René's URL Explorer Experiment


Title: Python | Jupyter notebooks – a Swiss Army Knife for Quants

Open Graph Title: Python – Jupyter notebooks – a Swiss Army Knife for Quants

Description: Posts about Python written by Matthias Groncki

Opengraph URL: https://ipythonquant.wordpress.com/category/python/

Generator: WordPress.com

direct link

Domain: ipythonquant.wordpress.com

google-site-verificationut82iOH86wxZKfvPL9TxxNjunb0ppeDLJb96L6R4U8M
msvalidate.014CFA2028380831691D3477A82D860554
og:typewebsite
og:site_nameJupyter notebooks - a Swiss Army Knife for Quants
og:imagehttps://s0.wp.com/i/blank.jpg?m=1383295312i
og:image:width200
og:image:height200
og:localeen_US
fb:app_id249643311490
theme-color#eeeeee

Links:

Skip to contenthttps://ipythonquant.wordpress.com/category/python/#content
https://ipythonquant.wordpress.com/
Jupyter notebooks – a Swiss Army Knife for Quantshttps://ipythonquant.wordpress.com/
Homehttps://ipythonquant.wordpress.com/
About mehttps://ipythonquant.wordpress.com/about-me/
Disclaimerhttps://ipythonquant.wordpress.com/disclaimer/
Downloadshttps://ipythonquant.wordpress.com/downloads-2/
Linkshttps://ipythonquant.wordpress.com/links/
https://ipythonquant.wordpress.com/
From Logistic Regression in SciKit-Learn to Deep Learning with TensorFlow – A fraud detection case study – Part Ihttps://ipythonquant.wordpress.com/2018/05/08/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-i/
08/05/2018https://ipythonquant.wordpress.com/2018/05/08/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-i/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
7 Commentshttps://ipythonquant.wordpress.com/2018/05/08/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-i/#comments
GitHubhttps://github.com/mgroncki/IPythonScripts/blob/master/LogisticRegression_Part1.ipynb
kagglehttps://www.kaggle.com/mgroncki/logistic-regression-in-sk-learn
kagglehttps://www.kaggle.com/mlg-ulb/creditcardfraud
Anaconda Cloudhttps://anaconda.org
tutorialshttp://pandas.pydata.org/pandas-docs/stable/tutorials.html
https://github.com/scikit-learn-contrib/imbalanced-learnhttps://github.com/scikit-learn-contrib/imbalanced-learn
http://scikit-learn.org/stable/modules/linear_model.html#logistic-regressionhttp://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
Exposure Simulation Part III / CVA for Bermudan Swaptionshttps://ipythonquant.wordpress.com/2016/06/26/exposure-simulation-part-iii-cva-for-bermudan-swaptions/
26/06/201626/06/2016https://ipythonquant.wordpress.com/2016/06/26/exposure-simulation-part-iii-cva-for-bermudan-swaptions/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
1 Commenthttps://ipythonquant.wordpress.com/2016/06/26/exposure-simulation-part-iii-cva-for-bermudan-swaptions/#comments
previous postshttps://ipythonquant.wordpress.com/2015/04/13/cva-calculation-with-quantlib-and-python/
posthttps://ipythonquant.wordpress.com/2016/05/29/exposure-simulation-cva-and-pfe-for-multi-callable-swaps-part-ii/
herehttp://nbviewer.jupyter.org/github/mgroncki/IPythonScripts/blob/master/MonteCarloPricing-Swaption-Part_III.ipynb
Exposure Simulation / CVA and PFE for multi-callable swaps Part IIhttps://ipythonquant.wordpress.com/2016/05/29/exposure-simulation-cva-and-pfe-for-multi-callable-swaps-part-ii/
29/05/201629/05/2016https://ipythonquant.wordpress.com/2016/05/29/exposure-simulation-cva-and-pfe-for-multi-callable-swaps-part-ii/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
