René's URL Explorer Experiment


Title: GitHub - r0f1/datascience: Curated list of Python resources for data science.

Open Graph Title: GitHub - r0f1/datascience: Curated list of Python resources for data science.

X Title: GitHub - r0f1/datascience: Curated list of Python resources for data science.

Description: Curated list of Python resources for data science. - r0f1/datascience

Open Graph Description: Curated list of Python resources for data science. - r0f1/datascience

X Description: Curated list of Python resources for data science. - r0f1/datascience

Opengraph URL: https://github.com/r0f1/datascience

X: @github

direct link

Domain: github.com

route-pattern/:user_id/:repository
route-controllerfiles
route-actiondisambiguate
fetch-noncev2:72b4e862-bd23-ea9d-6b22-23e7bc4d95eb
current-catalog-service-hashf3abb0cc802f3d7b95fc8762b94bdcb13bf39634c40c357301c4aa1d67a256fb
request-id9294:281ABF:5D0FFE:7AB505:6964818D
html-safe-nonce9ef431b74a67881072e2737be151021e59652205eb1dc274a8c9668279457e5a
visitor-payloadeyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiI5Mjk0OjI4MUFCRjo1RDBGRkU6N0FCNTA1OjY5NjQ4MThEIiwidmlzaXRvcl9pZCI6IjI5NjU5MTU4NDAyODU1NzcwOSIsInJlZ2lvbl9lZGdlIjoiaWFkIiwicmVnaW9uX3JlbmRlciI6ImlhZCJ9
visitor-hmac6309a554c12de99e5c02ddb4010d24302886ac622a50bc3937402b59f3fa18e6
hovercard-subject-tagrepository:158673445
github-keyboard-shortcutsrepository,copilot
google-site-verificationApib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I
octolytics-urlhttps://collector.github.com/github/collect
analytics-location//
fb:app_id1401488693436528
apple-itunes-appapp-id=1477376905, app-argument=https://github.com/r0f1/datascience
twitter:imagehttps://opengraph.githubassets.com/4f35c6982afbb2424fca4a49f8c271f217065b1938488d0a84fbe0b50b3afbd0/r0f1/datascience
twitter:cardsummary_large_image
og:imagehttps://opengraph.githubassets.com/4f35c6982afbb2424fca4a49f8c271f217065b1938488d0a84fbe0b50b3afbd0/r0f1/datascience
og:image:altCurated list of Python resources for data science. - r0f1/datascience
og:image:width1200
og:image:height600
og:site_nameGitHub
og:typeobject
hostnamegithub.com
expected-hostnamegithub.com
Nonebaa7d9900fdf7b27d604f36887af878d569cfbdcf97126832a5f4f0caf0c6ba5
turbo-cache-controlno-preview
go-importgithub.com/r0f1/datascience git https://github.com/r0f1/datascience.git
octolytics-dimension-user_id7324891
octolytics-dimension-user_loginr0f1
octolytics-dimension-repository_id158673445
octolytics-dimension-repository_nwor0f1/datascience
octolytics-dimension-repository_publictrue
octolytics-dimension-repository_is_forkfalse
octolytics-dimension-repository_network_root_id158673445
octolytics-dimension-repository_network_root_nwor0f1/datascience
turbo-body-classeslogged-out env-production page-responsive
disable-turbofalse
browser-stats-urlhttps://api.github.com/_private/browser/stats
browser-errors-urlhttps://api.github.com/_private/browser/errors
release842eff1d11f899d02b6b3b98fa3ea4860e64b34e
ui-targetfull
theme-color#1e2327
color-schemelight dark

Links:

