| Skip to content | https://github.com/npubird/KnowledgeGraphCourse#start-of-content |
|
| https://github.com/ |
|
Sign in
| https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fnpubird%2FKnowledgeGraphCourse |
| GitHub CopilotWrite better code with AI | https://github.com/features/copilot |
| GitHub SparkBuild and deploy intelligent apps | https://github.com/features/spark |
| GitHub ModelsManage and compare prompts | https://github.com/features/models |
| MCP RegistryNewIntegrate external tools | https://github.com/mcp |
| ActionsAutomate any workflow | https://github.com/features/actions |
| CodespacesInstant dev environments | https://github.com/features/codespaces |
| IssuesPlan and track work | https://github.com/features/issues |
| Code ReviewManage code changes | https://github.com/features/code-review |
| GitHub Advanced SecurityFind and fix vulnerabilities | https://github.com/security/advanced-security |
| Code securitySecure your code as you build | https://github.com/security/advanced-security/code-security |
| Secret protectionStop leaks before they start | https://github.com/security/advanced-security/secret-protection |
| Why GitHub | https://github.com/why-github |
| Documentation | https://docs.github.com |
| Blog | https://github.blog |
| Changelog | https://github.blog/changelog |
| Marketplace | https://github.com/marketplace |
| View all features | https://github.com/features |
| Enterprises | https://github.com/enterprise |
| Small and medium teams | https://github.com/team |
| Startups | https://github.com/enterprise/startups |
| Nonprofits | https://github.com/solutions/industry/nonprofits |
| App Modernization | https://github.com/solutions/use-case/app-modernization |
| DevSecOps | https://github.com/solutions/use-case/devsecops |
| DevOps | https://github.com/solutions/use-case/devops |
| CI/CD | https://github.com/solutions/use-case/ci-cd |
| View all use cases | https://github.com/solutions/use-case |
| Healthcare | https://github.com/solutions/industry/healthcare |
| Financial services | https://github.com/solutions/industry/financial-services |
| Manufacturing | https://github.com/solutions/industry/manufacturing |
| Government | https://github.com/solutions/industry/government |
| View all industries | https://github.com/solutions/industry |
| View all solutions | https://github.com/solutions |
| AI | https://github.com/resources/articles?topic=ai |
| Software Development | https://github.com/resources/articles?topic=software-development |
| DevOps | https://github.com/resources/articles?topic=devops |
| Security | https://github.com/resources/articles?topic=security |
| View all topics | https://github.com/resources/articles |
| Customer stories | https://github.com/customer-stories |
| Events & webinars | https://github.com/resources/events |
| Ebooks & reports | https://github.com/resources/whitepapers |
| Business insights | https://github.com/solutions/executive-insights |
| GitHub Skills | https://skills.github.com |
| Documentation | https://docs.github.com |
| Customer support | https://support.github.com |
| Community forum | https://github.com/orgs/community/discussions |
| Trust center | https://github.com/trust-center |
| Partners | https://github.com/partners |
| GitHub SponsorsFund open source developers | https://github.com/sponsors |
| Security Lab | https://securitylab.github.com |
| Maintainer Community | https://maintainers.github.com |
| Accelerator | https://github.com/accelerator |
| Archive Program | https://archiveprogram.github.com |
| Topics | https://github.com/topics |
| Trending | https://github.com/trending |
| Collections | https://github.com/collections |
| Enterprise platformAI-powered developer platform | https://github.com/enterprise |
| GitHub Advanced SecurityEnterprise-grade security features | https://github.com/security/advanced-security |
| Copilot for BusinessEnterprise-grade AI features | https://github.com/features/copilot/copilot-business |
| Premium SupportEnterprise-grade 24/7 support | https://github.com/premium-support |
| Pricing | https://github.com/pricing |
| Search syntax tips | https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax |
| documentation | https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax |
|
Sign in
| https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fnpubird%2FKnowledgeGraphCourse |
|
Sign up
| https://github.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=npubird%2FKnowledgeGraphCourse |
| Reload | https://github.com/npubird/KnowledgeGraphCourse |
| Reload | https://github.com/npubird/KnowledgeGraphCourse |
| Reload | https://github.com/npubird/KnowledgeGraphCourse |
|
npubird
| https://github.com/npubird |
| KnowledgeGraphCourse | https://github.com/npubird/KnowledgeGraphCourse |
|
Notifications
| https://github.com/login?return_to=%2Fnpubird%2FKnowledgeGraphCourse |
|
Fork
1.1k
| https://github.com/login?return_to=%2Fnpubird%2FKnowledgeGraphCourse |
|
Star
4.3k
| https://github.com/login?return_to=%2Fnpubird%2FKnowledgeGraphCourse |
|
4.3k
stars
| https://github.com/npubird/KnowledgeGraphCourse/stargazers |
|
1.1k
forks
| https://github.com/npubird/KnowledgeGraphCourse/forks |
|
Branches
| https://github.com/npubird/KnowledgeGraphCourse/branches |
|
Tags
| https://github.com/npubird/KnowledgeGraphCourse/tags |
|
Activity
| https://github.com/npubird/KnowledgeGraphCourse/activity |
|
Star
| https://github.com/login?return_to=%2Fnpubird%2FKnowledgeGraphCourse |
|
Notifications
| https://github.com/login?return_to=%2Fnpubird%2FKnowledgeGraphCourse |
|
Code
| https://github.com/npubird/KnowledgeGraphCourse |
|
Issues
16
| https://github.com/npubird/KnowledgeGraphCourse/issues |
|
Pull requests
0
| https://github.com/npubird/KnowledgeGraphCourse/pulls |
|
Actions
| https://github.com/npubird/KnowledgeGraphCourse/actions |
|
Projects
0
| https://github.com/npubird/KnowledgeGraphCourse/projects |
|
Security
Uh oh!