3 Commentshttps://ipythonquant.wordpress.com/2016/05/29/exposure-simulation-cva-and-pfe-for-multi-callable-swaps-part-ii/#comments
last post https://ipythonquant.wordpress.com/2015/05/02/exposure-simulation-pfe-and-cva-for-multi-callable-swaps-bermudan-swaptions-part-1-of-3/
https://ipythonquant.wordpress.com/wp-content/uploads/2016/05/screen-shot-2016-05-29-at-10-38-26.png
https://ipythonquant.wordpress.com/wp-content/uploads/2016/05/screen-shot-2016-05-29-at-10-43-22.png
statsmodelshttp://statsmodels.sourceforge.net
https://ipythonquant.wordpress.com/wp-content/uploads/2016/05/screen-shot-2016-05-29-at-10-53-59.png
https://ipythonquant.wordpress.com/wp-content/uploads/2016/05/screen-shot-2016-05-29-at-10-59-51.png
https://ipythonquant.wordpress.com/wp-content/uploads/2016/05/screen-shot-2016-05-29-at-11-00-47.png
nbViewerhttp://nbviewer.jupyter.org/github/mgroncki/IPythonScripts/blob/master/MonteCarloPricing-Swaption-Part_II.ipynb
Exposure simulation / PFE and CVA for multi-callable swaps / Bermudan swaptions… Part 1 of 3https://ipythonquant.wordpress.com/2015/05/02/exposure-simulation-pfe-and-cva-for-multi-callable-swaps-bermudan-swaptions-part-1-of-3/
02/05/201502/05/2015https://ipythonquant.wordpress.com/2015/05/02/exposure-simulation-pfe-and-cva-for-multi-callable-swaps-bermudan-swaptions-part-1-of-3/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
3 Commentshttps://ipythonquant.wordpress.com/2015/05/02/exposure-simulation-pfe-and-cva-for-multi-callable-swaps-bermudan-swaptions-part-1-of-3/#comments
potential future exposurehttps://ipythonquant.wordpress.com/2015/04/08/expected-exposure-and-pfe-simulation-with-quantlib-and-python/
credit value adjustmenthttps://ipythonquant.wordpress.com/2015/04/13/cva-calculation-with-quantlib-and-python/
QuantLib forkhttps://github.com/mgroncki/quantlib/tree/SwigSwapExtension
nbviewerhttp://nbviewer.ipython.org/github/mgroncki/IPythonScripts/blob/master/MonteCarloPricing-Swaption.ipynb
GitHubhttps://github.com/mgroncki/IPythonScripts
Expected Exposure and PFE simulation with QuantLib and Pythonhttps://ipythonquant.wordpress.com/2015/04/08/expected-exposure-and-pfe-simulation-with-quantlib-and-python/
08/04/201516/04/2015https://ipythonquant.wordpress.com/2015/04/08/expected-exposure-and-pfe-simulation-with-quantlib-and-python/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
8 Commentshttps://ipythonquant.wordpress.com/2015/04/08/expected-exposure-and-pfe-simulation-with-quantlib-and-python/#comments
IPythonScriptshttps://github.com/mgroncki/IPythonScripts
nbviewer http://nbviewer.ipython.org/github/mgroncki/IPythonScripts/blob/master/ExpectedExposureSimulation.ipynb
https://ipythonquant.wordpress.com/wp-content/uploads/2015/04/swappathsmc.png
https://ipythonquant.wordpress.com/wp-content/uploads/2015/04/exposureswap.png
https://ipythonquant.wordpress.com/wp-content/uploads/2015/04/expexposureswap.png
posthttps://ipythonquant.wordpress.com/2015/04/04/a-brief-introduction-to-the-quantlib-in-python/
https://ipythonquant.wordpress.com/wp-content/uploads/2015/04/ee_netting.png
https://ipythonquant.wordpress.com/wp-content/uploads/2015/04/pfe_netting.png
A brief introduction to the QuantLib in Python…https://ipythonquant.wordpress.com/2015/04/04/a-brief-introduction-to-the-quantlib-in-python/
04/04/201508/04/2015https://ipythonquant.wordpress.com/2015/04/04/a-brief-introduction-to-the-quantlib-in-python/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
7 Commentshttps://ipythonquant.wordpress.com/2015/04/04/a-brief-introduction-to-the-quantlib-in-python/#comments
