René's URL Explorer Experiment


Title: NLP | Jupyter notebooks – a Swiss Army Knife for Quants

Open Graph Title: NLP – Jupyter notebooks – a Swiss Army Knife for Quants

Description: Posts about NLP written by Matthias Groncki

Opengraph URL: https://ipythonquant.wordpress.com/tag/nlp/

Generator: WordPress.com

direct link

Domain: ipythonquant.wordpress.com

google-site-verificationut82iOH86wxZKfvPL9TxxNjunb0ppeDLJb96L6R4U8M
msvalidate.014CFA2028380831691D3477A82D860554
og:typewebsite
og:site_nameJupyter notebooks - a Swiss Army Knife for Quants
og:imagehttps://s0.wp.com/i/blank.jpg?m=1383295312i
og:image:width200
og:image:height200
og:localeen_US
fb:app_id249643311490
theme-color#eeeeee

Links:

Skip to contenthttps://ipythonquant.wordpress.com/tag/nlp/#content
https://ipythonquant.wordpress.com/
Jupyter notebooks – a Swiss Army Knife for Quantshttps://ipythonquant.wordpress.com/
Homehttps://ipythonquant.wordpress.com/
About mehttps://ipythonquant.wordpress.com/about-me/
Disclaimerhttps://ipythonquant.wordpress.com/disclaimer/
Downloadshttps://ipythonquant.wordpress.com/downloads-2/
Linkshttps://ipythonquant.wordpress.com/links/
https://ipythonquant.wordpress.com/
Fraud detection: Behavioural modeling and unsupervised anomaly detection with deep learninghttps://ipythonquant.wordpress.com/2018/11/11/fraud-detection-unsupervised-anomaly-detection-in-transactional-data-with-rnns-and-embeddings/
11/11/201812/11/2018https://ipythonquant.wordpress.com/2018/11/11/fraud-detection-unsupervised-anomaly-detection-in-transactional-data-with-rnns-and-embeddings/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
Leave a commenthttps://ipythonquant.wordpress.com/2018/11/11/fraud-detection-unsupervised-anomaly-detection-in-transactional-data-with-rnns-and-embeddings/#respond
https://www.github.com/mgroncki/frauddetectionhttps://www.github.com/mgroncki/frauddetection
http://colah.github.io/posts/2015-08-Understanding-LSTMs/http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.tensorflow.org/tutorials/representation/word2vechttps://www.tensorflow.org/tutorials/representation/word2vec
https://web.stanford.edu/class/cs124/lec/languagemodeling.pdfhttps://web.stanford.edu/class/cs124/lec/languagemodeling.pdf
https://medium.com/@florijan.stamenkovic_99541/rnn-language-modelling-with-pytorch-packed-batching-and-tied-weights-9d8952db35a9https://medium.com/@florijan.stamenkovic_99541/rnn-language-modelling-with-pytorch-packed-batching-and-tied-weights-9d8952db35a9
https://github.com/mgroncki/FraudDetectionhttps://github.com/mgroncki/FraudDetection
https://www.github.com/pytorch/examples/tree/master/word_language_modelhttps://www.github.com/pytorch/examples/tree/master/word_language_model
gensimhttps://radimrehurek.com/gensim/
Matthias Gronckihttps://gravatar.com/mgroncki
View Full Profile → https://gravatar.com/mgroncki
LinkedIn http://www.linkedin.com/in/matthias-groncki-235490aa
Allgemeinhttps://ipythonquant.wordpress.com/category/allgemein/
Classificationhttps://ipythonquant.wordpress.com/category/classification/
Data Sciencehttps://ipythonquant.wordpress.com/category/data-science/
Deep Learninghttps://ipythonquant.wordpress.com/category/deep-learning/
Fraud Detectionhttps://ipythonquant.wordpress.com/category/fraud-detection/
Machine Learninghttps://ipythonquant.wordpress.com/category/machine-learning/
Monte Carlo Simulationhttps://ipythonquant.wordpress.com/category/monte-carlo-simulation/
Pricinghttps://ipythonquant.wordpress.com/category/pricing/
Pythonhttps://ipythonquant.wordpress.com/category/python/
Quantitative Financehttps://ipythonquant.wordpress.com/category/quantitative-finance/
QuantLibhttps://ipythonquant.wordpress.com/category/quantlib/
TensorFlowhttps://ipythonquant.wordpress.com/category/tensorflow/
xVAhttps://ipythonquant.wordpress.com/category/xva/
American Monte Carlohttps://ipythonquant.wordpress.com/tag/american-monte-carlo/
Automatic Differentiationhttps://ipythonquant.wordpress.com/tag/automatic-differentiation/
Bermudan Swaptionhttps://ipythonquant.wordpress.com/tag/bermudan-swaption/
Classificationhttps://ipythonquant.wordpress.com/tag/classification/
Counterparty Credit Riskhttps://ipythonquant.wordpress.com/tag/counterparty-credit-risk/
CVAhttps://ipythonquant.wordpress.com/tag/cva/
Data Sciencehttps://ipythonquant.wordpress.com/tag/data-science/
Deep Learninghttps://ipythonquant.wordpress.com/tag/deep-learning/
Dimension reductionhttps://ipythonquant.wordpress.com/tag/dimension-reduction/
Embeddinghttps://ipythonquant.wordpress.com/tag/embedding/
European Swaptionhttps://ipythonquant.wordpress.com/tag/european-swaption/