There was an error while loading. Please reload this page.
| https://github.com/npubird/KnowledgeGraphCourse/security |
| Please reload this page | https://github.com/npubird/KnowledgeGraphCourse |
|
Insights
| https://github.com/npubird/KnowledgeGraphCourse/pulse |
|
Code
| https://github.com/npubird/KnowledgeGraphCourse |
|
Issues
| https://github.com/npubird/KnowledgeGraphCourse/issues |
|
Pull requests
| https://github.com/npubird/KnowledgeGraphCourse/pulls |
|
Actions
| https://github.com/npubird/KnowledgeGraphCourse/actions |
|
Projects
| https://github.com/npubird/KnowledgeGraphCourse/projects |
|
Security
| https://github.com/npubird/KnowledgeGraphCourse/security |
|
Insights
| https://github.com/npubird/KnowledgeGraphCourse/pulse |
| Branches | https://github.com/npubird/KnowledgeGraphCourse/branches |
| Tags | https://github.com/npubird/KnowledgeGraphCourse/tags |
| https://github.com/npubird/KnowledgeGraphCourse/branches |
| https://github.com/npubird/KnowledgeGraphCourse/tags |
| 172 Commits | https://github.com/npubird/KnowledgeGraphCourse/commits/master/ |
| https://github.com/npubird/KnowledgeGraphCourse/commits/master/ |
| 2024-KG+LLM论文分享.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-KG%2BLLM%E8%AE%BA%E6%96%87%E5%88%86%E4%BA%AB.pdf |
| 2024-KG+LLM论文分享.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-KG%2BLLM%E8%AE%BA%E6%96%87%E5%88%86%E4%BA%AB.pdf |
| 2024-pub-0课程介绍.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-0%E8%AF%BE%E7%A8%8B%E4%BB%8B%E7%BB%8D.pdf |
| 2024-pub-0课程介绍.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-0%E8%AF%BE%E7%A8%8B%E4%BB%8B%E7%BB%8D.pdf |
| 2024-pub-1知识图谱-理论-技术-实践和挑战A.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98A.pdf |
| 2024-pub-1知识图谱-理论-技术-实践和挑战A.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98A.pdf |
| 2024-pub-1知识图谱-理论-技术-实践和挑战B.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98B.pdf |
| 2024-pub-1知识图谱-理论-技术-实践和挑战B.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98B.pdf |
| 2024-pub-1知识图谱-理论-技术-实践和挑战C.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98C.pdf |
| 2024-pub-1知识图谱-理论-技术-实践和挑战C.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98C.pdf |
| 2024-pub-2知识表示.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-2%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA.pdf |
| 2024-pub-2知识表示.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-2%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA.pdf |
| 2024-pub-3知识建模.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-3%E7%9F%A5%E8%AF%86%E5%BB%BA%E6%A8%A1.pdf |
| 2024-pub-3知识建模.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-3%E7%9F%A5%E8%AF%86%E5%BB%BA%E6%A8%A1.pdf |
| 2024-pub-4知识抽取问题与方法.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-4%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96%E9%97%AE%E9%A2%98%E4%B8%8E%E6%96%B9%E6%B3%95.pdf |
| 2024-pub-4知识抽取问题与方法.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-4%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96%E9%97%AE%E9%A2%98%E4%B8%8E%E6%96%B9%E6%B3%95.pdf |
| 2024-pub-5.1实体识别研究前沿进展2023.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-5.1%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB%E7%A0%94%E7%A9%B6%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%952023.pdf |
| 2024-pub-5.1实体识别研究前沿进展2023.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-5.1%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB%E7%A0%94%E7%A9%B6%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%952023.pdf |
| 2024-pub-5知识抽取-从经典到大模型的范式.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BB%8E%E7%BB%8F%E5%85%B8%E5%88%B0%E5%A4%A7%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%8C%83%E5%BC%8F.pdf |
| 2024-pub-5知识抽取-从经典到大模型的范式.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BB%8E%E7%BB%8F%E5%85%B8%E5%88%B0%E5%A4%A7%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%8C%83%E5%BC%8F.pdf |
| 2024-pub-5知识抽取-实体识别.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB.pdf |
| 2024-pub-5知识抽取-实体识别.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB.pdf |
| 2024-pub-6知识抽取-关系抽取.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-6%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%85%B3%E7%B3%BB%E6%8A%BD%E5%8F%96.pdf |
| 2024-pub-6知识抽取-关系抽取.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-6%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%85%B3%E7%B3%BB%E6%8A%BD%E5%8F%96.pdf |
| 2024-pub-7知识抽取-事件抽取.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-7%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BA%8B%E4%BB%B6%E6%8A%BD%E5%8F%96.pdf |
| 2024-pub-7知识抽取-事件抽取.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-7%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BA%8B%E4%BB%B6%E6%8A%BD%E5%8F%96.pdf |
| 2024-pub-8知识融合.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-8%E7%9F%A5%E8%AF%86%E8%9E%8D%E5%90%88.pdf |
| 2024-pub-8知识融合.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-8%E7%9F%A5%E8%AF%86%E8%9E%8D%E5%90%88.pdf |