swighttp://www.swig.org
websitehttp://www.lfd.uci.edu/~gohlke/pythonlibs/
GitHubhttps://github.com/lballabio/quantlib
boost libraryhttp://www.boost.org
swighttp://swig.org
herehttp://quantlib.org/install/linux.shtml
herehttp://quantlib.org/install/macosx.shtml
IPythonScriptshttp://github.com/mgroncki/ipythonscripts
https://ipythonquant.wordpress.com/wp-content/uploads/2015/04/discountcurve.png
Matthias Gronckihttps://gravatar.com/mgroncki
View Full Profile → https://gravatar.com/mgroncki
LinkedIn http://www.linkedin.com/in/matthias-groncki-235490aa
Allgemeinhttps://ipythonquant.wordpress.com/category/allgemein/
Classificationhttps://ipythonquant.wordpress.com/category/classification/
Data Sciencehttps://ipythonquant.wordpress.com/category/data-science/
Deep Learninghttps://ipythonquant.wordpress.com/category/deep-learning/
Fraud Detectionhttps://ipythonquant.wordpress.com/category/fraud-detection/
Machine Learninghttps://ipythonquant.wordpress.com/category/machine-learning/
Monte Carlo Simulationhttps://ipythonquant.wordpress.com/category/monte-carlo-simulation/
Pricinghttps://ipythonquant.wordpress.com/category/pricing/
Pythonhttps://ipythonquant.wordpress.com/category/python/
Quantitative Financehttps://ipythonquant.wordpress.com/category/quantitative-finance/
QuantLibhttps://ipythonquant.wordpress.com/category/quantlib/
TensorFlowhttps://ipythonquant.wordpress.com/category/tensorflow/
xVAhttps://ipythonquant.wordpress.com/category/xva/
American Monte Carlohttps://ipythonquant.wordpress.com/tag/american-monte-carlo/
Automatic Differentiationhttps://ipythonquant.wordpress.com/tag/automatic-differentiation/
Bermudan Swaptionhttps://ipythonquant.wordpress.com/tag/bermudan-swaption/
Classificationhttps://ipythonquant.wordpress.com/tag/classification/
Counterparty Credit Riskhttps://ipythonquant.wordpress.com/tag/counterparty-credit-risk/
CVAhttps://ipythonquant.wordpress.com/tag/cva/
Data Sciencehttps://ipythonquant.wordpress.com/tag/data-science/
Deep Learninghttps://ipythonquant.wordpress.com/tag/deep-learning/
Dimension reductionhttps://ipythonquant.wordpress.com/tag/dimension-reduction/
Embeddinghttps://ipythonquant.wordpress.com/tag/embedding/
European Swaptionhttps://ipythonquant.wordpress.com/tag/european-swaption/
Exotic Optionshttps://ipythonquant.wordpress.com/tag/exotic-options/
Expected Exposurehttps://ipythonquant.wordpress.com/tag/expected-exposure/
Fraudhttps://ipythonquant.wordpress.com/tag/fraud/
Fraud Detectionhttps://ipythonquant.wordpress.com/tag/fraud-detection/
Image Classificationhttps://ipythonquant.wordpress.com/tag/image-classification/
Interest rate derivateshttps://ipythonquant.wordpress.com/tag/interest-rate-derivates/
IPythonhttps://ipythonquant.wordpress.com/tag/ipython/
Kerashttps://ipythonquant.wordpress.com/tag/keras/
KNIMEhttps://ipythonquant.wordpress.com/tag/knime/
Logistic Regressionhttps://ipythonquant.wordpress.com/tag/logistic-regression/
LSTMhttps://ipythonquant.wordpress.com/tag/lstm/
Machine Learninghttps://ipythonquant.wordpress.com/tag/machine-learning/
Monte Carlo Simulationhttps://ipythonquant.wordpress.com/tag/monte-carlo-simulation/
NLPhttps://ipythonquant.wordpress.com/tag/nlp/
Optionshttps://ipythonquant.wordpress.com/tag/options/
Ordinary least squareshttps://ipythonquant.wordpress.com/tag/ordinary-least-squares/
PFEhttps://ipythonquant.wordpress.com/tag/pfe/
Pricinghttps://ipythonquant.wordpress.com/tag/pricing/