Skip to contenthttps://github.com/r0f1/datascience#start-of-content
https://github.com/
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fr0f1%2Fdatascience
GitHub CopilotWrite better code with AIhttps://github.com/features/copilot
GitHub SparkBuild and deploy intelligent appshttps://github.com/features/spark
GitHub ModelsManage and compare promptshttps://github.com/features/models
MCP RegistryNewIntegrate external toolshttps://github.com/mcp
ActionsAutomate any workflowhttps://github.com/features/actions
CodespacesInstant dev environmentshttps://github.com/features/codespaces
IssuesPlan and track workhttps://github.com/features/issues
Code ReviewManage code changeshttps://github.com/features/code-review
GitHub Advanced SecurityFind and fix vulnerabilitieshttps://github.com/security/advanced-security
Code securitySecure your code as you buildhttps://github.com/security/advanced-security/code-security
Secret protectionStop leaks before they starthttps://github.com/security/advanced-security/secret-protection
Why GitHubhttps://github.com/why-github
Documentationhttps://docs.github.com
Bloghttps://github.blog
Changeloghttps://github.blog/changelog
Marketplacehttps://github.com/marketplace
View all featureshttps://github.com/features
Enterpriseshttps://github.com/enterprise
Small and medium teamshttps://github.com/team
Startupshttps://github.com/enterprise/startups
Nonprofitshttps://github.com/solutions/industry/nonprofits
App Modernizationhttps://github.com/solutions/use-case/app-modernization
DevSecOpshttps://github.com/solutions/use-case/devsecops
DevOpshttps://github.com/solutions/use-case/devops
CI/CDhttps://github.com/solutions/use-case/ci-cd
View all use caseshttps://github.com/solutions/use-case
Healthcarehttps://github.com/solutions/industry/healthcare
Financial serviceshttps://github.com/solutions/industry/financial-services
Manufacturinghttps://github.com/solutions/industry/manufacturing
Governmenthttps://github.com/solutions/industry/government
View all industrieshttps://github.com/solutions/industry
View all solutionshttps://github.com/solutions
AIhttps://github.com/resources/articles?topic=ai
Software Developmenthttps://github.com/resources/articles?topic=software-development
DevOpshttps://github.com/resources/articles?topic=devops
Securityhttps://github.com/resources/articles?topic=security
View all topicshttps://github.com/resources/articles
Customer storieshttps://github.com/customer-stories
Events & webinarshttps://github.com/resources/events
Ebooks & reportshttps://github.com/resources/whitepapers
Business insightshttps://github.com/solutions/executive-insights
GitHub Skillshttps://skills.github.com
Documentationhttps://docs.github.com
Customer supporthttps://support.github.com
Community forumhttps://github.com/orgs/community/discussions
Trust centerhttps://github.com/trust-center
Partnershttps://github.com/partners
GitHub SponsorsFund open source developershttps://github.com/sponsors
Security Labhttps://securitylab.github.com
Maintainer Communityhttps://maintainers.github.com
Acceleratorhttps://github.com/accelerator
Archive Programhttps://archiveprogram.github.com
Topicshttps://github.com/topics
Trendinghttps://github.com/trending
Collectionshttps://github.com/collections
Enterprise platformAI-powered developer platformhttps://github.com/enterprise
GitHub Advanced SecurityEnterprise-grade security featureshttps://github.com/security/advanced-security
Copilot for BusinessEnterprise-grade AI featureshttps://github.com/features/copilot/copilot-business
Premium SupportEnterprise-grade 24/7 supporthttps://github.com/premium-support
Pricinghttps://github.com/pricing
Search syntax tipshttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
documentationhttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fr0f1%2Fdatascience
Sign up https://github.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=r0f1%2Fdatascience
Reloadhttps://github.com/r0f1/datascience
Reloadhttps://github.com/r0f1/datascience
Reloadhttps://github.com/r0f1/datascience
r0f1 https://github.com/r0f1
datasciencehttps://github.com/r0f1/datascience
Notifications https://github.com/login?return_to=%2Fr0f1%2Fdatascience
Fork 711 https://github.com/login?return_to=%2Fr0f1%2Fdatascience
Star 4.6k https://github.com/login?return_to=%2Fr0f1%2Fdatascience
CC0-1.0 license https://github.com/r0f1/datascience/blob/master/LICENSE
4.6k stars https://github.com/r0f1/datascience/stargazers
711 forks https://github.com/r0f1/datascience/forks
Branches https://github.com/r0f1/datascience/branches
Tags https://github.com/r0f1/datascience/tags
Activity https://github.com/r0f1/datascience/activity
Star https://github.com/login?return_to=%2Fr0f1%2Fdatascience
Notifications https://github.com/login?return_to=%2Fr0f1%2Fdatascience
Code https://github.com/r0f1/datascience
Issues 0 https://github.com/r0f1/datascience/issues
Pull requests 1 https://github.com/r0f1/datascience/pulls
Actions https://github.com/r0f1/datascience/actions
Projects 0 https://github.com/r0f1/datascience/projects
Security Uh oh! There was an error while loading. Please reload this page. https://github.com/r0f1/datascience/security
Please reload this pagehttps://github.com/r0f1/datascience
Insights https://github.com/r0f1/datascience/pulse
Code https://github.com/r0f1/datascience
Issues https://github.com/r0f1/datascience/issues
Pull requests https://github.com/r0f1/datascience/pulls
Actions https://github.com/r0f1/datascience/actions
Projects https://github.com/r0f1/datascience/projects
Security https://github.com/r0f1/datascience/security
Insights https://github.com/r0f1/datascience/pulse
Brancheshttps://github.com/r0f1/datascience/branches
Tagshttps://github.com/r0f1/datascience/tags
https://github.com/r0f1/datascience/branches
https://github.com/r0f1/datascience/tags
865 Commitshttps://github.com/r0f1/datascience/commits/master/
https://github.com/r0f1/datascience/commits/master/
CONTRIBUTING.mdhttps://github.com/r0f1/datascience/blob/master/CONTRIBUTING.md
CONTRIBUTING.mdhttps://github.com/r0f1/datascience/blob/master/CONTRIBUTING.md
LICENSEhttps://github.com/r0f1/datascience/blob/master/LICENSE
LICENSEhttps://github.com/r0f1/datascience/blob/master/LICENSE
README.mdhttps://github.com/r0f1/datascience/blob/master/README.md
README.mdhttps://github.com/r0f1/datascience/blob/master/README.md
READMEhttps://github.com/r0f1/datascience
Contributinghttps://github.com/r0f1/datascience
CC0-1.0 licensehttps://github.com/r0f1/datascience
https://github.com/r0f1/datascience#awesome-data-science-with-python
https://github.com/r0f1/datascience#core
pandashttps://pandas.pydata.org/
numpyhttps://www.numpy.org/
scikit-learnhttps://scikit-learn.org/stable/
intelexhttps://github.com/intel/scikit-learn-intelex
matplotlibhttps://matplotlib.org/
seabornhttps://seaborn.pydata.org/
ydata-profilinghttps://github.com/ydataai/ydata-profiling
sklearn_pandashttps://github.com/scikit-learn-contrib/sklearn-pandas
missingnohttps://github.com/ResidentMario/missingno
rainbow-csvhttps://marketplace.visualstudio.com/items?itemName=mechatroner.rainbow-csv
https://github.com/r0f1/datascience#general-python-programming
Advanced Python Featureshttps://blog.edward-li.com/tech/advanced-python-features/
uvhttps://github.com/astral-sh/uv
pdmhttps://pdm-project.org/en/latest/
justhttps://github.com/casey/just
python-dotenvhttps://github.com/theskumar/python-dotenv
structloghttps://github.com/hynek/structlog
more_itertoolshttps://more-itertools.readthedocs.io/en/latest/
tqdmhttps://github.com/tqdm/tqdm
pandas apply()https://stackoverflow.com/a/34365537/1820480
hydrahttps://github.com/facebookresearch/hydra
https://github.com/r0f1/datascience#pandas-tricks-alternatives-and-additions
duckdbhttps://github.com/duckdb/duckdb
duckplyrhttps://github.com/tidyverse/duckplyr/
Great Introhttps://codecut.ai/deep-dive-into-duckdb-data-scientists/
ducklakehttps://github.com/duckdb/ducklake
fireduckshttps://github.com/fireducks-dev/fireducks
pandasvaulthttps://github.com/firmai/pandasvault
polarshttps://github.com/pola-rs/polars
xarrayhttps://github.com/pydata/xarray/
mlxhttps://github.com/ml-explore/mlx
pandas_flavorhttps://github.com/Zsailer/pandas_flavor
dafthttps://github.com/Eventual-Inc/Daft
vaexhttps://github.com/vaexio/vaex
modinhttps://github.com/modin-project/modin
swifterhttps://github.com/jmcarpenter2/swifter
https://github.com/r0f1/datascience#tables
great-tableshttps://github.com/posit-dev/great-tables
https://github.com/r0f1/datascience#interactive-dataframe-visualization
pygwalkerhttps://github.com/Kanaries/pygwalker
marimohttps://github.com/marimo-team/marimo
luxhttps://github.com/lux-org/lux
dtalehttps://github.com/man-group/dtale
pandasguihttps://github.com/adamerose/pandasgui
quakhttps://github.com/manzt/quak
twitterhttps://x.com/trevmanz/status/1816760923949809982
https://github.com/r0f1/datascience#environment-and-jupyter
Jupyter Trickshttps://www.dataquest.io/blog/jupyter-notebook-tips-tricks-shortcuts/
nteracthttps://nteract.io/
papermillhttps://github.com/nteract/papermill
tutorialhttps://pbpython.com/papermil-rclone-report-1.html
nbdimehttps://github.com/jupyter/nbdime
ReviewNBhttps://www.reviewnb.com/
RISEhttps://github.com/damianavila/RISE
handcalcshttps://github.com/connorferster/handcalcs
notebookerhttps://github.com/man-group/notebooker
voilahttps://github.com/QuantStack/voila
Voila grid layouthttps://github.com/voila-dashboards/voila-gridstack
https://github.com/r0f1/datascience#jupyter-alternatives
positronhttps://github.com/posit-dev/positron
Deepnotehttps://deepnote.com
https://github.com/r0f1/datascience#extraction
textracthttps://github.com/deanmalmgren/textract
https://github.com/r0f1/datascience#big-data
sparkhttps://docs.databricks.com/spark/latest/dataframes-datasets/introduction-to-dataframes-python.html#work-with-dataframes
cheatsheethttps://gist.github.com/crawles/b47e23da8218af0b9bd9d47f5242d189
tutorialhttps://github.com/ericxiao251/spark-syntax
daskhttps://github.com/dask/dask
dask-mlhttp://ml.dask.org/
resourceshttps://matthewrocklin.com/blog//work/2018/07/17/dask-dev
talk1https://www.youtube.com/watch?v=ccfsbuqsjgI
talk2https://www.youtube.com/watch?v=RA_2qdipVng
notebookshttps://github.com/dask/dask-ec2/tree/master/notebooks
videoshttps://www.youtube.com/user/mdrocklin
h2ohttps://github.com/h2oai/h2o-3
cuDFhttps://github.com/rapidsai/cudf
Introhttps://www.youtube.com/watch?v=6XzS5XcpicM&t=2m50s
cupyhttps://github.com/cupy/cupy
rayhttps://github.com/ray-project/ray/
bottleneckhttps://github.com/kwgoodman/bottleneck
petastormhttps://github.com/uber/petastorm
zarrhttps://github.com/zarr-developers/zarr-python
NVTabularhttps://github.com/NVIDIA/NVTabular
tensorstorehttps://github.com/google/tensorstore
https://github.com/r0f1/datascience#command-line-tools-csv
csvkithttps://github.com/wireservice/csvkit
csvsorthttps://pypi.org/project/csvsort/
https://github.com/r0f1/datascience#classical-statistics
https://github.com/r0f1/datascience#books
Lakens - Improving Your Statistical Inferenceshttps://lakens.github.io/statistical_inferences/
Githubhttps://github.com/Lakens/statistical_inferences
Models Demystifiedhttps://m-clark.github.io/book-of-models/
Githubhttps://github.com/m-clark/book-of-models
https://github.com/r0f1/datascience#datasets
Rdatasetshttps://vincentarelbundock.github.io/Rdatasets/articles/data.html
crimedatasetshttps://lightbluetitan.github.io/crimedatasets/
educationrhttps://lightbluetitan.github.io/educationr/
MedDataSetshttps://lightbluetitan.github.io/meddatasets/index.html
oncodatasetshttps://lightbluetitan.github.io/oncodatasets/
timeseriesdatasets_Rhttps://lightbluetitan.github.io/timeseriesdatasets_R/
usdatasetshttps://lightbluetitan.github.io/usdatasets/
economic datasetshttps://captgouda24.github.io/nicholas-decker.github.io/datasets.html
https://github.com/r0f1/datascience#p-values
The ASA Statement on p-Values: Context, Process, and Purposehttps://amstat.tandfonline.com/doi/full/10.1080/00031305.2016.1154108#.Vt2XIOaE2MN
Greenland - Statistical tests, P-values, confidence intervals, and power: a guide to misinterpretationshttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877414/
Rubin - Inconsistent multiple testing corrections: The fallacy of using family-based error rates to make inferences about individual hypotheseshttps://www.sciencedirect.com/science/article/pii/S2590260124000067?via%3Dihub
Gigerenzer - Mindless Statisticshttps://library.mpib-berlin.mpg.de/ft/gg/GG_Mindless_2004.pdf
Rubin - That's not a two-sided test! It's two one-sided tests! (TOST)https://rss.onlinelibrary.wiley.com/doi/full/10.1111/1740-9713.01405
Lakens - How were we supposed to move beyond p < .05, and why didn’t we?https://errorstatistics.com/2024/07/01/guest-post-daniel-lakens-how-were-we-supposed-to-move-beyond-p-05-and-why-didnt-we-thoughts-on-abandon-statistical-significance-5-years-on/
McShane et al. - Abandon Statistical Significancehttps://www.tandfonline.com/doi/full/10.1080/00031305.2018.1527253
Ho et al. - Moving beyond P values data analysis with estimation graphicshttps://www.researchgate.net/publication/333884529_Moving_beyond_P_values_data_analysis_with_estimation_graphics
Lakens - The probability of p-values as a function of the statistical power of a testhttps://daniellakens.blogspot.com/2014/05/the-probability-of-p-values-as-function.html
https://github.com/r0f1/datascience#correlation
Guess the Correlationhttps://www.guessthecorrelation.com/
phikhttps://github.com/kaveio/phik
hoeffdhttps://search.r-project.org/CRAN/refmans/Hmisc/html/hoeffd.html
https://github.com/r0f1/datascience#confidence-intervals
Morey - The fallacy of placing confidence in confidence intervalshttps://link.springer.com/article/10.3758/s13423-015-0947-8
https://github.com/r0f1/datascience#packages
statsmodelshttps://www.statsmodels.org/stable/index.html
