Title: Branches · pythonlessons/TensorFlow-object-detection-tutorial · GitHub
Open Graph Title: Branches · pythonlessons/TensorFlow-object-detection-tutorial
X Title: Branches · pythonlessons/TensorFlow-object-detection-tutorial
Description: The purpose of this tutorial is to learn how to install and prepare TensorFlow framework to train your own convolutional neural network object detection classifier for multiple objects, starting from scratch - Branches · pythonlessons/TensorFlow-object-detection-tutorial
Open Graph Description: The purpose of this tutorial is to learn how to install and prepare TensorFlow framework to train your own convolutional neural network object detection classifier for multiple objects, starting fr...
X Description: The purpose of this tutorial is to learn how to install and prepare TensorFlow framework to train your own convolutional neural network object detection classifier for multiple objects, starting fr...
Opengraph URL: https://github.com/pythonlessons/TensorFlow-object-detection-tutorial
X: @github
Domain: github.com
| route-pattern | /:user_id/:repository/branches(.:format) |
| route-controller | branches |
| route-action | index |
| fetch-nonce | v2:e62362ed-456f-3565-6265-22b36bd66a6e |
| current-catalog-service-hash | 82c569b93da5c18ed649ebd4c2c79437db4611a6a1373e805a3cb001c64130b7 |
| request-id | D09C:15A4AF:123603:18EA56:69826880 |
| html-safe-nonce | dad2ed6d5f7c117998f23dcb9b71ed8b758a6e062e5e2e60b4bda3a6f0850573 |
| visitor-payload | eyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJEMDlDOjE1QTRBRjoxMjM2MDM6MThFQTU2OjY5ODI2ODgwIiwidmlzaXRvcl9pZCI6IjY4ODg4ODkyODEyNDM0MDg1MTIiLCJyZWdpb25fZWRnZSI6ImlhZCIsInJlZ2lvbl9yZW5kZXIiOiJpYWQifQ== |
| visitor-hmac | 818ebc41d756392ce9ae9fb1e1b0cd51a4c32ef35324c843e27d4f2c4aa96563 |
| hovercard-subject-tag | repository:156688058 |
| github-keyboard-shortcuts | repository,copilot |
| google-site-verification | Apib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I |
| octolytics-url | https://collector.github.com/github/collect |
| analytics-location | / |
| fb:app_id | 1401488693436528 |
| apple-itunes-app | app-id=1477376905, app-argument=https://github.com/pythonlessons/TensorFlow-object-detection-tutorial/branches |
| twitter:image | https://opengraph.githubassets.com/4f9ea44112b86177cf021de3d32401287fb64ea2f47b8b3c3c47d9653505a755/pythonlessons/TensorFlow-object-detection-tutorial |
| twitter:card | summary_large_image |
| og:image | https://opengraph.githubassets.com/4f9ea44112b86177cf021de3d32401287fb64ea2f47b8b3c3c47d9653505a755/pythonlessons/TensorFlow-object-detection-tutorial |
| og:image:alt | The purpose of this tutorial is to learn how to install and prepare TensorFlow framework to train your own convolutional neural network object detection classifier for multiple objects, starting fr... |
| og:image:width | 1200 |
| og:image:height | 600 |
| og:site_name | GitHub |
| og:type | object |
| hostname | github.com |
| expected-hostname | github.com |
| None | d8cbbf00e6212b4e561a1d6db613194a319d58a2967494f7cc81cf6da3fbb985 |
| turbo-cache-control | no-cache |
| go-import | github.com/pythonlessons/TensorFlow-object-detection-tutorial git https://github.com/pythonlessons/TensorFlow-object-detection-tutorial.git |
| octolytics-dimension-user_id | 43852392 |
| octolytics-dimension-user_login | pythonlessons |
| octolytics-dimension-repository_id | 156688058 |
| octolytics-dimension-repository_nwo | pythonlessons/TensorFlow-object-detection-tutorial |
| octolytics-dimension-repository_public | true |
| octolytics-dimension-repository_is_fork | false |
| octolytics-dimension-repository_network_root_id | 156688058 |
| octolytics-dimension-repository_network_root_nwo | pythonlessons/TensorFlow-object-detection-tutorial |
| turbo-body-classes | logged-out env-production page-responsive |
| disable-turbo | false |
| browser-stats-url | https://api.github.com/_private/browser/stats |
| browser-errors-url | https://api.github.com/_private/browser/errors |
| release | b83d89864fafc7a67b8747b788f52c909d47dbfd |
| ui-target | full |
| theme-color | #1e2327 |
| color-scheme | light dark |
Links:
Viewport: width=device-width