Pythonhttps://ipythonquant.wordpress.com/tag/python/
PyTorchhttps://ipythonquant.wordpress.com/tag/pytorch/
QuantLibhttps://ipythonquant.wordpress.com/tag/quantlib/
Recurrent Neural Networkhttps://ipythonquant.wordpress.com/tag/recurrent-neural-network/
Representation Learninghttps://ipythonquant.wordpress.com/tag/representation-learning/
Scikit-Learnhttps://ipythonquant.wordpress.com/tag/scikit-learn/
Short rate modelhttps://ipythonquant.wordpress.com/tag/short-rate-model/
Signature Verificationhttps://ipythonquant.wordpress.com/tag/signature-verification/
Swaphttps://ipythonquant.wordpress.com/tag/swap/
Swaptionhttps://ipythonquant.wordpress.com/tag/swaption/
Swighttps://ipythonquant.wordpress.com/tag/swig/
TensorFlowhttps://ipythonquant.wordpress.com/tag/tensorflow/
Transfer Learninghttps://ipythonquant.wordpress.com/tag/transfer-learning/
Unsupervised Learninghttps://ipythonquant.wordpress.com/tag/unsupervised-learning/
Fast Monte-Carlo Pricing and Greeks for Barrier Options using GPU computing on Google Cloud Platform in Pythonhttps://ipythonquant.wordpress.com/2018/11/18/fast-monte-carlo-pricing-and-greeks-for-barrier-options-using-gpu-computing-on-google-cloud-platform-in-python/
Fraud detection: Behavioural modeling and unsupervised anomaly detection with deep learninghttps://ipythonquant.wordpress.com/2018/11/11/fraud-detection-unsupervised-anomaly-detection-in-transactional-data-with-rnns-and-embeddings/
Signature Verification with deep learning / transfer learning using Keras and KNIMEhttps://ipythonquant.wordpress.com/2018/08/26/signature-verification-with-deep-learning-transfer-learning-using-keras-and-knime/
Fooling Around with KNIME cont’d: Deep Learninghttps://ipythonquant.wordpress.com/2018/08/05/fooling-around-with-knime-contd-deep-learning/
Fooling around with KNIMEhttps://ipythonquant.wordpress.com/2018/07/19/fooling-around-with-knime/
Start a Blog at WordPress.comhttps://wordpress.com/?ref=footer_custom_blog
Cookie Policy https://automattic.com/cookies/
Subscribe https://ipythonquant.wordpress.com/category/python/
Subscribed https://ipythonquant.wordpress.com/category/python/
Jupyter notebooks - a Swiss Army Knife for Quants https://ipythonquant.wordpress.com
Log in now.https://wordpress.com/log-in?redirect_to=https%3A%2F%2Fipythonquant.wordpress.com%2F2018%2F05%2F08%2Ffrom-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-i%2F&signup_flow=account
Jupyter notebooks - a Swiss Army Knife for Quants https://ipythonquant.wordpress.com
Subscribe https://ipythonquant.wordpress.com/category/python/
Subscribed https://ipythonquant.wordpress.com/category/python/
Sign uphttps://wordpress.com/start/
Log inhttps://wordpress.com/log-in?redirect_to=https%3A%2F%2Fipythonquant.wordpress.com%2F2018%2F05%2F08%2Ffrom-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-i%2F&signup_flow=account
Report this content https://wordpress.com/abuse/?report_url=https://ipythonquant.wordpress.com
View site in Reader https://wordpress.com/reader/feeds/34889292
Manage subscriptionshttps://subscribe.wordpress.com/
Collapse this barhttps://ipythonquant.wordpress.com/category/python/
https://ipythonquant.wordpress.com/category/python/
https://ipythonquant.wordpress.com/category/python/
https://ipythonquant.wordpress.com/category/python/
Get startedhttps://wordpress.com/start/?ref=marketing_bar
https://wordpress.com/start/?ref=marketing_bar

Viewport: width=device-width, initial-scale=1

Robots: max-image-preview:large


URLs of crawlers that visited me.