| 2024-pub-8知识融合前沿进展.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-8%E7%9F%A5%E8%AF%86%E8%9E%8D%E5%90%88%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%95.pdf |
| 2024-pub-8知识融合前沿进展.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-8%E7%9F%A5%E8%AF%86%E8%9E%8D%E5%90%88%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%95.pdf |
| 2024-pub-9知识表示学习.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-9%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA%E5%AD%A6%E4%B9%A0.pdf |
| 2024-pub-9知识表示学习.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-9%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA%E5%AD%A6%E4%B9%A0.pdf |
| 2025-pub-0课程介绍.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-0%E8%AF%BE%E7%A8%8B%E4%BB%8B%E7%BB%8D.pdf |
| 2025-pub-0课程介绍.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-0%E8%AF%BE%E7%A8%8B%E4%BB%8B%E7%BB%8D.pdf |
| 2025-pub-1 知识图谱-理论-技术-实践和挑战A.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-1%20%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98A.pdf |
| 2025-pub-1 知识图谱-理论-技术-实践和挑战A.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-1%20%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98A.pdf |
| 2025-pub-1 知识图谱-理论-技术-实践和挑战B.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-1%20%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98B.pdf |
| 2025-pub-1 知识图谱-理论-技术-实践和挑战B.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-1%20%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98B.pdf |
| 2025-pub-4 知识抽取问题与方法.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-4%20%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96%E9%97%AE%E9%A2%98%E4%B8%8E%E6%96%B9%E6%B3%95.pdf |
| 2025-pub-4 知识抽取问题与方法.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-4%20%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96%E9%97%AE%E9%A2%98%E4%B8%8E%E6%96%B9%E6%B3%95.pdf |
| 2025-pub-5-1实体识别研究前沿进展2025.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-5-1%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB%E7%A0%94%E7%A9%B6%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%952025.pdf |
| 2025-pub-5-1实体识别研究前沿进展2025.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-5-1%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB%E7%A0%94%E7%A9%B6%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%952025.pdf |
| 2025-pub-5知识抽取-实体识别.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB.pdf |
| 2025-pub-5知识抽取-实体识别.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB.pdf |
| 2025-pub-6知识抽取-关系抽取.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-6%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%85%B3%E7%B3%BB%E6%8A%BD%E5%8F%96.pdf |
| 2025-pub-6知识抽取-关系抽取.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-6%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%85%B3%E7%B3%BB%E6%8A%BD%E5%8F%96.pdf |
| 2025-pub-7-1 知识抽取-从经典到大模型的范式(20231201-华为).pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-7-1%20%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BB%8E%E7%BB%8F%E5%85%B8%E5%88%B0%E5%A4%A7%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%8C%83%E5%BC%8F(20231201-%E5%8D%8E%E4%B8%BA).pdf |
| 2025-pub-7-1 知识抽取-从经典到大模型的范式(20231201-华为).pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-7-1%20%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BB%8E%E7%BB%8F%E5%85%B8%E5%88%B0%E5%A4%A7%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%8C%83%E5%BC%8F(20231201-%E5%8D%8E%E4%B8%BA).pdf |
| 2025-pub-9 知识图谱与大模型前沿进展.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-9%20%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E4%B8%8E%E5%A4%A7%E6%A8%A1%E5%9E%8B%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%95.pdf |
| 2025-pub-9 知识图谱与大模型前沿进展.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-9%20%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E4%B8%8E%E5%A4%A7%E6%A8%A1%E5%9E%8B%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%95.pdf |
| README.md | https://github.com/npubird/KnowledgeGraphCourse/blob/master/README.md |
| README.md | https://github.com/npubird/KnowledgeGraphCourse/blob/master/README.md |
| pub-0课程介绍.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-0%E8%AF%BE%E7%A8%8B%E4%BB%8B%E7%BB%8D.pdf |
| pub-0课程介绍.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-0%E8%AF%BE%E7%A8%8B%E4%BB%8B%E7%BB%8D.pdf |
| pub-11ChatGPT在质量评测和Prompt工程方面的应用.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-11ChatGPT%E5%9C%A8%E8%B4%A8%E9%87%8F%E8%AF%84%E6%B5%8B%E5%92%8CPrompt%E5%B7%A5%E7%A8%8B%E6%96%B9%E9%9D%A2%E7%9A%84%E5%BA%94%E7%94%A8.pdf |
| pub-11ChatGPT在质量评测和Prompt工程方面的应用.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-11ChatGPT%E5%9C%A8%E8%B4%A8%E9%87%8F%E8%AF%84%E6%B5%8B%E5%92%8CPrompt%E5%B7%A5%E7%A8%8B%E6%96%B9%E9%9D%A2%E7%9A%84%E5%BA%94%E7%94%A8.pdf |
| pub-11Prompt分享.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-11Prompt%E5%88%86%E4%BA%AB.pdf |
