René's URL Explorer Experiment


Title: Jupyter notebooks – a Swiss Army Knife for Quants | A blog about quantitative finance, data science in fraud detection, machine and deep learning by Matthias Groncki

Open Graph Title: Jupyter notebooks - a Swiss Army Knife for Quants

Description: A blog about quantitative finance, data science in fraud detection, machine and deep learning by Matthias Groncki

Open Graph Description: A blog about quantitative finance, data science in fraud detection, machine and deep learning by Matthias Groncki

Opengraph URL: https://ipythonquant.wordpress.com/

Generator: WordPress.com

direct link

Domain: ipythonquant.wordpress.com

google-site-verificationut82iOH86wxZKfvPL9TxxNjunb0ppeDLJb96L6R4U8M
msvalidate.014CFA2028380831691D3477A82D860554
og:typewebsite
og:site_nameJupyter notebooks - a Swiss Army Knife for Quants
og:imagehttps://s0.wp.com/i/blank.jpg?m=1383295312i
og:image:width200
og:image:height200
og:localeen_US
fb:app_id249643311490
theme-color#eeeeee
None165

Links:

Skip to contenthttps://ipythonquant.wordpress.com/#content
https://ipythonquant.wordpress.com/
Jupyter notebooks – a Swiss Army Knife for Quantshttps://ipythonquant.wordpress.com/
Homehttps://ipythonquant.wordpress.com/
About mehttps://ipythonquant.wordpress.com/about-me/
Disclaimerhttps://ipythonquant.wordpress.com/disclaimer/
Downloadshttps://ipythonquant.wordpress.com/downloads-2/
Linkshttps://ipythonquant.wordpress.com/links/
https://ipythonquant.wordpress.com/
Fast Monte-Carlo Pricing and Greeks for Barrier Options using GPU computing on Google Cloud Platform in Pythonhttps://ipythonquant.wordpress.com/2018/11/18/fast-monte-carlo-pricing-and-greeks-for-barrier-options-using-gpu-computing-on-google-cloud-platform-in-python/
18/11/201818/11/2018https://ipythonquant.wordpress.com/2018/11/18/fast-monte-carlo-pricing-and-greeks-for-barrier-options-using-gpu-computing-on-google-cloud-platform-in-python/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
Leave a commenthttps://ipythonquant.wordpress.com/2018/11/18/fast-monte-carlo-pricing-and-greeks-for-barrier-options-using-gpu-computing-on-google-cloud-platform-in-python/#respond
https://github.com/mgroncki/IPythonScripts/PricingPyTorchhttps://github.com/mgroncki/IPythonScripts/PricingPyTorch
View at Medium.comhttps://medium.com/@howkhang/ultimate-guide-to-setting-up-a-google-cloud-machine-for-fast-ai-version-2-f374208be43
Fraud detection: Behavioural modeling and unsupervised anomaly detection with deep learninghttps://ipythonquant.wordpress.com/2018/11/11/fraud-detection-unsupervised-anomaly-detection-in-transactional-data-with-rnns-and-embeddings/
11/11/201812/11/2018https://ipythonquant.wordpress.com/2018/11/11/fraud-detection-unsupervised-anomaly-detection-in-transactional-data-with-rnns-and-embeddings/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
Leave a commenthttps://ipythonquant.wordpress.com/2018/11/11/fraud-detection-unsupervised-anomaly-detection-in-transactional-data-with-rnns-and-embeddings/#respond
https://www.github.com/mgroncki/frauddetectionhttps://www.github.com/mgroncki/frauddetection
http://colah.github.io/posts/2015-08-Understanding-LSTMs/http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.tensorflow.org/tutorials/representation/word2vechttps://www.tensorflow.org/tutorials/representation/word2vec
https://web.stanford.edu/class/cs124/lec/languagemodeling.pdfhttps://web.stanford.edu/class/cs124/lec/languagemodeling.pdf