Exotic Optionshttps://ipythonquant.wordpress.com/tag/exotic-options/
Expected Exposurehttps://ipythonquant.wordpress.com/tag/expected-exposure/
Fraudhttps://ipythonquant.wordpress.com/tag/fraud/
Fraud Detectionhttps://ipythonquant.wordpress.com/tag/fraud-detection/
Image Classificationhttps://ipythonquant.wordpress.com/tag/image-classification/
Interest rate derivateshttps://ipythonquant.wordpress.com/tag/interest-rate-derivates/
IPythonhttps://ipythonquant.wordpress.com/tag/ipython/
Kerashttps://ipythonquant.wordpress.com/tag/keras/
KNIMEhttps://ipythonquant.wordpress.com/tag/knime/
Logistic Regressionhttps://ipythonquant.wordpress.com/tag/logistic-regression/
LSTMhttps://ipythonquant.wordpress.com/tag/lstm/
Machine Learninghttps://ipythonquant.wordpress.com/tag/machine-learning/
Monte Carlo Simulationhttps://ipythonquant.wordpress.com/tag/monte-carlo-simulation/
NLPhttps://ipythonquant.wordpress.com/tag/nlp/
Optionshttps://ipythonquant.wordpress.com/tag/options/
Ordinary least squareshttps://ipythonquant.wordpress.com/tag/ordinary-least-squares/
PFEhttps://ipythonquant.wordpress.com/tag/pfe/
Pricinghttps://ipythonquant.wordpress.com/tag/pricing/
Pythonhttps://ipythonquant.wordpress.com/tag/python/
PyTorchhttps://ipythonquant.wordpress.com/tag/pytorch/
QuantLibhttps://ipythonquant.wordpress.com/tag/quantlib/
Recurrent Neural Networkhttps://ipythonquant.wordpress.com/tag/recurrent-neural-network/
Representation Learninghttps://ipythonquant.wordpress.com/tag/representation-learning/
Scikit-Learnhttps://ipythonquant.wordpress.com/tag/scikit-learn/
Short rate modelhttps://ipythonquant.wordpress.com/tag/short-rate-model/
Signature Verificationhttps://ipythonquant.wordpress.com/tag/signature-verification/
Swaphttps://ipythonquant.wordpress.com/tag/swap/
Swaptionhttps://ipythonquant.wordpress.com/tag/swaption/
Swighttps://ipythonquant.wordpress.com/tag/swig/
TensorFlowhttps://ipythonquant.wordpress.com/tag/tensorflow/
Transfer Learninghttps://ipythonquant.wordpress.com/tag/transfer-learning/
Unsupervised Learninghttps://ipythonquant.wordpress.com/tag/unsupervised-learning/
Fast Monte-Carlo Pricing and Greeks for Barrier Options using GPU computing on Google Cloud Platform in Pythonhttps://ipythonquant.wordpress.com/2018/11/18/fast-monte-carlo-pricing-and-greeks-for-barrier-options-using-gpu-computing-on-google-cloud-platform-in-python/
Fraud detection: Behavioural modeling and unsupervised anomaly detection with deep learninghttps://ipythonquant.wordpress.com/2018/11/11/fraud-detection-unsupervised-anomaly-detection-in-transactional-data-with-rnns-and-embeddings/
Signature Verification with deep learning / transfer learning using Keras and KNIMEhttps://ipythonquant.wordpress.com/2018/08/26/signature-verification-with-deep-learning-transfer-learning-using-keras-and-knime/
Fooling Around with KNIME cont’d: Deep Learninghttps://ipythonquant.wordpress.com/2018/08/05/fooling-around-with-knime-contd-deep-learning/
Fooling around with KNIMEhttps://ipythonquant.wordpress.com/2018/07/19/fooling-around-with-knime/
Start a Blog at WordPress.comhttps://wordpress.com/?ref=footer_custom_blog
Cookie Policy https://automattic.com/cookies/
Subscribe https://ipythonquant.wordpress.com/tag/nlp/
Subscribed https://ipythonquant.wordpress.com/tag/nlp/
Jupyter notebooks - a Swiss Army Knife for Quants https://ipythonquant.wordpress.com
Log in now.https://wordpress.com/log-in?redirect_to=https%3A%2F%2Fipythonquant.wordpress.com%2F2018%2F11%2F11%2Ffraud-detection-unsupervised-anomaly-detection-in-transactional-data-with-rnns-and-embeddings%2F&signup_flow=account
Jupyter notebooks - a Swiss Army Knife for Quants https://ipythonquant.wordpress.com
Subscribe https://ipythonquant.wordpress.com/tag/nlp/
Subscribed https://ipythonquant.wordpress.com/tag/nlp/
Sign uphttps://wordpress.com/start/
Log inhttps://wordpress.com/log-in?redirect_to=https%3A%2F%2Fipythonquant.wordpress.com%2F2018%2F11%2F11%2Ffraud-detection-unsupervised-anomaly-detection-in-transactional-data-with-rnns-and-embeddings%2F&signup_flow=account
Report this content https://wordpress.com/abuse/?report_url=https://ipythonquant.wordpress.com
View site in Reader https://wordpress.com/reader/feeds/34889292
Manage subscriptionshttps://subscribe.wordpress.com/
Collapse this barhttps://ipythonquant.wordpress.com/tag/nlp/
https://ipythonquant.wordpress.com/tag/nlp/
https://ipythonquant.wordpress.com/tag/nlp/
https://ipythonquant.wordpress.com/tag/nlp/
Get startedhttps://wordpress.com/start/?ref=marketing_bar
https://wordpress.com/start/?ref=marketing_bar

Viewport: width=device-width, initial-scale=1

Robots: max-image-preview:large


URLs of crawlers that visited me.