| pub-11Prompt分享.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-11Prompt%E5%88%86%E4%BA%AB.pdf |
| pub-12ChatGPT在信息抽取和多模态方面的应用.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-12ChatGPT%E5%9C%A8%E4%BF%A1%E6%81%AF%E6%8A%BD%E5%8F%96%E5%92%8C%E5%A4%9A%E6%A8%A1%E6%80%81%E6%96%B9%E9%9D%A2%E7%9A%84%E5%BA%94%E7%94%A8.pdf |
| pub-12ChatGPT在信息抽取和多模态方面的应用.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-12ChatGPT%E5%9C%A8%E4%BF%A1%E6%81%AF%E6%8A%BD%E5%8F%96%E5%92%8C%E5%A4%9A%E6%A8%A1%E6%80%81%E6%96%B9%E9%9D%A2%E7%9A%84%E5%BA%94%E7%94%A8.pdf |
| pub-1知识图谱-理论-技术-实践和挑战A.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98A.pdf |
| pub-1知识图谱-理论-技术-实践和挑战A.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98A.pdf |
| pub-1知识图谱-理论-技术-实践和挑战B.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98B.pdf |
| pub-1知识图谱-理论-技术-实践和挑战B.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98B.pdf |
| pub-2知识表示.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-2%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA.pdf |
| pub-2知识表示.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-2%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA.pdf |
| pub-3知识建模.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-3%E7%9F%A5%E8%AF%86%E5%BB%BA%E6%A8%A1.pdf |
| pub-3知识建模.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-3%E7%9F%A5%E8%AF%86%E5%BB%BA%E6%A8%A1.pdf |
| pub-4知识抽取-问题与方法.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-4%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E9%97%AE%E9%A2%98%E4%B8%8E%E6%96%B9%E6%B3%95.pdf |
| pub-4知识抽取-问题与方法.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-4%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E9%97%AE%E9%A2%98%E4%B8%8E%E6%96%B9%E6%B3%95.pdf |
| pub-5实体识别研究前沿进展2022.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-5%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB%E7%A0%94%E7%A9%B6%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%952022.pdf |
| pub-5实体识别研究前沿进展2022.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-5%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB%E7%A0%94%E7%A9%B6%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%952022.pdf |
| pub-5知识抽取-实体识别.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB.pdf |
| pub-5知识抽取-实体识别.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB.pdf |
| pub-6知识抽取-关系抽取.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-6%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%85%B3%E7%B3%BB%E6%8A%BD%E5%8F%96.pdf |
| pub-6知识抽取-关系抽取.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-6%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%85%B3%E7%B3%BB%E6%8A%BD%E5%8F%96.pdf |
| pub-7知识抽取-事件抽取.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-7%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BA%8B%E4%BB%B6%E6%8A%BD%E5%8F%96.pdf |
| pub-7知识抽取-事件抽取.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-7%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BA%8B%E4%BB%B6%E6%8A%BD%E5%8F%96.pdf |
| pub-8知识融合.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-8%E7%9F%A5%E8%AF%86%E8%9E%8D%E5%90%88.pdf |
| pub-8知识融合.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-8%E7%9F%A5%E8%AF%86%E8%9E%8D%E5%90%88.pdf |
| pub-8知识融合前沿进展.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-8%E7%9F%A5%E8%AF%86%E8%9E%8D%E5%90%88%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%95.pdf |
| pub-8知识融合前沿进展.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-8%E7%9F%A5%E8%AF%86%E8%9E%8D%E5%90%88%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%95.pdf |
| pub-9知识表示学习A.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-9%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA%E5%AD%A6%E4%B9%A0A.pdf |
| pub-9知识表示学习A.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-9%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA%E5%AD%A6%E4%B9%A0A.pdf |
| pub-9知识表示学习B.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-9%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA%E5%AD%A6%E4%B9%A0B.pdf |
| pub-9知识表示学习B.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-9%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA%E5%AD%A6%E4%B9%A0B.pdf |
| README | https://github.com/npubird/KnowledgeGraphCourse |
| https://github.com/npubird/KnowledgeGraphCourse#a-systematic-course-about-knowledge-graph-for-graduate-students-interested-researchers-and-engineers |
| https://github.com/npubird/KnowledgeGraphCourse#课程内容 |
| https://github.com/npubird/KnowledgeGraphCourse#第0讲-课程介绍2025-02-21 |
| 2025-pub-0课程介绍.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-0%E8%AF%BE%E7%A8%8B%E4%BB%8B%E7%BB%8D.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第1讲-知识图谱概论-2025-02-2102-2803-07 |
| 2025-partA | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-1%20%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98A.pdf |
| 2025-partB | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-1%20%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98B.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第2讲-知识表示-2025-03-07 |