https://medium.com/@florijan.stamenkovic_99541/rnn-language-modelling-with-pytorch-packed-batching-and-tied-weights-9d8952db35a9https://medium.com/@florijan.stamenkovic_99541/rnn-language-modelling-with-pytorch-packed-batching-and-tied-weights-9d8952db35a9
https://github.com/mgroncki/FraudDetectionhttps://github.com/mgroncki/FraudDetection
https://www.github.com/pytorch/examples/tree/master/word_language_modelhttps://www.github.com/pytorch/examples/tree/master/word_language_model
gensimhttps://radimrehurek.com/gensim/
Signature Verification with deep learning / transfer learning using Keras and KNIMEhttps://ipythonquant.wordpress.com/2018/08/26/signature-verification-with-deep-learning-transfer-learning-using-keras-and-knime/
26/08/201826/08/2018https://ipythonquant.wordpress.com/2018/08/26/signature-verification-with-deep-learning-transfer-learning-using-keras-and-knime/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
Leave a commenthttps://ipythonquant.wordpress.com/2018/08/26/signature-verification-with-deep-learning-transfer-learning-using-keras-and-knime/#respond
Machine Learning methodshttps://ipythonquant.wordpress.com/2018/05/08/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-i/
Deep Learninghttps://ipythonquant.wordpress.com/2018/06/20/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-iii/
KNIMEhttps://ipythonquant.wordpress.com/2018/08/05/fooling-around-with-knime-contd-deep-learning/
VGG16http://www.robots.ox.ac.uk/~vgg/research/very_deep/
Offline Signature Verification with Convolutional Neural Networkshttp://cs231n.stanford.edu/reports/2016/pdfs/276_Report.pdf
http://www.iapr-tc11.org/mediawiki/index.php/ICDAR_2011_Signature_Verification_Competition_(SigComp2011)http://www.iapr-tc11.org/mediawiki/index.php/ICDAR_2011_Signature_Verification_Competition_(SigComp2011)
Fooling Around with KNIME cont’d: Deep Learninghttps://ipythonquant.wordpress.com/2018/08/05/fooling-around-with-knime-contd-deep-learning/
05/08/201805/08/2018https://ipythonquant.wordpress.com/2018/08/05/fooling-around-with-knime-contd-deep-learning/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
1 Commenthttps://ipythonquant.wordpress.com/2018/08/05/fooling-around-with-knime-contd-deep-learning/#comments
posthttps://ipythonquant.wordpress.com/2018/07/19/fooling-around-with-knime/
fraud detection https://ipythonquant.wordpress.com/2018/06/20/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-iii/
https://www.knime.com/deeplearning/kerashttps://www.knime.com/deeplearning/keras
Fooling around with KNIMEhttps://ipythonquant.wordpress.com/2018/07/19/fooling-around-with-knime/
19/07/2018https://ipythonquant.wordpress.com/2018/07/19/fooling-around-with-knime/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
1 Commenthttps://ipythonquant.wordpress.com/2018/07/19/fooling-around-with-knime/#comments
KNIMEhttps://www.knime.com
bloghttps://quantlib.wordpress.com
postshttps://ipythonquant.wordpress.com/2018/05/08/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-i/
From Logistic Regression in SciKit-Learn to Deep Learning with TensorFlow – A fraud detection case study – Part IIIhttps://ipythonquant.wordpress.com/2018/06/20/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-iii/
20/06/201820/06/2018https://ipythonquant.wordpress.com/2018/06/20/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-iii/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
2 Commentshttps://ipythonquant.wordpress.com/2018/06/20/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-iii/#comments
Asian, Barriershttps://ipythonquant.wordpress.com/2018/05/22/tensorflow-meets-quantitative-finance-pricing-exotic-options-with-monte-carlo-simulations-in-tensorflow/