linearmodelshttps://github.com/bashtage/linearmodels
nomogramshttps://hbiostat.org/bbr/rmsintro.html#nomograms-overall-depiction-of-fitted-models
explanationhttps://stats.stackexchange.com/a/155433/285504
pingouinhttps://github.com/raphaelvallat/pingouin
Pairwise correlation between columns of pandas DataFramehttps://pingouin-stats.org/generated/pingouin.pairwise_corr.html
scipy.statshttps://docs.scipy.org/doc/scipy/reference/stats.html#statistical-tests
scikit-posthocshttps://github.com/maximtrp/scikit-posthocs
1https://pingouin-stats.org/generated/pingouin.plot_blandaltman.html
2http://www.statsmodels.org/dev/generated/statsmodels.graphics.agreement.mean_diff_plot.html
ANOVAhttps://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f_oneway.html
StatCheckhttps://statcheck.steveharoz.com/
tosthttps://pingouin-stats.org/build/html/generated/pingouin.tost.html
DABEST-pythonhttps://github.com/ACCLAB/DABEST-python
Durgahttps://github.com/KhanKawsar/EstimationPlot
https://github.com/r0f1/datascience#effect-size
MOTE Effect Size Calculatorhttps://www.aggieerin.com/shiny-server/
Shiny Apphttps://doomlab.shinyapps.io/mote/
R packagehttps://github.com/doomlab/MOTE
Estimating Effect Sizes From Pretest-Posttest-Control Group Designshttps://journals.sagepub.com/doi/epdf/10.1177/1094428106291059
Twitterhttps://twitter.com/MatthewBJane/status/1742588609025200557
https://github.com/r0f1/datascience#statistical-tests
test_proportions_2indephttps://www.statsmodels.org/dev/generated/statsmodels.stats.proportion.test_proportions_2indep.html
G-Testhttps://en.wikipedia.org/wiki/G-test
power_divergencehttps://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.power_divergence.html
https://github.com/r0f1/datascience#comparing-two-populations
torch-two-samplehttps://github.com/josipd/torch-two-sample
Explanationhttps://www.real-statistics.com/multivariate-statistics/multivariate-normal-distribution/friedman-rafsky-test/
Applicationhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014134/
https://github.com/r0f1/datascience#power-and-sample-size-calculations
pwrsshttps://cran.r-project.org/web/packages/pwrss/index.html
Tutorial with t-testhttps://rpubs.com/metinbulus/welch
https://github.com/r0f1/datascience#interim-analyses--sequential-analysis--stopping
Stop Early Stoppinghttps://stop-early-stopping.osc.garden/
Sequential Analysishttps://en.wikipedia.org/wiki/Sequential_analysis
sequentialhttps://cran.r-project.org/web/packages/Sequential/Sequential.pdf
confseqhttps://github.com/gostevehoward/confseq
https://github.com/r0f1/datascience#visualizations
Friends don't let friends make certain types of data visualizationhttps://github.com/cxli233/FriendsDontLetFriends
Great Overview over Visualizationshttps://textvis.lnu.se/
1 dataset, 100 visualizationshttps://100.datavizproject.com/
Dependent Propabilitieshttps://static.laszlokorte.de/stochastic/
Null Hypothesis Significance Testing (NHST) and Sample Size Calculationhttps://rpsychologist.com/d3/NHST/
estimationstatshttps://www.estimationstats.com/
Sample Size / Duration Calculatorhttps://calculator.osc.garden/
Correlationhttps://rpsychologist.com/d3/correlation/
Cohen's dhttps://rpsychologist.com/d3/cohend/
Confidence Intervalhttps://rpsychologist.com/d3/CI/
Equivalence, non-inferiority and superiority testinghttps://rpsychologist.com/d3/equivalence/
Bayesian two-sample t testhttps://rpsychologist.com/d3/bayes/
Distribution of p-values when comparing two groupshttps://rpsychologist.com/d3/pdist/
Understanding the t-distribution and its normal approximationhttps://rpsychologist.com/d3/tdist/
Statistical Power and Sample Size Calculation Toolshttps://pwrss.shinyapps.io/index/
https://github.com/r0f1/datascience#tidy-tuesday
The Art of Data Visualization with ggplot2, The TidyTuesday Cookbookhttps://nrennie.rbind.io/art-of-viz/
Best Practices for Data Visualizationhttps://royal-statistical-society.github.io/datavisguide/
tidytuesdayhttps://github.com/rfordatascience/tidytuesday
z3tt/TidyTuesdayhttps://github.com/z3tt/TidyTuesday
nrennie/tidytuesdayhttps://github.com/nrennie/tidytuesday
poncest/tidytuesdayhttps://github.com/poncest/tidytuesday
https://github.com/r0f1/datascience#talks
Inverse Propensity Weightinghttps://www.youtube.com/watch?v=SUq0shKLPPs
Dealing with Selection Bias By Propensity Based Feature Selectionhttps://www.youtube.com/watch?reload=9&v=3ZWCKr0vDtc
https://github.com/r0f1/datascience#texts
Modes, Medians and Means: A Unifying Perspectivehttps://www.johnmyleswhite.com/notebook/2013/03/22/modes-medians-and-means-an-unifying-perspective/
Using Norms to Understand Linear Regressionhttps://www.johnmyleswhite.com/notebook/2013/03/22/using-norms-to-understand-linear-regression/
Verifying the Assumptions of Linear Modelshttps://github.com/erykml/medium_articles/blob/master/Statistics/linear_regression_assumptions.ipynb
Mediation and Moderation Introhttps://ademos.people.uic.edu/Chapter14.html
Montgomery et al. - How conditioning on post-treatment variables can ruin your experiment and what to do about ithttps://cpb-us-e1.wpmucdn.com/sites.dartmouth.edu/dist/5/2293/files/2021/03/post-treatment-bias.pdf
Lindeløv - Common statistical tests are linear modelshttps://lindeloev.github.io/tests-as-linear/
Chatruc - The Central Limit Theorem and its misusehttps://web.archive.org/web/20191229234155/https://lambdaclass.com/data_etudes/central_limit_theorem_misuse/
Al-Saleh - Properties of the Standard Deviation that are Rarely Mentioned in Classroomshttp://www.stat.tugraz.at/AJS/ausg093/093Al-Saleh.pdf
Wainer - The Most Dangerous Equationhttp://nsmn1.uh.edu/dgraur/niv/themostdangerousequation.pdf
Gigerenzer - The Bias Bias in Behavioral Economicshttps://www.nowpublishers.com/article/Details/RBE-0092
Cook - Estimating the chances of something that hasn’t happened yethttps://www.johndcook.com/blog/2010/03/30/statistical-rule-of-three/
Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealinghttps://www.researchgate.net/publication/316652618_Same_Stats_Different_Graphs_Generating_Datasets_with_Varied_Appearance_and_Identical_Statistics_through_Simulated_Annealing
Youtubehttps://www.youtube.com/watch?v=DbJyPELmhJc
How large is that number in the Law of Large Numbers?https://thepalindrome.org/p/how-large-that-number-in-the-law
The Prosecutor's Fallacyhttps://www.cebm.ox.ac.uk/news/views/the-prosecutors-fallacy
The Dunning-Kruger Effect is Autocorrelationhttps://economicsfromthetopdown.com/2022/04/08/the-dunning-kruger-effect-is-autocorrelation/
Rafi, Greenland - Semantic and cognitive tools to aid statistical science: replace confidence and significance by compatibility and surprisehttps://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-020-01105-9
Carlin et al. - On the uses and abuses of regression models: a call for reform of statistical practice and teachinghttps://arxiv.org/abs/2309.06668
Chen, Roth - Logs with zeros? Some problems and solutionshttps://arxiv.org/abs/2212.06080
Wigboldus et al. - Encourage Playing with Data and Discourage Questionable Reporting Practiceshttps://link.springer.com/article/10.1007/s11336-015-9445-1
Simmons et al. - False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significanthttps://journals.sagepub.com/doi/10.1177/0956797611417632?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
Zhang - An illusion of predictability in scientific results: Even experts confuse inferential uncertainty and outcome variabilityhttps://www.pnas.org/doi/10.1073/pnas.2302491120
https://github.com/r0f1/datascience#evaluation
Collins et al. - Evaluation of clinical prediction models (part 1): from development to external validationhttps://www.bmj.com/content/384/bmj-2023-074819.full
Twitterhttps://twitter.com/GSCollins/status/1744309712995098624
https://github.com/r0f1/datascience#epidemiology
Lesko et al. - A Framework for Descriptive Epidemiologyhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10144679/
R Epidemics Consortiumhttps://www.repidemicsconsortium.org/projects/
Githubhttps://github.com/reconhub
incidence2https://github.com/reconhub/incidence2
EpiEstimhttps://github.com/mrc-ide/EpiEstim
paperhttps://academic.oup.com/aje/article/178/9/1505/89262
researchpyhttps://github.com/researchpy/researchpy
zEpidhttps://github.com/pzivich/zEpid
Tutorialhttps://github.com/pzivich/Python-for-Epidemiologists
tiprhttps://github.com/LucyMcGowan/tipr
quartetshttps://github.com/r-causal/quartets
Datasaurus Dozenhttps://github.com/jumpingrivers/datasauRus
episensrhttps://cran.r-project.org/web/packages/episensr/vignettes/episensr.html
https://github.com/r0f1/datascience#machine-learning-tutorials
Statistical Inference and Regressionhttps://mattblackwell.github.io/gov2002-book/
Applied Machine Learning in Pythonhttps://geostatsguy.github.io/MachineLearningDemos_Book/intro.html
Convolutional Neural Networks for Visual Recognitionhttps://cs231n.github.io/
Intuition for the Algorithms in Machine Learninghttps://www.youtube.com/watch?v=7o9TMQAHgkQ&list=PLNeXFnYrCJneoY_rKtWJy833YiMrCRi5f&index=1
https://github.com/r0f1/datascience#exploration-and-cleaning
Checklisthttps://github.com/r0f1/ml_checklist
pyjanitorhttps://github.com/pyjanitor-devs/pyjanitor
skimpyhttps://github.com/aeturrell/skimpy
panderahttps://github.com/unionai-oss/pandera
dataframelyhttps://github.com/Quantco/dataframely
pointblankhttps://github.com/posit-dev/pointblank
impyutehttps://github.com/eltonlaw/impyute
fancyimputehttps://github.com/iskandr/fancyimpute
imbalanced-learnhttps://github.com/scikit-learn-contrib/imbalanced-learn
tspreprocesshttps://github.com/MaxBenChrist/tspreprocess
Kagglerhttps://github.com/jeongyoonlee/Kaggler
skrubhttps://github.com/skrub-data/skrub
https://github.com/r0f1/datascience#noisy-labels
cleanlabhttps://github.com/cleanlab/cleanlab
doubtlabhttps://github.com/koaning/doubtlab
https://github.com/r0f1/datascience#train--test-split
iterative-stratificationhttps://github.com/trent-b/iterative-stratification
https://github.com/r0f1/datascience#feature-engineering
Vincent Warmerdam: Untitled12.ipynbhttps://www.youtube.com/watch?v=yXGCKqo5cEY
Vincent Warmerdam: Winning with Simple, even Linear, Modelshttps://www.youtube.com/watch?v=68ABAU_V8qI
sklearnhttps://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
exampleshttps://github.com/jem1031/pandas-pipelines-custom-transformers
pdpipehttps://github.com/shaypal5/pdpipe
scikit-legohttps://github.com/koaning/scikit-lego
categorical-encodinghttps://github.com/scikit-learn-contrib/categorical-encoding
vtreat (R package)https://cran.r-project.org/web/packages/vtreat/vignettes/vtreat.html
patsyhttps://github.com/pydata/patsy/
mlxtendhttps://rasbt.github.io/mlxtend/user_guide/feature_extraction/LinearDiscriminantAnalysis/
featuretoolshttps://github.com/Featuretools/featuretools
examplehttps://github.com/WillKoehrsen/automated-feature-engineering/blob/master/walk_through/Automated_Feature_Engineering.ipynb
tsfreshhttps://github.com/blue-yonder/tsfresh
temporianhttps://github.com/google/temporian
pypelnhttps://github.com/cgarciae/pypeln
feature-enginehttps://github.com/feature-engine/feature_engine
https://github.com/r0f1/datascience#feature-selection
Overview Paperhttps://www.sciencedirect.com/science/article/pii/S016794731930194X
Talkhttps://www.youtube.com/watch?v=JsArBz46_3s
Repohttps://github.com/Yimeng-Zhang/feature-engineering-and-feature-selection
1http://blog.datadive.net/selecting-good-features-part-i-univariate-selection/
2http://blog.datadive.net/selecting-good-features-part-ii-linear-models-and-regularization/
3http://blog.datadive.net/selecting-good-features-part-iii-random-forests/
4http://blog.datadive.net/selecting-good-features-part-iv-stability-selection-rfe-and-everything-side-by-side/
1https://www.kaggle.com/residentmario/automated-feature-selection-with-sklearn
2https://machinelearningmastery.com/feature-selection-machine-learning-python/
sklearnhttps://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection
eli5https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html#feature-selection
scikit-featurehttps://github.com/jundongl/scikit-feature
stability-selectionhttps://github.com/scikit-learn-contrib/stability-selection
scikit-rebatehttps://github.com/EpistasisLab/scikit-rebate
scikit-genetichttps://github.com/manuel-calzolari/sklearn-genetic
boruta_pyhttps://github.com/scikit-learn-contrib/boruta_py
explainationhttps://stats.stackexchange.com/questions/264360/boruta-all-relevant-feature-selection-vs-random-forest-variables-of-importanc/264467
examplehttps://www.kaggle.com/tilii7/boruta-feature-elimination
Boruta-Shaphttps://github.com/Ekeany/Boruta-Shap
linselecthttps://github.com/efavdb/linselect
mlxtendhttps://rasbt.github.io/mlxtend/user_guide/feature_selection/ExhaustiveFeatureSelector/
BoostARootahttps://github.com/chasedehan/BoostARoota
INVASEhttps://github.com/jsyoon0823/INVASE
SubTabhttps://github.com/AstraZeneca/SubTab
mrmrhttps://github.com/smazzanti/mrmr
Websitehttp://home.penglab.com/proj/mRMR/
arfshttps://github.com/ThomasBury/arfs
VSURFhttps://github.com/robingenuer/VSURF
dochttps://www.rdocumentation.org/packages/VSURF/versions/1.1.0/topics/VSURF
FeatureSelectionGAhttps://github.com/kaushalshetty/FeatureSelectionGA
https://github.com/r0f1/datascience#subset-selection
apricothttps://github.com/jmschrei/apricot
duckshttps://github.com/manimino/ducks
https://github.com/r0f1/datascience#dimensionality-reduction--representation-learning
https://github.com/r0f1/datascience#selection
Reviewhttps://members.loria.fr/moberger/Enseignement/AVR/Exposes/TR_Dimensiereductie.pdf
linkhttps://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
linkhttps://blog.keras.io/building-autoencoders-in-keras.html
linkhttps://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html#sklearn.manifold.Isomap
linkhttps://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html