| 2025-pub-2知识表示.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-2%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第3讲-知识建模-2025-03-14 |
| 2025-pub-3知识建模.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-3%E7%9F%A5%E8%AF%86%E5%BB%BA%E6%A8%A1.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第4讲-知识抽取基础问题和方法2025-03-14 |
| 2025-pub-4知识抽取问题与方法.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-4%20%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96%E9%97%AE%E9%A2%98%E4%B8%8E%E6%96%B9%E6%B3%95.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第5讲-知识抽取实体识别2025-03-21 |
| 2025-pub-5知识抽取-实体识别.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB.pdf |
| 2025-pub-5.1实体识别研究前沿进展2023.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-5-1%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB%E7%A0%94%E7%A9%B6%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%952025.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第6讲-知识抽取关系抽取2025-03-28 |
| 2025-pub-6知识抽取-关系抽取.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-6%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%85%B3%E7%B3%BB%E6%8A%BD%E5%8F%96.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第7讲-知识抽取事件抽取2025-04-11 |
| 2025-pub-7知识抽取-事件抽取.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-7%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BA%8B%E4%BB%B6%E6%8A%BD%E5%8F%96.pdf |
| 2025-pub-7-1 知识抽取-事件抽取.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-7-1%20%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BB%8E%E7%BB%8F%E5%85%B8%E5%88%B0%E5%A4%A7%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%8C%83%E5%BC%8F(20231201-%E5%8D%8E%E4%B8%BA).pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第8讲-知识融合2025-04-18 |
| 2025-pub-8 知识融合.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-8%E7%9F%A5%E8%AF%86%E8%9E%8D%E5%90%88.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第9讲-知识图谱与大语言模型前沿进展2025-04-25 |
| 2025-pub-9 知识图谱与大模型前沿进展.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2025-pub-9%20%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1%E4%B8%8E%E5%A4%A7%E6%A8%A1%E5%9E%8B%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%95.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第0讲-课程介绍-2024-02-22 |
| 2024-pub-0课程介绍.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-0%E8%AF%BE%E7%A8%8B%E4%BB%8B%E7%BB%8D.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第1讲-知识图谱概论-2024-02-2903-0803-14 |
| 2024-partA | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98A.pdf |
| 2024-partB | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98B.pdf |
| 2024-partC | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-1%E7%9F%A5%E8%AF%86%E5%9B%BE%E8%B0%B1-%E7%90%86%E8%AE%BA-%E6%8A%80%E6%9C%AF-%E5%AE%9E%E8%B7%B5%E5%92%8C%E6%8C%91%E6%88%98C.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第2讲-知识表示-2024-03-21 |
| 2024-pub-2知识表示.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-2%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第3讲-知识建模-2024-03-21 |
| 2024-pub-3知识建模.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-3%E7%9F%A5%E8%AF%86%E5%BB%BA%E6%A8%A1.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第4讲-知识抽取基础问题和方法2024-03-28 |
| 2024-pub-4知识抽取问题与方法.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024pub-4%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96%E9%97%AE%E9%A2%98%E4%B8%8E%E6%96%B9%E6%B3%95.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第5讲-知识抽取实体识别2024-03-28 |
| 2024-pub-5知识抽取-实体识别.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB.pdf |
| 2024-pub-5知识抽取-从经典到大模型的范式.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-5%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BB%8E%E7%BB%8F%E5%85%B8%E5%88%B0%E5%A4%A7%E6%A8%A1%E5%9E%8B%E7%9A%84%E8%8C%83%E5%BC%8F.pdf |
| 2024-pub-5.1实体识别研究前沿进展2023.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-5.1%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB%E7%A0%94%E7%A9%B6%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%952023.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第6讲-知识抽取关系抽取2024-04-11 |
| 2024-pub-6知识抽取-关系抽取.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-6%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E5%85%B3%E7%B3%BB%E6%8A%BD%E5%8F%96.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第7讲-知识抽取事件抽取2024-04-25 |
| 2024-pub-7知识抽取-事件抽取.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-7%E7%9F%A5%E8%AF%86%E6%8A%BD%E5%8F%96-%E4%BA%8B%E4%BB%B6%E6%8A%BD%E5%8F%96.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第8讲-知识融合2024-04-25 |
| 2024-pub-8知识融合.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-8%E7%9F%A5%E8%AF%86%E8%9E%8D%E5%90%88.pdf |
| 2024-pub-8知识融合前沿进展.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-8%E7%9F%A5%E8%AF%86%E8%9E%8D%E5%90%88%E5%89%8D%E6%B2%BF%E8%BF%9B%E5%B1%95.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#第9讲-知识图谱表示学习2024-04-28 |