Bermudanshttps://ipythonquant.wordpress.com/2018/06/01/pricing-bermudan-options-in-tensorflow-learning-an-optimal-early-exercise-strategy/
using a LSTM network to learn a delta hedgehttps://ipythonquant.wordpress.com/2018/06/05/option-hedging-with-long-short-term-memory-recurrent-neural-networks-part-i/
parthttps://ipythonquant.wordpress.com/2018/05/18/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-ii/
parthttps://ipythonquant.wordpress.com/2018/05/08/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-i/
GitHub repositoryhttps://github.com/mgroncki/DataScienceNotebooks
http://www.texample.net/tikz/examples/neural-network/http://www.texample.net/tikz/examples/neural-network/
licensehttps://creativecommons.org/licenses/by/2.5/
GitHub repohttps://github.com/mgroncki/DataScienceNotebooks/blob/master/DataScienceNotebooks/LogisticRegression_PartIII.ipynb
Option hedging with Long-Short-Term-Memory Recurrent Neural Networks Part Ihttps://ipythonquant.wordpress.com/2018/06/05/option-hedging-with-long-short-term-memory-recurrent-neural-networks-part-i/
05/06/201821/06/2018https://ipythonquant.wordpress.com/2018/06/05/option-hedging-with-long-short-term-memory-recurrent-neural-networks-part-i/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
1 Commenthttps://ipythonquant.wordpress.com/2018/06/05/option-hedging-with-long-short-term-memory-recurrent-neural-networks-part-i/#comments
Asian Options, Barrier Optionshttps://ipythonquant.wordpress.com/2018/05/22/tensorflow-meets-quantitative-finance-pricing-exotic-options-with-monte-carlo-simulations-in-tensorflow/
Bermudan Optionshttps://ipythonquant.wordpress.com/2018/06/01/pricing-bermudan-options-in-tensorflow-learning-an-optimal-early-exercise-strategy/
https://arxiv.org/abs/1802.03042https://arxiv.org/abs/1802.03042
GitHubhttps://github.com/mgroncki/DataScienceNotebooks/blob/master/DeepHedging_Part1.ipynb
http://colah.github.io/posts/2015-08-Understanding-LSTMs/http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://adventuresinmachinelearning.com/keras-lstm-tutorial/http://adventuresinmachinelearning.com/keras-lstm-tutorial/
https://ipythonquant.wordpress.com/2018/06/05/option-hedging-with-long-short-term-memory-recurrent-neural-networks-part-i/rnn_050_box_2/
https://ipythonquant.wordpress.com/2018/06/05/option-hedging-with-long-short-term-memory-recurrent-neural-networks-part-i/rnn_050_deltas_2/
https://ipythonquant.wordpress.com/2018/06/05/option-hedging-with-long-short-term-memory-recurrent-neural-networks-part-i/rnn_050_box_4-2/
https://ipythonquant.wordpress.com/2018/06/05/option-hedging-with-long-short-term-memory-recurrent-neural-networks-part-i/rnn_050_deltas_4/
https://ipythonquant.wordpress.com/2018/06/05/option-hedging-with-long-short-term-memory-recurrent-neural-networks-part-i/screen-shot-2018-06-05-at-22-29-47/
From Logistic Regression to Deep Learning – A fraud detection case study Part Ihttps://ipythonquant.wordpress.com/2018/05/08/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-i/
Part IIhttps://ipythonquant.wordpress.com/2018/05/18/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-ii/
Pricing Bermudan Options in TensorFlow – Learning an optimal Early Exercise Strategyhttps://ipythonquant.wordpress.com/2018/06/01/pricing-bermudan-options-in-tensorflow-learning-an-optimal-early-exercise-strategy/
01/06/201801/06/2018https://ipythonquant.wordpress.com/2018/06/01/pricing-bermudan-options-in-tensorflow-learning-an-optimal-early-exercise-strategy/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
