Biol%20Chem&doi=10.1074%2Fjbc.M109.074344&volume=285&issue=12&pages=8830-8839&publication_year=2010&author=Joshi%2CB&author=Li%2CL&author=Nabi%2CIR
Articlehttps://doi.org/10.1158%2F0008-5472.CAN-08-0343
CAShttps://link.springer.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXht1Cmsb%2FE
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18922892
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=Phosphorylated%20caveolin-1%20regulates%20Rho%2FROCK-dependent%20focal%20adhesion%20dynamics%20and%20tumor%20cell%20migration%20and%20invasion&journal=Cancer%20Res&doi=10.1158%2F0008-5472.CAN-08-0343&volume=68&issue=20&pages=8210-8220&publication_year=2008&author=Joshi%2CB
Articlehttps://doi.org/10.1109%2FTMI.2019.2962361
PubMedhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31880546
Google Scholarhttp://scholar.google.com/scholar_lookup?&title=ERGO%3A%20efficient%20recurrent%20graph%20optimized%20emitter%20density%20estimation%20in%20single%20molecule%20localization%20microscopy&journal=IEEE%20Trans%20Med%20Imaging&doi=10.1109%2FTMI.2019.2962361&volume=39&issue=6&pages=1942-1956&publication_year=2020&author=Cardoen%2CB
Download referenceshttps://citation-needed.springer.com/v2/references/10.1007/s00018-022-04585-8?format=refman&flavour=references
https://www.westgrid.ca/https://www.westgrid.ca/
www.computecanada.cahttp://www.computecanada.ca
View author publicationshttps://link.springer.com/search?sortBy=newestFirst&contributor=Parsa%20Alan
PubMedhttps://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Parsa%20Alan
Google Scholarhttps://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Parsa%20Alan%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
View author publicationshttps://link.springer.com/search?sortBy=newestFirst&contributor=Kurt%20R.%20Vandevoorde
PubMedhttps://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Kurt%20R.%20Vandevoorde
Google Scholarhttps://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Kurt%20R.%20Vandevoorde%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
View author publicationshttps://link.springer.com/search?sortBy=newestFirst&contributor=Bharat%20Joshi
PubMedhttps://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Bharat%20Joshi
Google Scholarhttps://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Bharat%20Joshi%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
View author publicationshttps://link.springer.com/search?sortBy=newestFirst&contributor=Ben%20Cardoen
PubMedhttps://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Ben%20Cardoen
Google Scholarhttps://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Ben%20Cardoen%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
View author publicationshttps://link.springer.com/search?sortBy=newestFirst&contributor=Guang%20Gao
PubMedhttps://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Guang%20Gao
Google Scholarhttps://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Guang%20Gao%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
View author publicationshttps://link.springer.com/search?sortBy=newestFirst&contributor=Yahya%20Mohammadzadeh
PubMedhttps://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Yahya%20Mohammadzadeh
Google Scholarhttps://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Yahya%20Mohammadzadeh%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
View author publicationshttps://link.springer.com/search?sortBy=newestFirst&contributor=Ghassan%20Hamarneh
PubMedhttps://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Ghassan%20Hamarneh
Google Scholarhttps://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Ghassan%20Hamarneh%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
View author publicationshttps://link.springer.com/search?sortBy=newestFirst&contributor=Ivan%20R.%20Nabi
PubMedhttps://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Ivan%20R.%20Nabi
Google Scholarhttps://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Ivan%20R.%20Nabi%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en
Supplementary file1 (PDF 933 KB)https://static-content.springer.com/esm/art%3A10.1007%2Fs00018-022-04585-8/MediaObjects/18_2022_4585_MOESM1_ESM.pdf
http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/
Reprints and permissionshttps://s100.copyright.com/AppDispatchServlet?title=Basal%20Gp78-dependent%20mitophagy%20promotes%20mitochondrial%20health%20and%20limits%20mitochondrial%20ROS&author=Parsa%20Alan%20et%20al&contentID=10.1007%2Fs00018-022-04585-8©right=The%20Author%28s%29&publication=1420-682X&publicationDate=2022-10-25&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY
https://crossmark.crossref.org/dialog/?doi=10.1007/s00018-022-04585-8
Download citationhttps://citation-needed.springer.com/v2/references/10.1007/s00018-022-04585-8?format=refman&flavour=citation
Gp78 ubiquitin ligasehttps://link.springer.com/search?query=Gp78%20ubiquitin%20ligase&facet-discipline="Life%20Sciences"
Mitochondriahttps://link.springer.com/search?query=Mitochondria&facet-discipline="Life%20Sciences"
Mitophagyhttps://link.springer.com/search?query=Mitophagy&facet-discipline="Life%20Sciences"
Reactive oxygen specieshttps://link.springer.com/search?query=Reactive%20oxygen%20species&facet-discipline="Life%20Sciences"
GFP-mRFP tandem fluorescent-tagged LC3https://link.springer.com/search?query=GFP-mRFP%20tandem%20fluorescent-tagged%20LC3&facet-discipline="Life%20Sciences"
Spot detectionhttps://link.springer.com/search?query=Spot%20detection&facet-discipline="Life%20Sciences"
SPECHThttps://link.springer.com/search?query=SPECHT&facet-discipline="Life%20Sciences"
View author profile https://link.springer.com/researchers/76731787SN
View author profile https://link.springer.com/researchers/47370624SN
Find a journal https://link.springer.com/journals/
Publish with us https://www.springernature.com/gp/authors
Track your research https://link.springernature.com/home/
Journals A-Zhttps://link.springer.com/journals/a/1
Books A-Zhttps://link.springer.com/books/a/1
Journal finderhttps://link.springer.com/journals
Publish your researchhttps://www.springernature.com/gp/authors
Language editinghttps://authorservices.springernature.com/go/sn/?utm_source=SNLinkfooter&utm_medium=Web&utm_campaign=SNReferral
Open access publishinghttps://www.springernature.com/gp/open-science/about/the-fundamentals-of-open-access-and-open-research
Our productshttps://www.springernature.com/gp/products
Librarianshttps://www.springernature.com/gp/librarians
Societieshttps://www.springernature.com/gp/societies
Partners and advertisershttps://www.springernature.com/gp/partners
Springerhttps://link.springer.com/brands/springer
Nature Portfoliohttps://www.nature.com/
BMChttps://link.springer.com/brands/bmc
Palgrave Macmillanhttps://link.springer.com/brands/palgrave
Apresshttps://link.springer.com/brands/apress
Discoverhttps://link.springer.com/brands/discover
Your US state privacy rightshttps://www.springernature.com/gp/legal/ccpa
Accessibility statementhttps://link.springer.com/accessibility
Terms and conditionshttps://link.springer.com/termsandconditions
Privacy policyhttps://link.springer.com/privacystatement
Help and supporthttps://support.springernature.com/en/support/home
Legal noticehttps://link.springer.com/legal-notice
Cancel contracts herehttps://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations
https://www.springernature.com/

Viewport: width=device-width, initial-scale=1

Robots: max-image-preview:large


URLs of crawlers that visited me.