| 2024-pub-9知识表示学习 | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-pub-9%E7%9F%A5%E8%AF%86%E8%A1%A8%E7%A4%BA%E5%AD%A6%E4%B9%A0.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#2024-第10讲-kgllm论文分享2024-04-252024-04-28 |
| 2024-KG+LLM论文分享 | https://github.com/npubird/KnowledgeGraphCourse/blob/master/2024-KG+LLM%E8%AE%BA%E6%96%87%E5%88%86%E4%BA%AB.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#2023-第10讲-chatgpt到kg2023 |
| https://github.com/npubird/KnowledgeGraphCourse#2023-第11讲-chatgpt相关论文分享2023-5-5 |
| pub-11Prompt分享.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-11Prompt%E5%88%86%E4%BA%AB.pdf |
| pub-11ChatGPT在质量评测和Prompt工程方面的应用.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-11ChatGPT%E5%9C%A8%E8%B4%A8%E9%87%8F%E8%AF%84%E6%B5%8B%E5%92%8CPrompt%E5%B7%A5%E7%A8%8B%E6%96%B9%E9%9D%A2%E7%9A%84%E5%BA%94%E7%94%A8.pdf |
| pub-11Prompt分享.pdf | https://pan.baidu.com/s/1zl_Ie0_0541Kkt0uDL481Q |
| pub-11ChatGPT在质量评测和Prompt工程方面的应用.pdf | https://pan.baidu.com/s/1-5aqKkiT1ot3XYQpmlxSyQ |
| https://github.com/npubird/KnowledgeGraphCourse#第12讲-chatgpt相关论文分享2023-5-12 |
| pub-12ChatGPT在信息抽取和多模态方面的应用.pdf | https://github.com/npubird/KnowledgeGraphCourse/blob/master/pub-12ChatGPT%E5%9C%A8%E4%BF%A1%E6%81%AF%E6%8A%BD%E5%8F%96%E5%92%8C%E5%A4%9A%E6%A8%A1%E6%80%81%E6%96%B9%E9%9D%A2%E7%9A%84%E5%BA%94%E7%94%A8.pdf |
| pub-12ChatGPT在信息抽取和多模态方面的应用.pdf | https://pan.baidu.com/s/136vQ1BUJRQ_HSXZDM7u94g |
| https://github.com/npubird/KnowledgeGraphCourse#附录a经典文献选读 |
| https://github.com/npubird/KnowledgeGraphCourse#知识图谱构建 |
| Knowledge vault: A web-scale approach to probabilistic knowledge fusion | https://ai.google/research/pubs/pub45634.pdf |
| Yago: a core of semantic knowledge | http://www2007.wwwconference.org/papers/paper391.pdf |
| YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia | https://people.mpi-inf.mpg.de/~kberberi/publications/2013-ai.pdf |
| BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network | http://web.informatik.uni-mannheim.de/ponzetto/pubs/navigli12b.pdf |
| Dbpedia: A nucleus for a web of open data | http://editthis.info/images/swim/d/d8/Dbpedia_-_open_data.pdf |
| Never-ending learning | https://dl.acm.org/ft_gateway.cfm?id=3191513&type=pdf |
| earlier work | https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewFile/1879/2201 |
| Query-driven on-the-fly knowledge base construction. | http://orbilu.uni.lu/bitstream/10993/34035/1/p66-nguyen.pdf |
| Conceptnet 5.5: An open multilingual graph of general knowledge | https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14972/14051 |
| https://github.com/npubird/KnowledgeGraphCourse#知识表示和建模 |
| Knowledge representation: logical, philosophical, and computational foundations | https://www.aclweb.org/anthology/J01-2006.pdf |
| Ontology Development 101: A Guide to Creating Your First Ontology | http://ftp.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness.pdf |
| another version | http://www.corais.org/sites/default/files/ontology_development_101_aguide_to_creating_your_first_ontology.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#知识抽取 |
| Web-scale information extraction in knowitall:(preliminary results) | http://www2004.org/proceedings/docs/1p100.pdf |
| Open information extraction from the web | https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-429.pdf |
| Information extraction | http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.442.2007&rep=rep1&type=pdf |
| Identifying relations for open information extraction | https://aclanthology.info/pdf/D/D11/D11-1142.pdf |
| Automatic knowledge extraction from documents | http://brenocon.com/watson_special_issue/05%20automatic%20knowledge%20extration.pdf |
| Automatic acquisition of hyponyms from large text corpora | http://www.aclweb.org/anthology/C92-2082 |
| A survey of named entity recognition and classification | https://www.jbe-platform.com/content/journals/10.1075/li.30.1.03nad |
| Neural architectures for named entity recognition | https://arxiv.org/pdf/1603.01360.pdf |
| Bidirectional LSTM-CRF models for sequence tagging | https://arxiv.org/pdf/1508.01991.pdf |
| Graph ranking for collective named entity disambiguation | http://www.aclweb.org/anthology/P14-2013 |
| Named entity recognition through classifier combination | http://www.aclweb.org/anthology/W03-0425 |
| Named entity recognition with bidirectional LSTM-CNNs | https://www.mitpressjournals.org/doi/pdf/10.1162/tacl_a_00104 |
| Learning multilingual named entity recognition from Wikipedia | https://www.sciencedirect.com/science/article/pii/S0004370212000276 |
| Boosting named entity recognition with neural character embeddings | https://arxiv.org/pdf/1505.05008 |
| Domain adaptation of rule-based annotators for named-entity recognition tasks | http://www.aclweb.org/anthology/D10-1098 |
| A survey of arabic named entity recognition and classification | https://www.mitpressjournals.org/doi/full/10.1162/COLI_a_00178 |