2 Commentshttps://ipythonquant.wordpress.com/2018/06/01/pricing-bermudan-options-in-tensorflow-learning-an-optimal-early-exercise-strategy/#comments
posthttps://ipythonquant.wordpress.com/2018/05/22/tensorflow-meets-quantitative-finance-pricing-exotic-options-with-monte-carlo-simulations-in-tensorflow/
GitHubhttps://github.com/mgroncki/DataScienceNotebooks/blob/master/BermudanTensorFlow.ipynb
Bermudan Swaptionshttps://ipythonquant.wordpress.com/2016/05/29/exposure-simulation-cva-and-pfe-for-multi-callable-swaps-part-ii/
American Monte Carlo Simulation for CVA calculationshttps://ipythonquant.wordpress.com/2016/06/26/exposure-simulation-part-iii-cva-for-bermudan-swaptions/
https://ipythonquant.wordpress.com/2018/06/01/pricing-bermudan-options-in-tensorflow-learning-an-optimal-early-exercise-strategy/approx_0/
https://ipythonquant.wordpress.com/2018/06/01/pricing-bermudan-options-in-tensorflow-learning-an-optimal-early-exercise-strategy/approx_1/
https://ipythonquant.wordpress.com/2018/06/01/pricing-bermudan-options-in-tensorflow-learning-an-optimal-early-exercise-strategy/approx_2/
GitHubhttps://github.com/mgroncki/DataScienceNotebooks/blob/master/BermudanTensorFlow.ipynb
TensorFlow meets Quantitative Finance: Pricing Exotic Options with Monte Carlo Simulations in TensorFlowhttps://ipythonquant.wordpress.com/2018/05/22/tensorflow-meets-quantitative-finance-pricing-exotic-options-with-monte-carlo-simulations-in-tensorflow/
22/05/2018https://ipythonquant.wordpress.com/2018/05/22/tensorflow-meets-quantitative-finance-pricing-exotic-options-with-monte-carlo-simulations-in-tensorflow/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
4 Commentshttps://ipythonquant.wordpress.com/2018/05/22/tensorflow-meets-quantitative-finance-pricing-exotic-options-with-monte-carlo-simulations-in-tensorflow/#comments
posthttps://ipythonquant.wordpress.com/2018/05/18/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-ii/
notebookhttps://github.com/mgroncki/DataScienceNotebooks/blob/master/BarriersTensorFlow.ipynb
https://people.maths.ox.ac.uk/howison/barriers.pdfhttps://people.maths.ox.ac.uk/howison/barriers.pdf
https://warwick.ac.uk/fac/soc/wbs/subjects/finance/research/wpaperseries/1994/94-54.pdfhttps://warwick.ac.uk/fac/soc/wbs/subjects/finance/research/wpaperseries/1994/94-54.pdf
https://people.maths.ox.ac.uk/gilesm/talks/quant08.pdfhttps://people.maths.ox.ac.uk/gilesm/talks/quant08.pdf
GitHubhttps://github.com/mgroncki/DataScienceNotebooks/blob/master/BarriersTensorFlow.ipynb
From Logistic Regression in SciKit-Learn to Deep Learning with TensorFlow – A fraud detection case study – Part IIhttps://ipythonquant.wordpress.com/2018/05/18/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-ii/
18/05/2018https://ipythonquant.wordpress.com/2018/05/18/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-ii/
Matthias Gronckihttps://ipythonquant.wordpress.com/author/mgroncki/
5 Commentshttps://ipythonquant.wordpress.com/2018/05/18/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-ii/#comments
posthttps://ipythonquant.wordpress.com/2018/05/08/from-logistic-regression-in-scikit-learn-to-deep-learning-with-tensorflow-a-fraud-detection-case-study-part-i/
GitHubhttps://github.com/mgroncki/DataScienceNotebooks/tree/master/DataScienceNotebooks
kagglehttps://www.kaggle.com/mgroncki/logistic-regression-in-tensorflow
http://ruder.io/optimizing-gradient-descent/index.htmlhttp://ruder.io/optimizing-gradient-descent/index.html
GitHubhttps://github.com/mgroncki/DataScienceNotebooks/blob/master/DataScienceNotebooks/LogisticRegression_Part2.ipynb