linkhttps://scanpy.readthedocs.io/en/stable/api/scanpy.tl.draw_graph.html#scanpy.tl.draw_graph
linkhttps://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
linkhttps://scanpy.readthedocs.io/en/stable/api/scanpy.tl.diffmap.html
linkhttps://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html#sklearn.manifold.TSNE
linkhttps://github.com/ziyuang/pynerv
paperhttps://www.jmlr.org/papers/volume11/venna10a/venna10a.pdf
linkhttps://github.com/EpistasisLab/scikit-mdr
linkhttps://github.com/lmcinnes/umap
linkhttps://scikit-learn.org/stable/modules/random_projection.html
linkhttps://github.com/beringresearch/ivis
linkhttps://github.com/lightly-ai/lightly
linkhttps://github.com/cvxgrp/pymde
https://github.com/r0f1/datascience#neural-network-based
esvithttps://github.com/microsoft/esvit
MCMLhttps://github.com/pachterlab/MCML
paperhttps://www.biorxiv.org/content/10.1101/2021.08.25.457696v1
https://github.com/r0f1/datascience#packages-1
Dangers of PCA (paper)https://www.nature.com/articles/s41598-022-14395-4
Phantom oscillations in PCAhttps://www.biorxiv.org/content/10.1101/2023.06.20.545619v1.full
What to use instead of PCAhttps://www.pnas.org/doi/10.1073/pnas.2319169120
Talkhttps://www.youtube.com/watch?v=9iol3Lk6kyU
tsne introhttps://distill.pub/2016/misread-tsne/
sklearn.manifoldhttps://scikit-learn.org/stable/modules/classes.html#module-sklearn.manifold
sklearn.decompositionhttps://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition
Correlation Circle Plothttp://rasbt.github.io/mlxtend/user_guide/plotting/plot_pca_correlation_graph/
Tweethttps://twitter.com/rasbt/status/1555999903398219777/photo/1
sklearn.random_projectionhttps://scikit-learn.org/stable/modules/random_projection.html
sklearn.cross_decompositionhttps://scikit-learn.org/stable/modules/cross_decomposition.html#cross-decomposition
princehttps://github.com/MaxHalford/prince
lvdmaatenhttps://lvdmaaten.github.io/tsne/
MulticoreTSNEhttps://github.com/DmitryUlyanov/Multicore-TSNE
FIt-SNEhttps://github.com/KlugerLab/FIt-SNE
umaphttps://github.com/lmcinnes/umap
talkhttps://www.youtube.com/watch?v=nq6iPZVUxZU
explorerhttps://github.com/GrantCuster/umap-explorer
explanationhttps://pair-code.github.io/understanding-umap/
parallel versionhttps://docs.rapids.ai/api/cuml/stable/api.html
humaphttps://github.com/wilsonjr/humap
sleepwalkhttps://github.com/anders-biostat/sleepwalk/
somocluhttps://github.com/peterwittek/somoclu
scikit-tdahttps://github.com/scikit-tda/scikit-tda
paperhttps://www.nature.com/articles/srep01236
talkhttps://www.youtube.com/watch?v=F2t_ytTLrQ4
talkhttps://www.youtube.com/watch?v=AWoeBzJd7uQ
paperhttps://www.uncg.edu/mat/faculty/cdsmyth/topological-approaches-skin.pdf
giotto-tdahttps://github.com/giotto-ai/giotto-tda
ivishttps://github.com/beringresearch/ivis
trimaphttps://github.com/eamid/trimap
scanpyhttps://github.com/theislab/scanpy
Force-directed graph drawinghttps://scanpy.readthedocs.io/en/stable/api/scanpy.tl.draw_graph.html#scanpy.tl.draw_graph
Diffusion Mapshttps://scanpy.readthedocs.io/en/stable/api/scanpy.tl.diffmap.html
direpackhttps://github.com/SvenSerneels/direpack
DBShttps://cran.r-project.org/web/packages/DatabionicSwarm/vignettes/DatabionicSwarm.html
contrastivehttps://github.com/abidlabs/contrastive
scPCAhttps://github.com/PhilBoileau/scPCA
generalized_contrastive_PCAhttps://github.com/SjulsonLab/generalized_contrastive_PCA
tmaphttps://github.com/reymond-group/tmap
lollipophttps://github.com/neurodata/lollipop
linearsdrhttps://github.com/HarrisQ/linearsdr
PHATEhttps://github.com/KrishnaswamyLab/PHATE
datamapplothttps://github.com/TutteInstitute/datamapplot
https://github.com/r0f1/datascience#visualization
All chartshttps://datavizproject.com/
physthttps://github.com/janpipek/physt
talkhttps://www.youtube.com/watch?v=ZG-wH3-Up9Y
notebookhttps://nbviewer.jupyter.org/github/janpipek/pydata2018-berlin/blob/master/notebooks/talk.ipynb
fast-histogramhttps://github.com/astrofrog/fast-histogram
matplotlib_vennhttps://github.com/konstantint/matplotlib-venn
penrosehttps://github.com/penrose/penrose
ridgeplothttps://github.com/tpvasconcelos/ridgeplot
mosaic plotshttps://www.statsmodels.org/dev/generated/statsmodels.graphics.mosaicplot.mosaic.html
examplehttps://sukhbinder.wordpress.com/2018/09/18/mosaic-plot-in-python/
yellowbrickhttps://github.com/DistrictDataLabs/yellowbrick
bokehhttps://github.com/bokeh/bokeh
Exampleshttps://bokeh.pydata.org/en/latest/docs/user_guide/server.html
Exampleshttps://github.com/WillKoehrsen/Bokeh-Python-Visualization
lets-plothttps://github.com/JetBrains/lets-plot
plotninehttps://github.com/has2k1/plotnine
altairhttps://github.com/vega/altair
hvplothttps://github.com/pyviz/hvplot
holoviewshttp://holoviews.org/
dtreevizhttps://github.com/parrt/dtreeviz
mpl-scatter-densityhttps://github.com/astrofrog/mpl-scatter-density
ComplexHeatmaphttps://github.com/jokergoo/ComplexHeatmap
morpheushttps://software.broadinstitute.org/morpheus/
Sourcehttps://github.com/cmap/morpheus.js
1https://www.youtube.com/watch?v=0nkYDeekhtQ
2https://www.youtube.com/watch?v=r9mN6MsxUb0
Codehttps://github.com/broadinstitute/BBBC021_Morpheus_Exercise
jupyter-scatterhttps://github.com/flekschas/jupyter-scatter
fastplotlibhttps://github.com/fastplotlib/fastplotlib
datamapplothttps://github.com/TutteInstitute/datamapplot
SandDancehttps://github.com/microsoft/SandDance
https://github.com/r0f1/datascience#colors
palettablehttps://github.com/jiffyclub/palettable
colorbrewer2https://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3
colorcethttps://github.com/holoviz/colorcet
Named Colors Wheelhttps://arantius.github.io/web-color-wheel/
https://github.com/r0f1/datascience#dashboards
py-shinyhttps://github.com/rstudio/py-shiny
talkhttps://www.youtube.com/watch?v=ijRBbtT2tgc
supersethttps://github.com/apache/superset
streamlithttps://github.com/streamlit/streamlit
Resourceshttps://github.com/marcskovmadsen/awesome-streamlit
Galleryhttp://awesome-streamlit.org/
Componentshttps://www.streamlit.io/components
bokeh-eventshttps://github.com/ash2shukla/streamlit-bokeh-events
mercuryhttps://github.com/mljar/mercury
Examplehttps://github.com/pplonski/dashboard-python-jupyter-notebook
dashhttps://dash.plot.ly/gallery
Resourceshttps://github.com/ucg8j/awesome-dash
visdomhttps://github.com/facebookresearch/visdom
panelhttps://panel.pyviz.org/index.html
altair examplehttps://github.com/xhochy/altair-vue-vega-example
Videohttps://www.youtube.com/watch?v=4L568emKOvs
voilahttps://github.com/QuantStack/voila
voila-gridstackhttps://github.com/voila-dashboards/voila-gridstack
https://github.com/r0f1/datascience#ui
gradiohttps://github.com/gradio-app/gradio
https://github.com/r0f1/datascience#survey-tools
samplicshttps://github.com/samplics-org/samplics
https://github.com/r0f1/datascience#geographical-tools
foliumhttps://github.com/python-visualization/folium
jupyter pluginhttps://github.com/jupyter-widgets/ipyleaflet
gmapshttps://github.com/pbugnion/gmaps
stadiamapshttps://stadiamaps.com/
datashaderhttps://github.com/bokeh/datashader
sklearnhttps://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html
pynndescenthttps://github.com/lmcinnes/pynndescent
geocoderhttps://github.com/DenisCarriere/geocoder
talkhttps://www.youtube.com/watch?v=eHRggqAvczE
repohttps://github.com/dillongardner/PyDataSpatialAnalysis
geopandashttps://github.com/geopandas/geopandas
Predict economic indicators from Open Street Maphttps://janakiev.com/blog/osm-predict-economic-indicators/
PySalhttps://github.com/pysal/pysal
geographyhttps://github.com/ushahidi/geograpy
cartogramhttps://go-cart.io/cartogram
https://github.com/r0f1/datascience#recommender-systems
1https://lazyprogrammer.me/tutorial-on-collaborative-filtering-and-matrix-factorization-in-python/
2https://medium.com/@james_aka_yale/the-4-recommendation-engines-that-can-predict-your-movie-tastes-bbec857b8223
2-ipynbhttps://github.com/khanhnamle1994/movielens/blob/master/Content_Based_and_Collaborative_Filtering_Models.ipynb
3https://www.kaggle.com/morrisb/how-to-recommend-anything-deep-recommender
surprisehttps://github.com/NicolasHug/Surprise
talkhttps://www.youtube.com/watch?v=d7iIb_XVkZs
implicithttps://github.com/benfred/implicit
spotlighthttps://github.com/maciejkula/spotlight
lightfmhttps://github.com/lyst/lightfm
funk-svdhttps://github.com/gbolmier/funk-svd
https://github.com/r0f1/datascience#decision-tree-models
Intro to Decision Trees and Random Forestshttps://victorzhou.com/blog/intro-to-random-forests/
1https://explained.ai/gradient-boosting/
2https://www.gormanalysis.com/blog/gradient-boosting-explained/
Decision Tree Visualizationhttps://explained.ai/decision-tree-viz/index.html
lightgbmhttps://github.com/Microsoft/LightGBM
dochttps://sites.google.com/view/lauraepp/parameters
xgboosthttps://github.com/dmlc/xgboost
dochttps://sites.google.com/view/lauraepp/parameters
link1https://stats.stackexchange.com/questions/255783/confidence-interval-for-xgb-forecast
link2https://towardsdatascience.com/regression-prediction-intervals-with-xgboost-428e0a018b
catboosthttps://github.com/catboost/catboost
h2ohttps://github.com/h2oai/h2o-3
pycarethttps://github.com/pycaret/pycaret
forestcihttps://github.com/scikit-learn-contrib/forest-confidence-interval
grfhttps://github.com/grf-labs/grf
dtreevizhttps://github.com/parrt/dtreeviz
Nuancehttps://github.com/SauceCat/Nuance
rfpimphttps://github.com/parrt/random-forest-importances
linkhttp://explained.ai/rf-importance/index.html
bartpyhttps://github.com/JakeColtman/bartpy
merfhttps://github.com/manifoldai/merf
videohttps://www.youtube.com/watch?v=gWj4ZwB7f3o
groothttps://github.com/tudelft-cda-lab/GROOT
linear-treehttps://github.com/cerlymarco/linear-tree
supertreehttps://github.com/mljar/supertree
https://github.com/r0f1/datascience#natural-language-processing-nlp--text-processing
talkhttps://www.youtube.com/watch?v=6zm9NC9uRkk
nbhttps://nbviewer.jupyter.org/github/skipgram/modern-nlp-in-python/blob/master/executable/Modern_NLP_in_Python.ipynb
nb2https://ahmedbesbes.com/how-to-mine-newsfeed-data-and-extract-interactive-insights-in-python.html
talkhttps://www.youtube.com/watch?time_continue=2&v=sI7VpFNiy_I
Text classification Introhttps://mlwhiz.com/blog/2018/12/17/text_classification/
Preprocessing blog posthttps://mlwhiz.com/blog/2019/01/17/deeplearning_nlp_preprocess/
gensimhttps://radimrehurek.com/gensim/
Examplehttps://markroxor.github.io/gensim/static/notebooks/gensim_news_classification.html
Coherence Modelhttps://radimrehurek.com/gensim/models/coherencemodel.html
GloVehttps://nlp.stanford.edu/projects/glove/
1https://www.kaggle.com/jhoward/improved-lstm-baseline-glove-dropout
2https://www.kaggle.com/sbongo/do-pretrained-embeddings-give-you-the-extra-edge
StarSpacehttps://github.com/facebookresearch/StarSpace
wikipedia2vechttps://wikipedia2vec.github.io/wikipedia2vec/pretrained/
visualizationhttps://projector.tensorflow.org/
magnitudehttps://github.com/plasticityai/magnitude
pyldavishttps://github.com/bmabey/pyLDAvis
spaCyhttps://spacy.io/
NTLKhttps://www.nltk.org/
pytexthttps://github.com/facebookresearch/PyText
fastTexthttps://github.com/facebookresearch/fastText
annoyhttps://github.com/spotify/annoy
faisshttps://github.com/facebookresearch/faiss
infomaphttps://github.com/mapequation/infomap
datasketchhttps://github.com/ekzhu/datasketch
flairhttps://github.com/zalandoresearch/flair
stanzahttps://github.com/stanfordnlp/stanza
Chatisticshttps://github.com/MasterScrat/Chatistics
textdistancehttps://github.com/life4/textdistance
https://github.com/r0f1/datascience#bio-image-analysis
Lee et al. - A beginner's guide to rigor and reproducibility in fluorescence imaging experimentshttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6080651/
Awesome Cytodatahttps://github.com/cytodata/awesome-cytodata
https://github.com/r0f1/datascience#tutorials
MIT 7.016 Introductory Biology, Fall 2018https://www.youtube.com/playlist?list=PLUl4u3cNGP63LmSVIVzy584-ZbjbJ-Y63
Bio-image Analysis Notebookshttps://haesleinhuepf.github.io/BioImageAnalysisNotebooks/intro.html
point-spread-function estimationhttps://haesleinhuepf.github.io/BioImageAnalysisNotebooks/18a_deconvolution/extract_psf.html
deconvolutionhttps://haesleinhuepf.github.io/BioImageAnalysisNotebooks/18a_deconvolution/introduction_deconvolution.html
3D cell segmentationhttps://haesleinhuepf.github.io/BioImageAnalysisNotebooks/20_image_segmentation/Segmentation_3D.html
feature extractionhttps://haesleinhuepf.github.io/BioImageAnalysisNotebooks/22_feature_extraction/statistics_with_pyclesperanto.html
pyclesperantohttps://github.com/clEsperanto/pyclesperanto_prototype
python_for_microscopistshttps://github.com/bnsreenu/python_for_microscopists
youtube channelhttps://www.youtube.com/channel/UC34rW-HtPJulxr5wp2Xa04w/videos
https://github.com/r0f1/datascience#datasets-1
jump-cellpaintinghttps://github.com/jump-cellpainting/datasets
MedMNISThttps://github.com/MedMNIST/MedMNIST
CytoImageNethttps://github.com/stan-hua/CytoImageNet
Haghighihttps://github.com/carpenterlab/2021_Haghighi_NatureMethods
broadinstitute/lincs-profiling-complementarityhttps://github.com/broadinstitute/lincs-profiling-complementarity
https://github.com/r0f1/datascience#biostatistics--robust-statistics
MinCovDethttps://scikit-learn.org/stable/modules/generated/sklearn.covariance.MinCovDet.html
Paperhttps://wires.onlinelibrary.wiley.com/doi/full/10.1002/wics.1421
App1https://journals.sagepub.com/doi/10.1177/1087057112469257?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed&
App2https://www.cell.com/cell-reports/pdf/S2211-1247(21)00694-X.pdf
moderated z-scorehttps://clue.io/connectopedia/replicate_collapse
winsorizehttps://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.winsorize.html#scipy.stats.mstats.winsorize
https://github.com/r0f1/datascience#high-content-screening-assay-design