| Ensemble learning for named entity recognition | https://svn.aksw.org/papers/2014/ISWC_EL4NER/public.pdf |
| Deep learning with word embeddings improves biomedical named entity recognition | https://academic.oup.com/bioinformatics/article/33/14/i37/3953940 |
| Relation extraction and scoring in DeepQA | http://brenocon.com/watson_special_issue/09%20relation%20extraction%20and%20scoring.pdf |
| Semantic compositionality through recursive matrix-vector spaces | https://www.aclweb.org/anthology/D12-1110 |
| Convolution neural network for relation extraction | https://link.springer.com/content/pdf/10.1007%2F978-3-642-53917-6.pdf |
| Relation classification via convolutional deep neural network | http://ir.ia.ac.cn/bitstream/173211/4797/1/Relation%20Classification%20via%20Convolutional%20Deep%20Neural%20Network.pdf |
| “Classifying relations by ranking with convolutional neural networks.” | https://www.aclweb.org/anthology/P15-1061 |
| Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks | https://www.aclweb.org/anthology/D15-1203 |
| End-to-end Relation Extraction using LSTMs on Sequences and Tree Structures | https://www.aclweb.org/anthology/P16-1105 |
| Attention-based bidirectional long short-term memory networks for relation classification | http://anthology.aclweb.org/P16-2034 |
| Neural relation extraction with selective attention over instances | https://www.aclweb.org/anthology/P16-1200 |
| Bidirectional recurrent convolutional neural network for relation classification | https://www.aclweb.org/anthology/P16-1072 |
| Relation classification via multi-level attention cnns | http://eprints.bimcoordinator.co.uk/14/1/relation-classification.pdf |
| Attention-based bidirectional long short-term memory networks for relation classification | https://www.aclweb.org/anthology/P16-2034 |
| Neural relation extraction with selective attention over instances | https://www.aclweb.org/anthology/P16-1200 |
| Neural relation extraction with multi-lingual attention | https://www.aclweb.org/anthology/P17-1004 |
| Deep residual learning for weakly-supervised relation extraction | https://www.aclweb.org/anthology/D17-1191 |
| Distant supervision for relation extraction with sentence-level attention and entity descriptions | https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14491/14078 |
| Adversarial training for relation extraction | https://www.aclweb.org/anthology/D17-1187 |
| Cotype: Joint extraction of typed entities and relations with knowledge bases | https://www.ijcai.org/proceedings/2018/0620.pdf |
| Event extraction via dynamic multi-pooling convolutional neural networks | http://www.aclweb.org/anthology/P15-1017 |
| Event detection and domain adaptation with convolutional neural networks | http://www.aclweb.org/anthology/P15-2060 |
| An overview of event extraction from text | http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.369.7040&rep=rep1&type=pdf |
| Improving information extraction by acquiring external evidence with reinforcement learning | https://arxiv.org/pdf/1603.07954.pdf |
| Joint event extraction via recurrent neural networks | http://www.aclweb.org/anthology/N16-1034 |
| https://github.com/npubird/KnowledgeGraphCourse#知识融合 |
| Ontology matching: state of the art and future challenges | https://hal.inria.fr/hal-00917910/document |
| Algorithm and tool for automated ontology merging and alignment | https://www.aaai.org/Papers/AAAI/2000/AAAI00-069.pdf |
| COMA: a system for flexible combination of schema matching approaches | http://www.vldb.org/conf/2002/S17P03.pdf |
| Learning to map between ontologies on the semantic web | http://secs.ceas.uc.edu/~mazlack/CS716.f2006/Semantic.Web.Ontology.Papers/Doan.02.pdf |
| QOM–quick ontology mapping | http://www.scs.carleton.ca/~armyunis/knowledge-managment/papers/QOM-Quick%20Ontology%20Mapping.pdf |
| Constructing virtual documents for ontology matching | https://www.researchgate.net/profile/Yuzhong_Qu/publication/221022499_Lecture_Notes_in_Computer_Science/links/5483bb9f0cf25dbd59eb0ff0/Lecture-Notes-in-Computer-Science.pdf |
| RiMOM: A dynamic multistrategy ontology alignment framework | https://ieeexplore.ieee.org/abstract/document/4633358/ |
| An adaptive ontology mapping approach with neural network based constraint satisfaction | http://gesispanel.gesis.org/preprints/index.php/ps/article/download/209/368 |
| Matching large ontologies: A divide-and-conquer approach | http://dit.unitn.it/~p2p/RelatedWork/Matching/MatchingLargeOntologies.pdf |
| A blocking framework for entity resolution in highly heterogeneous information spaces | http://disi.unitn.it/~themis/publications/erframework-tr12.pdf |
| Matching large ontologies based on reduction anchors | https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/download/3145/3697 |
| An effective rule miner for instance matching in a web of data | http://xingniu.org/pub/ruleminer_cikm12.pdf |
| A blocking framework for entity resolution in highly heterogeneous information spaces | http://disi.unitn.it/~themis/publications/erframework-tr12.pdf |