kagglehttps://www.kaggle.com/mgroncki/logistic-regression-in-tensorflow
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdfhttps://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
Wikipediahttps://en.wikipedia.org/wiki/Gradient_descent
repositoryhttps://github.com/mgroncki/DataScienceNotebooks
repohttps://github.com/mgroncki/IPythonScripts
Previoushttps://ipythonquant.wordpress.com/page/2/
Matthias Gronckihttps://gravatar.com/mgroncki
View Full Profile → https://gravatar.com/mgroncki
LinkedIn http://www.linkedin.com/in/matthias-groncki-235490aa
Allgemeinhttps://ipythonquant.wordpress.com/category/allgemein/
Classificationhttps://ipythonquant.wordpress.com/category/classification/
Data Sciencehttps://ipythonquant.wordpress.com/category/data-science/
Deep Learninghttps://ipythonquant.wordpress.com/category/deep-learning/
Fraud Detectionhttps://ipythonquant.wordpress.com/category/fraud-detection/
Machine Learninghttps://ipythonquant.wordpress.com/category/machine-learning/
Monte Carlo Simulationhttps://ipythonquant.wordpress.com/category/monte-carlo-simulation/
Pricinghttps://ipythonquant.wordpress.com/category/pricing/
Pythonhttps://ipythonquant.wordpress.com/category/python/
Quantitative Financehttps://ipythonquant.wordpress.com/category/quantitative-finance/
QuantLibhttps://ipythonquant.wordpress.com/category/quantlib/
TensorFlowhttps://ipythonquant.wordpress.com/category/tensorflow/
xVAhttps://ipythonquant.wordpress.com/category/xva/
American Monte Carlohttps://ipythonquant.wordpress.com/tag/american-monte-carlo/
Automatic Differentiationhttps://ipythonquant.wordpress.com/tag/automatic-differentiation/
Bermudan Swaptionhttps://ipythonquant.wordpress.com/tag/bermudan-swaption/
Classificationhttps://ipythonquant.wordpress.com/tag/classification/
Counterparty Credit Riskhttps://ipythonquant.wordpress.com/tag/counterparty-credit-risk/
CVAhttps://ipythonquant.wordpress.com/tag/cva/
Data Sciencehttps://ipythonquant.wordpress.com/tag/data-science/
Deep Learninghttps://ipythonquant.wordpress.com/tag/deep-learning/
Dimension reductionhttps://ipythonquant.wordpress.com/tag/dimension-reduction/
Embeddinghttps://ipythonquant.wordpress.com/tag/embedding/
European Swaptionhttps://ipythonquant.wordpress.com/tag/european-swaption/
Exotic Optionshttps://ipythonquant.wordpress.com/tag/exotic-options/
Expected Exposurehttps://ipythonquant.wordpress.com/tag/expected-exposure/
Fraudhttps://ipythonquant.wordpress.com/tag/fraud/
Fraud Detectionhttps://ipythonquant.wordpress.com/tag/fraud-detection/
Image Classificationhttps://ipythonquant.wordpress.com/tag/image-classification/
Interest rate derivateshttps://ipythonquant.wordpress.com/tag/interest-rate-derivates/
IPythonhttps://ipythonquant.wordpress.com/tag/ipython/
Kerashttps://ipythonquant.wordpress.com/tag/keras/
KNIMEhttps://ipythonquant.wordpress.com/tag/knime/
Logistic Regressionhttps://ipythonquant.wordpress.com/tag/logistic-regression/
LSTMhttps://ipythonquant.wordpress.com/tag/lstm/
Machine Learninghttps://ipythonquant.wordpress.com/tag/machine-learning/
Monte Carlo Simulationhttps://ipythonquant.wordpress.com/tag/monte-carlo-simulation/
NLPhttps://ipythonquant.wordpress.com/tag/nlp/
Optionshttps://ipythonquant.wordpress.com/tag/options/
Ordinary least squareshttps://ipythonquant.wordpress.com/tag/ordinary-least-squares/
PFEhttps://ipythonquant.wordpress.com/tag/pfe/
Pricinghttps://ipythonquant.wordpress.com/tag/pricing/
Pythonhttps://ipythonquant.wordpress.com/tag/python/