Zhang XHD (2008) - Novel analytic criteria and effective plate designs for quality control in genome-wide RNAi screenshttps://slas-discovery.org/article/S2472-5552(22)08204-1/pdf
Iversen - A Comparison of Assay Performance Measures in Screening Assays, Signal Window, Z′ Factor, and Assay Variability Ratiohttps://www.slas-discovery.org/article/S2472-5552(22)08460-X/pdf
Z-factorhttps://en.wikipedia.org/wiki/Z-factor
Z'-factorhttps://link.springer.com/referenceworkentry/10.1007/978-3-540-47648-1_6298
CVhttps://en.wikipedia.org/wiki/Coefficient_of_variation
SSMDhttps://en.wikipedia.org/wiki/Strictly_standardized_mean_difference
Signal Windowhttps://www.intechopen.com/chapters/48130
https://github.com/r0f1/datascience#microscopy--assay
BD Spectrum Viewerhttps://www.bdbiosciences.com/en-us/resources/bd-spectrum-viewer
SpectraViewerhttps://www.perkinelmer.com/lab-products-and-services/spectraviewer
Thermofisher Spectrum Viewerhttps://www.thermofisher.com/order/stain-it
Microscopy Resolution Calculatorhttps://www.microscope.healthcare.nikon.com/microtools/resolution-calculator
PlateEditorhttps://github.com/vindelorme/PlateEditor
apphttps://plateeditor.sourceforge.io/
ziphttps://sourceforge.net/projects/plateeditor/
paperhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252488
https://github.com/r0f1/datascience#image-formats-and-converters
paperhttps://www.biorxiv.org/content/10.1101/2023.02.17.528834v1.full
standardhttps://ngff.openmicroscopy.org/latest/
bioformats2rawhttps://github.com/glencoesoftware/bioformats2raw
raw2ometiffhttps://github.com/glencoesoftware/raw2ometiff
BatchConverthttps://github.com/Euro-BioImaging/BatchConvert
videohttps://www.youtube.com/watch?v=DeCWV274l0c
Study Component Guidancehttps://www.ebi.ac.uk/bioimage-archive/rembi-help-examples/
File List Guidehttps://www.ebi.ac.uk/bioimage-archive/help-file-list/
paperhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606015/
videohttps://www.youtube.com/watch?v=GVmfOpuP2_c
spreadsheethttps://docs.google.com/spreadsheets/d/1Ck1NeLp-ZN4eMGdNYo2nV6KLEdSfN6oQBKnnWU6Npeo/edit#gid=1023506919
https://github.com/r0f1/datascience#matrix-formats
anndatahttps://github.com/scverse/anndata
Docshttps://anndata.readthedocs.io/en/latest/index.html
muonhttps://github.com/scverse/muon
mudatahttps://github.com/scverse/mudata
bdzhttps://github.com/openssbd/bdz
https://github.com/r0f1/datascience#image-viewers
naparihttps://github.com/napari/napari
Fijihttps://fiji.sc/
vizarrhttps://github.com/hms-dbmi/vizarr
avivatorhttps://github.com/hms-dbmi/viv
OMEROhttps://www.openmicroscopy.org/omero/
IDRhttps://idr.openmicroscopy.org/
Introhttps://www.youtube.com/watch?v=nSCrMO_c-5s
fiftyonehttps://github.com/voxel51/fiftyone
Shiny Apphttps://shiny-portal.embl.de/shinyapps/app/01_image-data-explorer
Videohttps://www.youtube.com/watch?v=H8zIZvOt1MA
ImSwitchhttps://github.com/ImSwitch/ImSwitch
Dochttps://imswitch.readthedocs.io/en/stable/gui.html
Videohttps://www.youtube.com/watch?v=XsbnMkGSPQQ
pixmihttps://github.com/piximi/piximi
Apphttps://www.piximi.app/
DeepCell Labelhttps://label.deepcell.org/
Videohttps://www.youtube.com/watch?v=zfsvUBkEeow
https://github.com/r0f1/datascience#napari-plugins
napari-samhttps://github.com/MIC-DKFZ/napari-sam
napari-chatgpthttps://github.com/royerlab/napari-chatgpt
https://github.com/r0f1/datascience#image-restoration-and-denoising
aydinhttps://github.com/royerlab/aydin
DivNoisinghttps://github.com/juglab/DivNoising
CSBDeephttps://github.com/CSBDeep/CSBDeep
Project pagehttps://csbdeep.bioimagecomputing.com/tools/
gibbs-diffusionhttps://github.com/rubenohana/gibbs-diffusion
https://github.com/r0f1/datascience#illumination-correction
skimagehttps://scikit-image.org/docs/dev/api/skimage.exposure.html#skimage.exposure.equalize_adapthist
cidrehttps://github.com/smithk/cidre
BaSiCPyhttps://github.com/peng-lab/BaSiCPy
BaSiChttps://github.com/marrlab/BaSiC
https://github.com/r0f1/datascience#bleedthrough-correction--spectral-unmixing
PICASSOhttps://github.com/nygctech/PICASSO
Paperhttps://www.biorxiv.org/content/10.1101/2021.01.27.428247v1.full
cytoflowhttps://github.com/cytoflow/cytoflow
Youtubehttps://www.youtube.com/watch?v=W90qs0J29v8
Linkhttps://imagej.net/plugins/lumos-spectral-unmixing
Linkhttps://www.biorxiv.org/content/10.1101/2023.05.30.542836v1.full
https://github.com/r0f1/datascience#platforms-and-pipelines
CellProfilerhttps://github.com/CellProfiler/CellProfiler
CellProfilerAnalysthttps://github.com/CellProfiler/CellProfiler-Analyst
fractalhttps://fractal-analytics-platform.github.io/
Githubhttps://github.com/fractal-analytics-platform
atomaihttps://github.com/pycroscopy/atomai
py-clesperantohttps://github.com/clesperanto/pyclesperanto_prototype/
deskewinghttps://github.com/clEsperanto/pyclesperanto_prototype/blob/master/demo/transforms/deskew.ipynb
qupathhttps://github.com/qupath/qupath
https://github.com/r0f1/datascience#microscopy-pipelines
BiaPyhttps://github.com/danifranco/BiaPy
paperhttps://www.biorxiv.org/content/10.1101/2024.02.03.576026v2.full
SCIPhttps://scalable-cytometry-image-processing.readthedocs.io/en/latest/usage.html
DeepCell Kioskhttps://github.com/vanvalenlab/kiosk-console/tree/master
IMCWorkflowhttps://github.com/BodenmillerGroup/IMCWorkflow/
steinbockhttps://github.com/BodenmillerGroup/steinbock
Twitterhttps://twitter.com/NilsEling/status/1715020265963258087
Paperhttps://www.nature.com/articles/s41596-023-00881-0
workflowhttps://bodenmillergroup.github.io/IMCDataAnalysis/
https://github.com/r0f1/datascience#labsyspharm
mcmicrohttps://github.com/labsyspharm/mcmicro
Websitehttps://mcmicro.org/overview/
Paperhttps://www.nature.com/articles/s41592-021-01308-y
MCQuanthttps://github.com/labsyspharm/quantification
cylinterhttps://github.com/labsyspharm/cylinter
Websitehttps://labsyspharm.github.io/cylinter/
ashlarhttps://github.com/labsyspharm/ashlar
scimaphttps://github.com/labsyspharm/scimap
https://github.com/r0f1/datascience#cell-segmentation
microscopy-treehttps://biomag-lab.github.io/microscopy-tree/
Paperhttps://www.sciencedirect.com/science/article/abs/pii/S0962892421002518
Paperhttps://arxiv.org/ftp/arxiv/papers/2301/2301.02341.pdf
BioImage.IOhttps://bioimage.io/#/
MEDIARhttps://github.com/Lee-Gihun/MEDIAR
cellposehttps://github.com/mouseland/cellpose
Paperhttps://www.biorxiv.org/content/10.1101/2020.02.02.931238v1
Datasethttps://www.cellpose.org/dataset
stardisthttps://github.com/stardist/stardist
instanseghttps://github.com/instanseg/instanseg
UnMicsthttps://github.com/HMS-IDAC/UnMicst
ilastikhttps://github.com/ilastik/ilastik
ImageJ Pluginhttps://github.com/ilastik/ilastik4ij
nnUnethttps://github.com/MIC-DKFZ/nnUNet
allencellhttps://www.allencell.org/segmenter.html
Cell-ACDChttps://github.com/SchmollerLab/Cell_ACDC
ZeroCostDL4Michttps://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
DL4MicEverywherehttps://github.com/HenriquesLab/DL4MicEverywhere
EmbedSeghttps://github.com/juglab/EmbedSeg
segment-anythinghttps://github.com/facebookresearch/segment-anything
micro-samhttps://github.com/computational-cell-analytics/micro-sam
Segment-Everything-Everywhere-All-At-Oncehttps://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once
deepcell-tfhttps://github.com/vanvalenlab/deepcell-tf/tree/master
DeepCellhttps://deepcell.org/
labkithttps://github.com/juglab/labkit-ui
MedImageInsighthttps://arxiv.org/abs/2410.06542
CHIEFhttps://github.com/hms-dbmi/CHIEF
https://github.com/r0f1/datascience#cell-segmentation-datasets
cellposehttps://www.cellpose.org/dataset
omniposehttp://www.cellpose.org/dataset_omnipose
LIVECellhttps://github.com/sartorius-research/LIVECell
Sartoriushttps://www.kaggle.com/competitions/sartorius-cell-instance-segmentation/overview
EmbedSeghttps://github.com/juglab/EmbedSeg/releases/tag/v0.1.0
connectomicshttps://sites.google.com/view/connectomics/
ZeroCostDL4Michttps://www.ebi.ac.uk/biostudies/BioImages/studies/S-BIAD895
https://github.com/r0f1/datascience#evaluation-1
seg-evalhttps://github.com/lstrgar/seg-eval
Paperhttps://www.biorxiv.org/content/10.1101/2023.02.23.529809v1.full.pdf
https://github.com/r0f1/datascience#feature-engineering-images
Computer vision challenges in drug discovery - Maciej Hermanowiczhttps://www.youtube.com/watch?v=Y5GJmnIhvFk
CellProfilerhttps://github.com/CellProfiler/CellProfiler
scikit-imagehttps://github.com/scikit-image/scikit-image
scikit-image regionpropshttps://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.regionprops
mahotashttps://github.com/luispedro/mahotas
examplehttps://github.com/luispedro/python-image-tutorial/blob/master/Segmenting%20cell%20images%20(fluorescent%20microscopy).ipynb
pyradiomicshttps://github.com/AIM-Harvard/pyradiomics
pyefdhttps://github.com/hbldh/pyefd
pyvipshttps://github.com/libvips/pyvips/tree/master
https://github.com/r0f1/datascience#domain-adaptation--batch-effect-correction
Tran - A benchmark of batch-effect correction methods for single-cell RNA sequencing datahttps://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1850-9
Codehttps://github.com/JinmiaoChenLab/Batch-effect-removal-benchmarking
R Tutorial on correcting batch effectshttps://broadinstitute.github.io/2019_scWorkshop/correcting-batch-effects.html
harmonypyhttps://github.com/slowkow/harmonypy
pyligerhttps://github.com/welch-lab/pyliger
R packagehttps://github.com/welch-lab/liger
nimfahttps://github.com/mims-harvard/nimfa
scgenhttps://github.com/theislab/scgen
Dochttps://scgen.readthedocs.io/en/stable/
CORALhttps://github.com/google-research/google-research/tree/30e54523f08d963ced3fbb37c00e9225579d2e1d/correct_batch_effects_wdn
Codehttps://github.com/google-research/google-research/blob/30e54523f08d963ced3fbb37c00e9225579d2e1d/correct_batch_effects_wdn/transform.py#L152
Paperhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050548/
adapthttps://github.com/adapt-python/adapt
pytorch-adapthttps://github.com/KevinMusgrave/pytorch-adapt
https://github.com/r0f1/datascience#sequencing
Single cell tutorialhttps://github.com/theislab/single-cell-tutorial
PyDESeq2https://github.com/owkin/PyDESeq2
cellxgenehttps://github.com/chanzuckerberg/cellxgene
scanpyhttps://github.com/theislab/scanpy
tutorialhttps://github.com/theislab/single-cell-tutorial
bescahttps://github.com/bedapub/besca
jangguhttps://github.com/BIMSBbioinfo/janggu
gdsctoolshttps://github.com/CancerRxGene/gdsctools
dochttps://gdsctools.readthedocs.io/en/master/
monkeybreadhttps://github.com/immunitastx/monkeybread
https://github.com/r0f1/datascience#drug-discovery
TDChttps://github.com/mims-harvard/TDC/tree/main
DeepPurposehttps://github.com/kexinhuang12345/DeepPurpose
https://github.com/r0f1/datascience#neural-networks
mit6874https://mit6874.github.io/
ConvNet Shape Calculatorhttps://madebyollin.github.io/convnet-calculator/
Great Gradient Descent Articlehttps://towardsdatascience.com/10-gradient-descent-optimisation-algorithms-86989510b5e9
Intro to semi-supervised learninghttps://lilianweng.github.io/lil-log/2021/12/05/semi-supervised-learning.html
https://github.com/r0f1/datascience#tutorials--viewer
Google Tuning Playbookhttps://github.com/google-research/tuning_playbook
fast.ai coursehttps://course.fast.ai/
Tensorflow without a PhDhttps://github.com/GoogleCloudPlatform/tensorflow-without-a-phd
Bloghttps://distill.pub/2017/feature-visualization/
PPThttp://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture12.pdf
Tensorflow Playgroundhttps://playground.tensorflow.org/
Visualization of optimization algorithmshttp://vis.ensmallen.org/
Another visualizationhttps://github.com/jettify/pytorch-optimizer
cutouts-explorerhttps://github.com/mgckind/cutouts-explorer
https://github.com/r0f1/datascience#image-related
imgaughttps://github.com/aleju/imgaug
Augmentorhttps://github.com/mdbloice/Augmentor
keras preprocessinghttps://keras.io/preprocessing/image/
albumentationshttps://github.com/albu/albumentations
augmixhttps://github.com/google-research/augmix
korniahttps://github.com/kornia/kornia
auglyhttps://github.com/facebookresearch/AugLy
pyvipshttps://github.com/libvips/pyvips/tree/master
https://github.com/r0f1/datascience#lossfunction-related
SegLosshttps://github.com/JunMa11/SegLoss
https://github.com/r0f1/datascience#activation-functions
rational_activationshttps://github.com/ml-research/rational_activations
https://github.com/r0f1/datascience#text-related
ktexthttps://github.com/hamelsmu/ktext
textgenrnnhttps://github.com/minimaxir/textgenrnn
ctrlhttps://github.com/salesforce/ctrl
https://github.com/r0f1/datascience#neural-network-and-deep-learning-frameworks
OpenMMLabhttps://github.com/open-mmlab
caffehttps://github.com/BVLC/caffe
pretrained modelshttps://github.com/BVLC/caffe/wiki/Model-Zoo
mxnethttps://github.com/apache/incubator-mxnet
bookhttps://d2l.ai/index.html
https://github.com/r0f1/datascience#libs-general
kerashttps://keras.io/
tensorflowhttps://www.tensorflow.org/
exampleshttps://gist.github.com/candlewill/552fa102352ccce42fd829ae26277d24
keras-contribhttps://github.com/keras-team/keras-contrib
keras-tunerhttps://github.com/keras-team/keras-tuner
hyperashttps://github.com/maxpumperla/hyperas
elephashttps://github.com/maxpumperla/elephas
tflearnhttps://github.com/tflearn/tflearn
tensorlayerhttps://github.com/tensorlayer/tensorlayer
trickshttps://github.com/wagamamaz/tensorlayer-tricks
tensorforcehttps://github.com/reinforceio/tensorforce
autokerashttps://github.com/jhfjhfj1/autokeras
PlotNeuralNethttps://github.com/HarisIqbal88/PlotNeuralNet
lucidhttps://github.com/tensorflow/lucid
Activation Mapshttps://openai.com/blog/introducing-activation-atlases/
tcavhttps://github.com/tensorflow/tcav
AdaBoundhttps://github.com/Luolc/AdaBound
althttps://github.com/titu1994/keras-adabound
foolboxhttps://github.com/bethgelab/foolbox
hiddenlayerhttps://github.com/waleedka/hiddenlayer
imgclsmobhttps://github.com/osmr/imgclsmob
netronhttps://github.com/lutzroeder/netron
ffcvhttps://github.com/libffcv/ffcv
https://github.com/r0f1/datascience#libs-pytorch