PyTorchhttps://ipythonquant.wordpress.com/tag/pytorch/
QuantLibhttps://ipythonquant.wordpress.com/tag/quantlib/
Recurrent Neural Networkhttps://ipythonquant.wordpress.com/tag/recurrent-neural-network/
Representation Learninghttps://ipythonquant.wordpress.com/tag/representation-learning/
Scikit-Learnhttps://ipythonquant.wordpress.com/tag/scikit-learn/
Short rate modelhttps://ipythonquant.wordpress.com/tag/short-rate-model/
Signature Verificationhttps://ipythonquant.wordpress.com/tag/signature-verification/
Swaphttps://ipythonquant.wordpress.com/tag/swap/
Swaptionhttps://ipythonquant.wordpress.com/tag/swaption/
Swighttps://ipythonquant.wordpress.com/tag/swig/
TensorFlowhttps://ipythonquant.wordpress.com/tag/tensorflow/
Transfer Learninghttps://ipythonquant.wordpress.com/tag/transfer-learning/
Unsupervised Learninghttps://ipythonquant.wordpress.com/tag/unsupervised-learning/
Fast Monte-Carlo Pricing and Greeks for Barrier Options using GPU computing on Google Cloud Platform in Pythonhttps://ipythonquant.wordpress.com/2018/11/18/fast-monte-carlo-pricing-and-greeks-for-barrier-options-using-gpu-computing-on-google-cloud-platform-in-python/
Fraud detection: Behavioural modeling and unsupervised anomaly detection with deep learninghttps://ipythonquant.wordpress.com/2018/11/11/fraud-detection-unsupervised-anomaly-detection-in-transactional-data-with-rnns-and-embeddings/
Signature Verification with deep learning / transfer learning using Keras and KNIMEhttps://ipythonquant.wordpress.com/2018/08/26/signature-verification-with-deep-learning-transfer-learning-using-keras-and-knime/
Fooling Around with KNIME cont’d: Deep Learninghttps://ipythonquant.wordpress.com/2018/08/05/fooling-around-with-knime-contd-deep-learning/
Fooling around with KNIMEhttps://ipythonquant.wordpress.com/2018/07/19/fooling-around-with-knime/
Start a Blog at WordPress.comhttps://wordpress.com/?ref=footer_custom_blog
Jupyter notebooks – a Swiss Army Knife for Quants https://ipythonquant.wordpress.com/
Start a Blog at WordPress.comhttps://wordpress.com/?ref=footer_custom_blog
Cookie Policy https://automattic.com/cookies/
Subscribe https://ipythonquant.wordpress.com/
Subscribed https://ipythonquant.wordpress.com/
Jupyter notebooks - a Swiss Army Knife for Quants https://ipythonquant.wordpress.com
Log in now.https://wordpress.com/log-in?redirect_to=https%3A%2F%2Fipythonquant.wordpress.com%2F2018%2F11%2F18%2Ffast-monte-carlo-pricing-and-greeks-for-barrier-options-using-gpu-computing-on-google-cloud-platform-in-python%2F&signup_flow=account
Jupyter notebooks - a Swiss Army Knife for Quants https://ipythonquant.wordpress.com
Subscribe https://ipythonquant.wordpress.com/
Subscribed https://ipythonquant.wordpress.com/
Sign uphttps://wordpress.com/start/
Log inhttps://wordpress.com/log-in?redirect_to=https%3A%2F%2Fipythonquant.wordpress.com%2F2018%2F11%2F18%2Ffast-monte-carlo-pricing-and-greeks-for-barrier-options-using-gpu-computing-on-google-cloud-platform-in-python%2F&signup_flow=account
Report this content https://wordpress.com/abuse/?report_url=https://ipythonquant.wordpress.com
View site in Reader https://wordpress.com/reader/feeds/34889292
Manage subscriptionshttps://subscribe.wordpress.com/
Collapse this barhttps://ipythonquant.wordpress.com/
https://ipythonquant.wordpress.com/
https://ipythonquant.wordpress.com/
https://ipythonquant.wordpress.com/
Get startedhttps://wordpress.com/start/?ref=marketing_bar
https://wordpress.com/start/?ref=marketing_bar

Viewport: width=device-width, initial-scale=1

Robots: max-image-preview:large


URLs of crawlers that visited me.