Good PyTorch Introductionhttps://cs230.stanford.edu/blog/pytorch/
skorchhttps://github.com/dnouri/skorch
talkhttps://www.youtube.com/watch?v=0J7FaLk0bmQ
slideshttps://github.com/thomasjpfan/skorch_talk
fastaihttps://github.com/fastai/fastai
timmhttps://github.com/rwightman/pytorch-image-models
ignitehttps://github.com/pytorch/ignite
torchcvhttps://github.com/donnyyou/torchcv
pytorch-optimizerhttps://github.com/jettify/pytorch-optimizer
pytorch-lightninghttps://github.com/PyTorchLightning/PyTorch-lightning
litservehttps://github.com/Lightning-AI/LitServe
lightlyhttps://github.com/lightly-ai/lightly
MONAIhttps://github.com/project-monai/monai
korniahttps://github.com/kornia/kornia
torchinfohttps://github.com/Tylep/torchinfo
lovely-tensorshttps://github.com/xl0/lovely-tensors/
https://github.com/r0f1/datascience#distributed-libs
flexflowhttps://github.com/flexflow/FlexFlow
horovodhttps://github.com/horovod/horovod
https://github.com/r0f1/datascience#architecture-visualization
Awesome Listhttps://github.com/ashishpatel26/Tools-to-Design-or-Visualize-Architecture-of-Neural-Network
netronhttps://github.com/lutzroeder/netron
visualkerashttps://github.com/paulgavrikov/visualkeras
https://github.com/r0f1/datascience#computer-vision-general
roboflowhttps://github.com/roboflow/supervision
https://github.com/r0f1/datascience#object-detection--instance-segmentation
Metrics reloaded: Recommendations for image analysis validationhttps://arxiv.org/abs/2206.01653
Codehttps://github.com/Project-MONAI/MetricsReloaded
Twitter Threadhttps://twitter.com/lena_maierhein/status/1625450342006521857
Good Yolo Explanationhttps://jonathan-hui.medium.com/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
ultralyticshttps://github.com/ultralytics/ultralytics
yolacthttps://github.com/dbolya/yolact
EfficientDet Pytorchhttps://github.com/toandaominh1997/EfficientDet.Pytorch
EfficientDet Kerashttps://github.com/xuannianz/EfficientDet
detectron2https://github.com/facebookresearch/detectron2
simpledethttps://github.com/TuSimple/simpledet
CenterNethttps://github.com/xingyizhou/CenterNet
FCOShttps://github.com/tianzhi0549/FCOS
norfairhttps://github.com/tryolabs/norfair
Detichttps://github.com/facebookresearch/Detic
EasyCVhttps://github.com/alibaba/EasyCV
https://github.com/r0f1/datascience#image-classification
nfnetshttps://github.com/ypeleg/nfnets-keras
efficientnethttps://github.com/lukemelas/EfficientNet-PyTorch
pyclshttps://github.com/facebookresearch/pycls
https://github.com/r0f1/datascience#applications-and-snippets
SPADEhttps://github.com/nvlabs/spade
Entity Embeddings of Categorical Variableshttps://arxiv.org/abs/1604.06737
codehttps://github.com/entron/entity-embedding-rossmann
kagglehttps://www.kaggle.com/aquatic/entity-embedding-neural-net/code
Image Super-Resolutionhttps://github.com/idealo/image-super-resolution
Talkhttps://www.youtube.com/watch?v=dVFZpodqJiI
1https://www.thomasjpfan.com/2018/07/nuclei-image-segmentation-tutorial/
2https://www.thomasjpfan.com/2017/08/hassle-free-unets/
deeplearning-modelshttps://github.com/rasbt/deeplearning-models
https://github.com/r0f1/datascience#variational-autoencoders-vaes
Variational Autoencoder Explanation Videohttps://www.youtube.com/watch?v=9zKuYvjFFS8
disentanglement_libhttps://github.com/google-research/disentanglement_lib
ladder-vae-pytorchhttps://github.com/addtt/ladder-vae-pytorch
benchmark_VAEhttps://github.com/clementchadebec/benchmark_VAE
https://github.com/r0f1/datascience#generative-adversarial-networks-gans
Awesome GAN Applicationshttps://github.com/nashory/gans-awesome-applications
The GAN Zoohttps://github.com/hindupuravinash/the-gan-zoo
CycleGAN and Pix2pixhttps://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
TensorFlow GAN implementationshttps://github.com/hwalsuklee/tensorflow-generative-model-collections
PyTorch GAN implementationshttps://github.com/znxlwm/pytorch-generative-model-collections
PyTorch GAN implementationshttps://github.com/eriklindernoren/PyTorch-GAN#adversarial-autoencoder
StudioGANhttps://github.com/POSTECH-CVLab/PyTorch-StudioGAN
https://github.com/r0f1/datascience#transformers
The Annotated Transformerhttps://nlp.seas.harvard.edu/annotated-transformer/
Transformers from Scratchhttps://e2eml.school/transformers.html
Neural Networks: Zero to Herohttps://karpathy.ai/zero-to-hero.html
SegFormerhttps://github.com/NVlabs/SegFormer
esvithttps://github.com/microsoft/esvit
nystromformerhttps://github.com/Rishit-dagli/Nystromformer
https://github.com/r0f1/datascience#deep-learning-on-structured-data
Great overview for deep learning for tabular datahttps://sebastianraschka.com/blog/2022/deep-learning-for-tabular-data.html
https://github.com/r0f1/datascience#graph-based-neural-networks
How to do Deep Learning on Graphs with Graph Convolutional Networkshttps://towardsdatascience.com/how-to-do-deep-learning-on-graphs-with-graph-convolutional-networks-7d2250723780
Introduction To Graph Convolutional Networkshttp://tkipf.github.io/graph-convolutional-networks/
An attempt at demystifying graph deep learninghttps://ericmjl.github.io/essays-on-data-science/machine-learning/graph-nets/
ogbhttps://ogb.stanford.edu/
networkxhttps://github.com/networkx/networkx
cugraphhttps://github.com/rapidsai/cugraph
pytorch-geometrichttps://github.com/rusty1s/pytorch_geometric
dglhttps://github.com/dmlc/dgl
graph_netshttps://github.com/deepmind/graph_nets
https://github.com/r0f1/datascience#model-conversion
hummingbirdhttps://github.com/microsoft/hummingbird
https://github.com/r0f1/datascience#gpu
cuMLhttps://github.com/rapidsai/cuml
Introhttps://www.youtube.com/watch?v=6XzS5XcpicM&t=2m50s
thundergbmhttps://github.com/Xtra-Computing/thundergbm
thundersvmhttps://github.com/Xtra-Computing/thundersvm
videohttps://www.youtube.com/watch?v=Jxxs_moibog
https://github.com/r0f1/datascience#regression
paperhttps://onlinelibrary.wiley.com/doi/10.1002/sim.10208
slideshttps://cs.adelaide.edu.au/~chhshen/teaching/ML_SVR.pdf
forumhttps://www.quora.com/How-does-support-vector-regression-work
paperhttp://alex.smola.org/papers/2003/SmoSch03b.pdf
Generalized Additive Modelshttps://m-clark.github.io/generalized-additive-models/
pyearthhttps://github.com/scikit-learn-contrib/py-earth
tutorialhttps://uc-r.github.io/mars
pygamhttps://github.com/dswah/pyGAM
Explanationhttps://multithreaded.stitchfix.com/blog/2015/07/30/gam/
GLRMhttps://github.com/madeleineudell/LowRankModels.jl
tweediehttps://xgboost.readthedocs.io/en/latest/parameter.html#parameters-for-tweedie-regression-objective-reg-tweedie
Talkhttps://www.youtube.com/watch?v=-o0lpHBq85I
MAPIEhttps://github.com/scikit-learn-contrib/MAPIE
https://github.com/r0f1/datascience#polynomials
orthopyhttps://github.com/nschloe/orthopy
https://github.com/r0f1/datascience#classification
Talkhttps://www.youtube.com/watch?v=DkLPYccEJ8Y
Notebookhttps://github.com/ianozsvald/data_science_delivered/blob/master/ml_creating_correct_capable_classifiers.ipynb
Blog post: Probability Scoringhttps://machinelearningmastery.com/how-to-score-probability-predictions-in-python/
All classification metricshttp://rali.iro.umontreal.ca/rali/sites/default/files/publis/SokolovaLapalme-JIPM09.pdf
DESlibhttps://github.com/scikit-learn-contrib/DESlib
human-learnhttps://github.com/koaning/human-learn
https://github.com/r0f1/datascience#metric-learning
Contrastive Representation Learninghttps://lilianweng.github.io/lil-log/2021/05/31/contrastive-representation-learning.html
metric-learnhttps://github.com/scikit-learn-contrib/metric-learn
pytorch-metric-learninghttps://github.com/KevinMusgrave/pytorch-metric-learning
deep_metric_learninghttps://github.com/ronekko/deep_metric_learning
ivishttps://bering-ivis.readthedocs.io/en/latest/supervised.html
TensorFlow similarityhttps://github.com/tensorflow/similarity
https://github.com/r0f1/datascience#distance-functions
Steck et al. - Is Cosine-Similarity of Embeddings Really About Similarity?https://arxiv.org/abs/2403.05440
scipy.spatialhttps://docs.scipy.org/doc/scipy/reference/spatial.distance.html
vegdisthttps://rdrr.io/cran/vegan/man/vegdist.html
pyemdhttps://github.com/wmayner/pyemd
OpenCV implementationhttps://docs.opencv.org/3.4/d6/dc7/group__imgproc__hist.html
POT implementationhttps://pythonot.github.io/auto_examples/plot_OT_2D_samples.html
dcorhttps://github.com/vnmabus/dcor
GeomLosshttps://www.kernel-operations.io/geomloss/
https://github.com/r0f1/datascience#self-supervised-learning
lightlyhttps://github.com/lightly-ai/lightly
visslhttps://github.com/facebookresearch/vissl
https://github.com/r0f1/datascience#clustering
Overview of clustering algorithms applied image data (= Deep Clustering)https://deepnotes.io/deep-clustering
Clustering with Deep Learning: Taxonomy and New Methodshttps://arxiv.org/pdf/1801.07648.pdf
Hierarchical Cluster Analysis (R Tutorial)https://uc-r.github.io/hc_clustering
Schubert - Stop using the elbow criterion for k-means and how to choose the number of clusters insteadhttps://arxiv.org/abs/2212.12189
hdbscanhttps://github.com/scikit-learn-contrib/hdbscan
talkhttps://www.youtube.com/watch?v=dGsxd67IFiU
bloghttps://towardsdatascience.com/understanding-hdbscan-and-density-based-clustering-121dbee1320e
pyclusteringhttps://github.com/annoviko/pyclustering
FCPShttps://github.com/Mthrun/FCPS
GaussianMixturehttps://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
videohttps://www.youtube.com/watch?v=aICqoAG5BXQ
nmslibhttps://github.com/nmslib/nmslib
merfhttps://github.com/manifoldai/merf
videohttps://www.youtube.com/watch?v=gWj4ZwB7f3o
tree-SNEhttps://github.com/isaacrob/treesne
MiniSomhttps://github.com/JustGlowing/minisom
distribution_clusteringhttps://github.com/EricElmoznino/distribution_clustering
paperhttps://arxiv.org/abs/1804.02624
related paperhttps://arxiv.org/abs/2003.07770
althttps://github.com/r0f1/distribution_clustering
phenographhttps://github.com/dpeerlab/phenograph
FastPGhttps://github.com/sararselitsky/FastPG
Paperhttps://www.researchgate.net/publication/342339899_FastPG_Fast_clustering_of_millions_of_single_cells
HypHChttps://github.com/HazyResearch/HypHC
BanditPAMhttps://github.com/ThrunGroup/BanditPAM
dendextendhttps://github.com/talgalili/dendextend
DeepDPMhttps://github.com/BGU-CS-VIL/DeepDPM
https://github.com/r0f1/datascience#clustering-evalutation
Wagner, Wagner - Comparing Clusterings - An Overviewhttps://publikationen.bibliothek.kit.edu/1000011477/812079
Adjusted Rand Indexhttps://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html
Normalized Mutual Informationhttps://scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized_mutual_info_score.html
Adjusted Mutual Informationhttps://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html
Fowlkes-Mallows Scorehttps://scikit-learn.org/stable/modules/generated/sklearn.metrics.fowlkes_mallows_score.html
Silhouette Coefficienthttps://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
Variation of Informationhttps://gist.github.com/jwcarr/626cbc80e0006b526688
Juliahttps://clusteringjl.readthedocs.io/en/latest/varinfo.html
Pair Confusion Matrixhttps://scikit-learn.org/stable/modules/generated/sklearn.metrics.cluster.pair_confusion_matrix.html
Consensus Scorehttps://scikit-learn.org/stable/modules/generated/sklearn.metrics.consensus_score.html
Assessing the quality of a clustering (video)https://www.youtube.com/watch?v=Mf6MqIS2ql4
fpchttps://cran.r-project.org/web/packages/fpc/index.html
https://github.com/r0f1/datascience#multi-label-classification
scikit-multilearnhttps://github.com/scikit-multilearn/scikit-multilearn
talkhttps://www.youtube.com/watch?v=m-tAASQA7XQ&t=18m57s
https://github.com/r0f1/datascience#critical-ai-texts
Sublime - The Return of Pseudosciences in Artificial Intelligence: Have Machine Learning and Deep Learning Forgotten Lessons from Statistics and History?https://arxiv.org/abs/2411.18656
https://github.com/r0f1/datascience#signal-processing-and-filtering
Stanford Lecture Series on Fourier Transformationhttps://see.stanford.edu/Course/EE261
Youtubehttps://www.youtube.com/watch?v=gZNm7L96pfY&list=PLB24BC7956EE040CD&index=1
Lecture Noteshttps://see.stanford.edu/materials/lsoftaee261/book-fall-07.pdf
Visual Fourier explanationhttps://dsego.github.io/demystifying-fourier/
The Scientist & Engineer's Guide to Digital Signal Processing (1999)https://www.analog.com/en/education/education-library/scientist_engineers_guide.html
Kalman Filter articlehttps://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures
Kalman Filter bookhttps://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
Interactive Toolhttps://fiiir.com/
Exampleshttps://plot.ly/python/fft-filters/
filterpyhttps://github.com/rlabbe/filterpy
https://github.com/r0f1/datascience#filtering-in-python
scipy.signalhttps://docs.scipy.org/doc/scipy/reference/signal.html
Butterworth low-pass filter examplehttps://github.com/guillaume-chevalier/filtering-stft-and-laplace-transform
Savitzky–Golay filterhttps://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html
Whttps://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter
pandas.Series.rollinghttps://pandas.pydata.org/docs/reference/api/pandas.Series.rolling.html
https://github.com/r0f1/datascience#geometry
geomstatshttps://github.com/geomstats/geomstats
https://github.com/r0f1/datascience#time-series
Time Series Anomaly Detection Review Paperhttps://arxiv.org/abs/2412.20512
statsmodelshttps://www.statsmodels.org/dev/tsa.html
seasonal decomposehttps://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.seasonal_decompose.html
examplehttps://gist.github.com/balzer82/5cec6ad7adc1b550e7ee
SARIMAhttps://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html
granger causalityhttp://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.grangercausalitytests.html
dartshttps://github.com/unit8co/darts
katshttps://github.com/facebookresearch/kats
prophethttps://github.com/facebook/prophet
neural_prophethttps://github.com/ourownstory/neural_prophet
pmdarimahttps://github.com/alkaline-ml/pmdarima
modeltimehttps://cran.r-project.org/web/packages/modeltime/index.html
pyfluxhttps://github.com/RJT1990/pyflux
atspyhttps://github.com/firmai/atspy
pm-prophethttps://github.com/luke14free/pm-prophet
htsprophethttps://github.com/CollinRooney12/htsprophet
nupichttps://github.com/numenta/nupic
tensorflowhttps://github.com/tensorflow/tensorflow/
linkhttps://machinelearningmastery.com/time-series-forecasting-long-short-term-memory-network-python/
linkhttps://github.com/hzy46/TensorFlow-Time-Series-Examples
1https://machinelearningmastery.com/how-to-develop-lstm-models-for-multi-step-time-series-forecasting-of-household-power-consumption/
2https://github.com/guillaume-chevalier/seq2seq-signal-prediction
3https://github.com/JEddy92/TimeSeries_Seq2Seq/blob/master/notebooks/TS_Seq2Seq_Intro.ipynb
4https://github.com/LukeTonin/keras-seq-2-seq-signal-prediction
tspreprocesshttps://github.com/MaxBenChrist/tspreprocess
tsfreshhttps://github.com/blue-yonder/tsfresh
tsfelhttps://github.com/fraunhoferportugal/tsfel
thunderhttps://github.com/thunder-project/thunder
gatspyhttps://www.astroml.org/gatspy/
talkhttps://www.youtube.com/watch?v=E4NMZyfao2c
gendishttps://github.com/IBCNServices/GENDIS
examplehttps://github.com/IBCNServices/GENDIS/blob/master/gendis/example.ipynb
tslearnhttps://github.com/rtavenar/tslearn
pastashttps://github.com/pastas/pastas
fastdtwhttps://github.com/slaypni/fastdtw
fablehttps://www.rdocumentation.org/packages/fable/versions/0.0.0.9000
pydlmhttps://github.com/wwrechard/pydlm
R packagehttps://cran.r-project.org/web/packages/bsts/index.html
Blog posthttp://www.unofficialgoogledatascience.com/2017/07/fitting-bayesian-structural-time-series.html
PyAFhttps://github.com/antoinecarme/pyaf
luminolhttps://github.com/linkedin/luminol
matrixprofile-tshttps://github.com/target/matrixprofile-ts
websitehttps://www.cs.ucr.edu/~eamonn/MatrixProfile.html
ppthttps://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part1.pdf
alternativehttps://github.com/matrix-profile-foundation/mass-ts
stumpyhttps://github.com/TDAmeritrade/stumpy
obspyhttps://github.com/obspy/obspy
RobustSTLhttps://github.com/LeeDoYup/RobustSTL
seglearnhttps://github.com/dmbee/seglearn
pytshttps://github.com/johannfaouzi/pyts
Imaging time serieshttps://pyts.readthedocs.io/en/latest/auto_examples/index.html#imaging-time-series
examplehttps://gist.github.com/oguiza/c9c373aec07b96047d1ba484f23b7b47
examplehttps://github.com/kiss90/time-series-classification
sktimehttps://github.com/alan-turing-institute/sktime
sktime-dlhttps://github.com/uea-machine-learning/sktime-dl
adtkhttps://github.com/arundo/adtk
rockethttps://github.com/angus924/rocket
luminairehttps://github.com/zillow/luminaire
etnahttps://github.com/tinkoff-ai/etna
Chaos Geniushttps://github.com/chaos-genius/chaos_genius
https://github.com/r0f1/datascience#time-series---nixla
nixtlahttps://github.com/Nixtla/nixtla
statsforecasthttps://github.com/Nixtla/statsforecast
neuralforecasthttps://github.com/Nixtla/neuralforecast
mlforecasthttps://github.com/Nixtla/mlforecast
hierarchicalforecasthttps://github.com/Nixtla/hierarchicalforecast
https://github.com/r0f1/datascience#time-series-evaluation
TimeSeriesSplithttps://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html
tscvhttps://github.com/WenjieZ/TSCV
https://github.com/r0f1/datascience#financial-data-and-trading
1https://calmcode.io/cvxpy-one/the-stigler-diet.html
2https://calmcode.io/cvxpy-two/introduction.html
pandas-datareaderhttps://pandas-datareader.readthedocs.io/en/latest/whatsnew.html
yfinancehttps://github.com/ranaroussi/yfinance
findatapyhttps://github.com/cuemacro/findatapy
tahttps://github.com/bukosabino/ta
backtraderhttps://github.com/mementum/backtrader
surpriverhttps://github.com/tradytics/surpriver
ffnhttps://github.com/pmorissette/ffn
bthttps://github.com/pmorissette/bt
alpaca-trade-api-pythonhttps://github.com/alpacahq/alpaca-trade-api-python
eitenhttps://github.com/tradytics/eiten
tf-quant-financehttps://github.com/google/tf-quant-finance
quantstatshttps://github.com/ranaroussi/quantstats
Riskfolio-Libhttps://github.com/dcajasn/Riskfolio-Lib
OpenBBTerminalhttps://github.com/OpenBB-finance/OpenBBTerminal
mplfinancehttps://github.com/matplotlib/mplfinance
https://github.com/r0f1/datascience#quantopian-stack
pyfoliohttps://github.com/quantopian/pyfolio
ziplinehttps://github.com/quantopian/zipline
alphalenshttps://github.com/quantopian/alphalens
empyricalhttps://github.com/quantopian/empyrical
trading_calendarshttps://github.com/quantopian/trading_calendars
https://github.com/r0f1/datascience#survival-analysis
Time-dependent Cox Model in Rhttps://stats.stackexchange.com/questions/101353/cox-regression-with-time-varying-covariates
lifelineshttps://lifelines.readthedocs.io/en/latest/
talkhttps://www.youtube.com/watch?v=aKZQUaNHYb0
talk2https://www.youtube.com/watch?v=fli-yE5grtY
scikit-survivalhttps://github.com/sebp/scikit-survival
xgboosthttps://github.com/dmlc/xgboost
NHANES examplehttps://shap.readthedocs.io/en/latest/example_notebooks/tabular_examples/tree_based_models/NHANES%20I%20Survival%20Model.html
survivalstanhttps://github.com/hammerlab/survivalstan
introhttp://www.hammerlab.org/2017/06/26/introducing-survivalstan/
convoyshttps://github.com/better/convoys
pysurvivalhttps://github.com/square/pysurvival
DeepSurvivalMachineshttps://github.com/autonlab/DeepSurvivalMachines
auton-survivalhttps://github.com/autonlab/auton-survival
https://github.com/r0f1/datascience#outlier-detection--anomaly-detection
sklearnhttps://scikit-learn.org/stable/modules/outlier_detection.html
pyodhttps://pyod.readthedocs.io/en/latest/pyod.html
eifhttps://github.com/sahandha/eif
AnomalyDetectionhttps://github.com/twitter/AnomalyDetection
luminolhttps://github.com/linkedin/luminol
Talkhttps://www.youtube.com/watch?v=U7xdiGc7IRU
Kolmogorov-Smirnovhttps://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.ks_2samp.html
Wassersteinhttps://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
Energy Distance (Cramer)https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.energy_distance.html
Kullback-Leibler divergencehttps://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kl_div.html
banpeihttps://github.com/tsurubee/banpei
telemanomhttps://github.com/khundman/telemanom
luminairehttps://github.com/zillow/luminaire
rrcfhttps://github.com/kLabUM/rrcf
https://github.com/r0f1/datascience#concept-drift--domain-shift
TorchDrifthttps://github.com/TorchDrift/TorchDrift
alibi-detecthttps://github.com/SeldonIO/alibi-detect
evidentlyhttps://github.com/evidentlyai/evidently
Lipton et al. - Detecting and Correcting for Label Shift with Black Box Predictorshttps://arxiv.org/abs/1802.03916
Bu et al. - A pdf-Free Change Detection Test Based on Density Difference Estimationhttps://ieeexplore.ieee.org/document/7745962
https://github.com/r0f1/datascience#ranking
lightninghttps://github.com/scikit-learn-contrib/lightning
https://github.com/r0f1/datascience#causal-inference
https://github.com/r0f1/datascience#texts-1
Chatton et al. - The Causal Cookbook: Recipes for Propensity Scores, G-Computation, and Doubly Robust Standardizationhttps://journals.sagepub.com/doi/10.1177/25152459241236149
Statistical Rethinkinghttps://github.com/rmcelreath/stat_rethinking_2022
Rhttps://bookdown.org/content/4857/
pythonhttps://github.com/pymc-devs/resources/tree/master/Rethinking_2
numpyro1https://github.com/asuagar/statrethink-course-numpyro-2019
numpyro2https://fehiepsi.github.io/rethinking-numpyro/
tensorflow-probabilityhttps://github.com/ksachdeva/rethinking-tensorflow-probability
Naimi et al. - An introduction to g methodshttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6074945/
CS 594 Causal Inference and Learninghttps://www.cs.uic.edu/~elena/courses/fall19/cs594cil.html
Marginal Effects Tutorialhttps://marginaleffects.com/vignettes/gcomputation.html
Python Causality Handbookhttps://github.com/matheusfacure/python-causality-handbook
The Effect: An Introduction to Research Design and Causalityhttps://theeffectbook.net/index.html
Structual Equation Modelinghttps://m-clark.github.io/sem/
https://github.com/r0f1/datascience#tools
pecanhttps://pecan-tool.rpsychologist.com/
dagittyhttps://www.dagitty.net/
dowhyhttps://github.com/py-why/dowhy
CausalImpacthttps://github.com/tcassou/causal_impact
R packagehttps://google.github.io/CausalImpact/CausalImpact.html
causallibhttps://github.com/IBM/causallib
exampleshttps://github.com/IBM/causallib/tree/master/examples
causalmlhttps://github.com/uber/causalml
upliftmlhttps://github.com/bookingcom/upliftml
causalityhttps://github.com/akelleh/causality
DoubleMLhttps://github.com/DoubleML/doubleml-for-py
Tweethttps://twitter.com/ChristophMolnar/status/1574338002305880068
Presentationhttps://scholar.princeton.edu/sites/default/files/bstewart/files/felton.chern_.slides.20190318.pdf
Paperhttps://arxiv.org/abs/1608.00060v1
EconMLhttps://github.com/py-why/EconML
https://github.com/r0f1/datascience#papers
Bours - Confoundinghttps://edisciplinas.usp.br/pluginfile.php/5625667/mod_resource/content/3/Nontechnicalexplanation-counterfactualdefinition-confounding.pdf
Bours - Effect Modification and Interactionhttps://www.sciencedirect.com/science/article/pii/S0895435621000330
https://github.com/r0f1/datascience#probabilistic-modelling-and-bayes
Introhttps://erikbern.com/2018/10/08/the-hackers-guide-to-uncertainty-estimates.html
Guidehttps://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
PyMC3https://www.pymc.io/projects/docs/en/stable/learn.html
numpyrohttps://github.com/pyro-ppl/numpyro
pyrohttps://github.com/pyro-ppl/pyro
pomegranatehttps://github.com/jmschrei/pomegranate
talkhttps://www.youtube.com/watch?v=dE5j6NW-Kzg
pmlearnhttps://github.com/pymc-learn/pymc-learn
arvizhttps://github.com/arviz-devs/arviz
zhusuanhttps://github.com/thu-ml/zhusuan
edwardhttps://github.com/blei-lab/edward
Mixture Density Networks (MNDs)http://edwardlib.org/tutorials/mixture-density-network
MDN Explanationhttps://towardsdatascience.com/a-hitchhikers-guide-to-mixture-density-networks-76b435826cca
Pyrohttps://github.com/pyro-ppl/pyro
TensorFlow probabilityhttps://github.com/tensorflow/probability
talk1https://www.youtube.com/watch?v=KJxmC5GCWe4
notebook talk1https://github.com/AlxndrMlk/PyDataGlobal2021/blob/main/00_PyData_Global_2021_nb_full.ipynb
talk2https://www.youtube.com/watch?v=BrwKURU-wpk
examplehttps://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/blob/master/Chapter1_Introduction/Ch1_Introduction_TFP.ipynb
bambihttps://github.com/bambinos/bambi
neural-tangentshttps://github.com/google/neural-tangents
bnlearnhttps://github.com/erdogant/bnlearn
https://github.com/r0f1/datascience#gaussian-processes
Visualizationhttp://www.infinitecuriosity.org/vizgp/
Articlehttps://distill.pub/2019/visual-exploration-gaussian-processes/
GPyOpthttps://github.com/SheffieldML/GPyOpt
GPflowhttps://github.com/GPflow/GPflow
gpytorchhttps://gpytorch.ai/
https://github.com/r0f1/datascience#stacking-models-and-ensembles
Model Stacking Blog Posthttp://blog.kaggle.com/2017/06/15/stacking-made-easy-an-introduction-to-stacknet-by-competitions-grandmaster-marios-michailidis-kazanova/
mlxtendhttps://github.com/rasbt/mlxtend
vecstackhttps://github.com/vecxoz/vecstack
StackNethttps://github.com/kaz-Anova/StackNet
mlenshttps://github.com/flennerhag/mlens
combohttps://github.com/yzhao062/combo
https://github.com/r0f1/datascience#model-evaluation
evaluatehttps://github.com/huggingface/evaluate
pycmhttps://github.com/sepandhaghighi/pycm
pandas_mlhttps://github.com/pandas-ml/pandas-ml
linkhttp://www.ritchieng.com/machinelearning-learning-curve/
yellowbrickhttp://www.scikit-yb.org/en/latest/api/model_selection/learning_curve.html
pyrochttps://github.com/noudald/pyroc
https://github.com/r0f1/datascience#model-uncertainty
awesome-conformal-predictionhttps://github.com/valeman/awesome-conformal-prediction
uncertainty-toolboxhttps://github.com/uncertainty-toolbox/uncertainty-toolbox
https://github.com/r0f1/datascience#model-explanation-interpretability-feature-importance
Princeton - Reproducibility Crisis in ML‑based Sciencehttps://sites.google.com/princeton.edu/rep-workshop
Bookhttps://christophm.github.io/interpretable-ml-book/agnostic.html
Exampleshttps://github.com/jphall663/interpretable_machine_learning_with_python
Permutation Importancehttps://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html
Partial Dependencehttps://scikit-learn.org/stable/modules/generated/sklearn.inspection.partial_dependence.html
shaphttps://github.com/slundberg/shap
talkhttps://www.youtube.com/watch?v=C80SQe16Rao
Good Shap introhttps://www.aidancooper.co.uk/a-non-technical-guide-to-interpreting-shap-analyses/
shapiqhttps://github.com/mmschlk/shapiq
treeinterpreterhttps://github.com/andosa/treeinterpreter
limehttps://github.com/marcotcr/lime
talkhttps://www.youtube.com/watch?v=C80SQe16Rao
Warning (Myth 7)https://crazyoscarchang.github.io/2019/02/16/seven-myths-in-machine-learning-research/
lime_xgboosthttps://github.com/jphall663/lime_xgboost
eli5https://github.com/TeamHG-Memex/eli5
lofo-importancehttps://github.com/aerdem4/lofo-importance
talkhttps://www.youtube.com/watch?v=zqsQ2ojj7sE
pybreakdownhttps://github.com/MI2DataLab/pyBreakDown
pyceboxhttps://github.com/AustinRochford/PyCEbox
pdpboxhttps://github.com/SauceCat/PDPbox
examplehttps://www.kaggle.com/dansbecker/partial-plots
partial_dependencehttps://github.com/nyuvis/partial_dependence
contrastive_explanationhttps://github.com/MarcelRobeer/ContrastiveExplanation
DrWhyhttps://github.com/ModelOriented/DrWhy
lucidhttps://github.com/tensorflow/lucid
xaihttps://github.com/EthicalML/XAI
innvestigatehttps://github.com/albermax/innvestigate
dalexhttps://github.com/pbiecek/DALEX
interpretmlhttps://github.com/interpretml/interpret
shapashhttps://github.com/MAIF/shapash
imodelshttps://github.com/csinva/imodels
captumhttps://github.com/pytorch/captum
https://github.com/r0f1/datascience#automated-machine-learning
AdaNethttps://github.com/tensorflow/adanet
tpothttps://github.com/EpistasisLab/tpot
autokerashttps://github.com/jhfjhfj1/autokeras
nnihttps://github.com/Microsoft/nni
mljarhttps://github.com/mljar/mljar-supervised
automl_zerohttps://github.com/google-research/google-research/tree/master/automl_zero
AlphaPyhttps://github.com/ScottfreeLLC/AlphaPy
https://github.com/r0f1/datascience#graph-representation-learning
Karate Clubhttps://github.com/benedekrozemberczki/karateclub
PyTorch Geometrichttps://github.com/rusty1s/pytorch_geometric
DLGhttps://github.com/dmlc/dgl
https://github.com/r0f1/datascience#convex-optimization
cvxpyhttps://github.com/cvxgrp/cvxpy
1https://calmcode.io/cvxpy-one/the-stigler-diet.html
2https://calmcode.io/cvxpy-two/introduction.html
https://github.com/r0f1/datascience#evolutionary-algorithms--optimization
deaphttps://github.com/DEAP/deap
evolhttps://github.com/godatadriven/evol
talkhttps://www.youtube.com/watch?v=68ABAU_V8qI&t=11m49s
platypushttps://github.com/Project-Platypus/Platypus
autogradhttps://github.com/HIPS/autograd
nevergradhttps://github.com/facebookresearch/nevergrad
gplearnhttps://gplearn.readthedocs.io/en/stable/
blackboxhttps://github.com/paulknysh/blackbox
paperhttps://www.nature.com/articles/s41598-017-06645-7
DeepSwarmhttps://github.com/Pattio/DeepSwarm
evotorchhttps://github.com/nnaisense/evotorch
https://github.com/r0f1/datascience#hyperparameter-tuning
sklearnhttps://scikit-learn.org/stable/index.html
GridSearchCVhttps://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
RandomizedSearchCVhttps://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
sklearn-deaphttps://github.com/rsteca/sklearn-deap
hyperopthttps://github.com/hyperopt/hyperopt
hyperopt-sklearnhttps://github.com/hyperopt/hyperopt-sklearn
optunahttps://github.com/pfnet/optuna
Talkhttps://www.youtube.com/watch?v=tcrcLRopTX0
skopthttps://scikit-optimize.github.io/
tunehttps://ray.readthedocs.io/en/latest/tune.html
bbopthttps://github.com/evhub/bbopt
dragonflyhttps://github.com/dragonfly/dragonfly
botorchhttps://github.com/pytorch/botorch
axhttps://github.com/facebook/Ax
lightning-hpohttps://github.com/Lightning-AI/lightning-hpo
https://github.com/r0f1/datascience#incremental-learning-online-learning
PassiveAggressiveClassifierhttps://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveClassifier.html
PassiveAggressiveRegressorhttps://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PassiveAggressiveRegressor.html
riverhttps://github.com/online-ml/river
Kagglerhttps://github.com/jeongyoonlee/Kaggler
https://github.com/r0f1/datascience#active-learning
Talkhttps://www.youtube.com/watch?v=0efyjq5rWS4
modALhttps://github.com/modAL-python/modAL
https://github.com/r0f1/datascience#reinforcement-learning
YouTubehttps://www.youtube.com/playlist?list=PL7-jPKtc4r78-wCZcQn5IqyuWhBZ8fOxT
YouTubehttps://www.youtube.com/playlist?list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs
1https://jeffbradberry.com/posts/2015/09/intro-to-monte-carlo-tree-search/
2http://mcts.ai/about/index.html
3https://medium.com/@quasimik/monte-carlo-tree-search-applied-to-letterpress-34f41c86e238
1https://github.com/AppliedDataSciencePartners/DeepReinforcementLearning
2https://web.stanford.edu/~surag/posts/alphazero.html
3https://github.com/suragnair/alpha-zero-general
Cheat Sheethttps://medium.com/applied-data-science/alphago-zero-explained-in-one-diagram-365f5abf67e0
RLLibhttps://ray.readthedocs.io/en/latest/rllib.html
Horizonhttps://github.com/facebookresearch/Horizon/
https://github.com/r0f1/datascience#deployment-and-lifecycle-management
https://github.com/r0f1/datascience#workflow-scheduling-and-orchestration
nextflowhttps://github.com/goodwright/nextflow.py
Websitehttps://github.com/nextflow-io/nextflow
airflowhttps://github.com/apache/airflow
prefecthttps://github.com/PrefectHQ/prefect
dagsterhttps://github.com/dagster-io/dagster
ploomberhttps://github.com/ploomber/ploomber
kestrahttps://github.com/kestra-io/kestra
cmlhttps://github.com/iterative/cml
rocketryhttps://github.com/Miksus/rocketry
hueyhttps://github.com/coleifer/huey
https://github.com/r0f1/datascience#containerization-and-docker
Reduce size of docker images (video)https://www.youtube.com/watch?v=Z1Al4I4Os_A
Optimize Docker Image Sizehttps://www.augmentedmind.de/2022/02/06/optimize-docker-image-size/
coghttps://github.com/replicate/cog
https://github.com/r0f1/datascience#data-versioning-databases-pipelines-and-model-serving
dvchttps://github.com/iterative/dvc
kedrohttps://github.com/quantumblacklabs/kedro
feasthttps://github.com/feast-dev/feast
Videohttps://www.youtube.com/watch?v=_omcXenypmo
pgvectorhttps://github.com/pgvector/pgvector
pineconehttps://www.pinecone.io/
trusshttps://github.com/basetenlabs/truss
milvushttps://github.com/milvus-io/milvus
mlemhttps://github.com/iterative/mlem
https://github.com/r0f1/datascience#data-science-related
m2cgenhttps://github.com/BayesWitnesses/m2cgen
sklearn-porterhttps://github.com/nok/sklearn-porter
mlflowhttps://mlflow.org/
skllhttps://github.com/EducationalTestingService/skll
BentoMLhttps://github.com/bentoml/BentoML
dagsterhttps://github.com/dagster-io/dagster
knockknockhttps://github.com/huggingface/knockknock
metaflowhttps://github.com/Netflix/metaflow
cortexhttps://github.com/cortexlabs/cortex
Neptunehttps://neptune.ai
clearmlhttps://github.com/allegroai/clearml
polyaxonhttps://github.com/polyaxon/polyaxon
sematichttps://github.com/sematic-ai/sematic
zenmlhttps://github.com/zenml-io/zenml
https://github.com/r0f1/datascience#math-and-background
All kinds of math and statistics resourceshttps://realnotcomplex.com/
Linear Algebrahttps://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/index.htm
Matrix Methods in Data Analysis, Signal Processing, and Machine Learning https://ocw.mit.edu/courses/mathematics/18-065-matrix-methods-in-data-analysis-signal-processing-and-machine-learning-spring-2018/
https://github.com/r0f1/datascience#resources
Distill.pubhttps://distill.pub/
Machine Learning Videoshttps://github.com/dustinvtran/ml-videos
Data Science Notebookshttps://github.com/donnemartin/data-science-ipython-notebooks
Recommender Systems (Microsoft)https://github.com/Microsoft/Recommenders
Datascience Cheatsheetshttps://github.com/FavioVazquez/ds-cheatsheets
https://github.com/r0f1/datascience#guidelines
datasharinghttps://github.com/jtleek/datasharing
https://github.com/r0f1/datascience#books-1
Blum - Foundations of Data Sciencehttps://www.cs.cornell.edu/jeh/book.pdf?file=book.pdf
Chan - Introduction to Probability for Data Sciencehttps://probability4datascience.com/index.html
Colonescu - Principles of Econometrics with Rhttps://bookdown.org/ccolonescu/RPoE4/
Rafael Irizarry - Introduction to Data Sciencehttps://rafalab.dfci.harvard.edu/dsbook-part-1/
Rafael Irizarry - Advanced Data Sciencehttps://rafalab.dfci.harvard.edu/dsbook-part-2/
https://github.com/r0f1/datascience#other-awesome-lists
Awesome Adversarial Machine Learninghttps://github.com/yenchenlin/awesome-adversarial-machine-learning
Awesome AI Booksmarkshttps://github.com/goodrahstar/my-awesome-AI-bookmarks
Awesome AI on Kuberneteshttps://github.com/CognonicLabs/awesome-AI-kubernetes
Awesome Big Datahttps://github.com/onurakpolat/awesome-bigdata
Awesome Biological Image Analysishttps://github.com/hallvaaw/awesome-biological-image-analysis
Awesome Business Machine Learninghttps://github.com/firmai/business-machine-learning
Awesome Causalityhttps://github.com/rguo12/awesome-causality-algorithms
Awesome Community Detectionhttps://github.com/benedekrozemberczki/awesome-community-detection
Awesome CSVhttps://github.com/secretGeek/AwesomeCSV
Awesome Cytodatahttps://github.com/cytodata/awesome-cytodata
Awesome Data Sciencehttps://github.com/academic/awesome-datascience
Awesome Data Science with Rubyhttps://github.com/arbox/data-science-with-ruby
Awesome Dashhttps://github.com/ucg8j/awesome-dash
Awesome Decision Treeshttps://github.com/benedekrozemberczki/awesome-decision-tree-papers
Awesome Deep Learninghttps://github.com/ChristosChristofidis/awesome-deep-learning
Awesome ETLhttps://github.com/pawl/awesome-etl
Awesome Financial Machine Learninghttps://github.com/firmai/financial-machine-learning
Awesome Fraud Detectionhttps://github.com/benedekrozemberczki/awesome-fraud-detection-papers
Awesome GAN Applicationshttps://github.com/nashory/gans-awesome-applications
Awesome Graph Classificationhttps://github.com/benedekrozemberczki/awesome-graph-classification
Awesome Industry Machine Learninghttps://github.com/firmai/industry-machine-learning
Awesome Gradient Boostinghttps://github.com/benedekrozemberczki/awesome-gradient-boosting-papers
Awesome Learning with Label Noisehttps://github.com/subeeshvasu/Awesome-Learning-with-Label-Noise
Awesome Machine Learninghttps://github.com/josephmisiti/awesome-machine-learning#python
Awesome Machine Learning Bookshttp://matpalm.com/blog/cool_machine_learning_books/
Awesome Machine Learning Interpretabilityhttps://github.com/jphall663/awesome-machine-learning-interpretability
Awesome Machine Learning Operationshttps://github.com/EthicalML/awesome-machine-learning-operations
Awesome Monte Carlo Tree Searchhttps://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers
Awesome MLOpshttps://github.com/kelvins/awesome-mlops
Awesome Neural Network Visualizationhttps://github.com/ashishpatel26/Tools-to-Design-or-Visualize-Architecture-of-Neural-Network
Awesome Online Machine Learninghttps://github.com/MaxHalford/awesome-online-machine-learning
Awesome Pipelinehttps://github.com/pditommaso/awesome-pipeline
Awesome Public APIshttps://github.com/public-apis/public-apis
Awesome Public Datasetshttps://github.com/awesomedata/awesome-public-datasets
Awesome Pythonhttps://github.com/vinta/awesome-python
Awesome Python Data Sciencehttps://github.com/krzjoa/awesome-python-datascience
Awesome Python Data Sciencehttps://github.com/thomasjpfan/awesome-python-data-science
Awesome Pytorchhttps://github.com/bharathgs/Awesome-pytorch-list
Awesome Quantitative Financehttps://github.com/wilsonfreitas/awesome-quant
Awesome Recommender Systemshttps://github.com/grahamjenson/list_of_recommender_systems
Awesome Satellite Benchmark Datasetshttps://github.com/Seyed-Ali-Ahmadi/Awesome_Satellite_Benchmark_Datasets
Awesome Satellite Image for Deep Learninghttps://github.com/satellite-image-deep-learning/techniques
Awesome Single Cellhttps://github.com/seandavi/awesome-single-cell
Awesome Semantic Segmentationhttps://github.com/mrgloom/awesome-semantic-segmentation
Awesome Sentence Embeddinghttps://github.com/Separius/awesome-sentence-embedding
Awesome Visual Attentionshttps://github.com/MenghaoGuo/Awesome-Vision-Attentions
Awesome Visual Transformerhttps://github.com/dk-liang/Awesome-Visual-Transformer
https://github.com/r0f1/datascience#lectures
NYU Deep Learning SP21https://www.youtube.com/playlist?list=PLLHTzKZzVU9e6xUfG10TkTWApKSZCzuBI
https://github.com/r0f1/datascience#things-i-google-a-lot
Color Codeshttps://github.com/d3/d3-3.x-api-reference/blob/master/Ordinal-Scales.md#categorical-colors
Frequency codes for time serieshttps://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases
Date parsing codeshttps://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior
https://github.com/r0f1/datascience#contributing
contribution guidelineshttps://github.com/r0f1/datascience/blob/master/CONTRIBUTING.md
https://github.com/r0f1/datascience#license
https://creativecommons.org/publicdomain/zero/1.0/
python https://github.com/topics/python
data-science https://github.com/topics/data-science
machine-learning https://github.com/topics/machine-learning
data-mining https://github.com/topics/data-mining
awesome https://github.com/topics/awesome
statistics https://github.com/topics/statistics
deep-learning https://github.com/topics/deep-learning
data-visualization https://github.com/topics/data-visualization
artificial-intelligence https://github.com/topics/artificial-intelligence
datascience https://github.com/topics/datascience
data-analysis https://github.com/topics/data-analysis
awesome-list https://github.com/topics/awesome-list
deeplearning https://github.com/topics/deeplearning
bayes https://github.com/topics/bayes
Readme https://github.com/r0f1/datascience#readme-ov-file
CC0-1.0 license https://github.com/r0f1/datascience#CC0-1.0-1-ov-file
Contributing https://github.com/r0f1/datascience#contributing-ov-file
Please reload this pagehttps://github.com/r0f1/datascience
Activityhttps://github.com/r0f1/datascience/activity
4.6k starshttps://github.com/r0f1/datascience/stargazers
139 watchinghttps://github.com/r0f1/datascience/watchers
711 forkshttps://github.com/r0f1/datascience/forks
Report repository https://github.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2Fr0f1%2Fdatascience&report=r0f1+%28user%29
Releaseshttps://github.com/r0f1/datascience/releases
Packages 0https://github.com/users/r0f1/packages?repo_name=datascience
Please reload this pagehttps://github.com/r0f1/datascience
Contributors 16https://github.com/r0f1/datascience/graphs/contributors
Please reload this pagehttps://github.com/r0f1/datascience
+ 2 contributorshttps://github.com/r0f1/datascience/graphs/contributors
https://github.com
Termshttps://docs.github.com/site-policy/github-terms/github-terms-of-service
Privacyhttps://docs.github.com/site-policy/privacy-policies/github-privacy-statement
Securityhttps://github.com/security
Statushttps://www.githubstatus.com/
Communityhttps://github.community/
Docshttps://docs.github.com/
Contacthttps://support.github.com?tags=dotcom-footer

Viewport: width=device-width


URLs of crawlers that visited me.