| Large scale instance matching via multiple indexes and candidate selection | http://disi.unitn.it/~p2p/RelatedWork/Matching/KBS13-Li-et-al-large-instance.pdf |
| A self-training approach for resolving object coreference on the semantic web | http://dit.unitn.it/~p2p/RelatedWork/Matching/A%20self-training%20approach_Hu_www11.pdf |
| A unified probabilistic framework for name disambiguation in digital library | http://keg.cs.tsinghua.edu.cn/jietang/publications/TKDE12-Tang-Name-Disambiguation.pdf |
| Name Disambiguation in AMiner: Clustering, Maintenance, and Human in the Loop | http://keg.cs.tsinghua.edu.cn/jietang/publications/kdd18_yutao-AMiner-Name-Disambiguation.pdf |
| LIMES—a time-efficient approach for large-scale link discovery on the web of data | https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/viewFile/3125/3692 |
| Cross-lingual entity alignment via joint attribute-preserving embedding. | https://arxiv.org/pdf/1708.05045 |
| Robust disambiguation of named entities in text. | https://www.aclweb.org/anthology/D11-1072 |
| https://github.com/npubird/KnowledgeGraphCourse#知识图谱嵌入 |
| Knowledge graph embedding: A survey of approaches and applications | http://download.xuebalib.com/3at6CEQL3eBi.pdf |
| 知识表示学习研究进展 | http://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3099 |
| Word representations: A simple and general method for semi-supervised learning | https://aclanthology.info/pdf/P/P10/P10-1040.pdf |
| Joint learning of words and meaning representations for open-text semantic parsing | http://proceedings.mlr.press/v22/bordes12/bordes12.pdf |
| Learning structured embeddings of knowledge bases | https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/download/3659/3898 |
| Distributed representations of words and phrases and their compositionality | https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf |
| Translating embeddings for modeling multi-relational data | http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf |
| Knowledge graph embedding by translating on hyperplanes | https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/viewFile/8531/8546 |
| Learning entity and relation embeddings for knowledge graph completion | https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9571/9523 |
| Knowledge graph embedding via dynamic mapping matrix | http://www.aclweb.org/anthology/P15-1067 |
| Knowledge graph completion with adaptive sparse transfer matrix | https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPDFInterstitial/11982/11693 |
| Transition-based knowledge graph embedding with relational mapping properties | https://www.aclweb.org/anthology/Y14-1039 |
| Knowledge graph embedding for precise link prediction | https://arxiv.org/pdf/1512.04792 |
| Knowledge graph embedding by flexible translation | https://www.aaai.org/ocs/index.php/KR/KR16/paper/viewPDFInterstitial/12887/12520 |
| TransA: An adaptive approach for knowledge graph embedding | https://arxiv.org/pdf/1509.05490 |
| Learning to represent knowledge graphs with gaussian embedding | http://ir.ia.ac.cn/bitstream/173211/11475/1/sig-alternate.pdf |
| TransG: A generative model for knowledge graph embedding | https://www.aclweb.org/anthology/P16-1219 |
| A latent factor model for highly multi-relational data | https://papers.nips.cc/paper/4744-a-latent-factor-model-for-highly-multi-relational-data.pdf |
| A Three-Way Model for Collective Learning on Multi-Relational Data | http://www.cip.ifi.lmu.de/~nickel/data/slides-icml2011.pdf |
| Embedding entities and relations for learning and inference in knowledge bases | https://arxiv.org/pdf/1412.6575 |
| Holographic embeddings of knowledge graphs | https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPDFInterstitial/12484/11828 |
| Complex embeddings for simple link prediction | http://www.jmlr.org/proceedings/papers/v48/trouillon16.pdf |
| Analogical inference for multi-relational embeddings | https://arxiv.org/pdf/1705.02426 |
| Reasoning with neural tensor networks for knowledge base completion | https://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf |
| A semantic matching energy function for learning with multi-relational data | https://link.springer.com/article/10.1007/s10994-013-5363-6 |
| Reasoning with neural tensor networks for knowledge base completion | https://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf |
| Knowledge vault: A web-scale approach to probabilistic knowledge fusion | https://ai.google/research/pubs/pub45634.pdf |
| Probabilistic reasoning via deep learning: Neural association models | https://arxiv.org/pdf/1603.07704 |
| Convolutional 2d knowledge graph embeddings | https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17366/15884 |
| Semantically smooth knowledge graph embedding | https://www.aclweb.org/anthology/P15-1009 |
| Representation Learning of Knowledge Graphs with Hierarchical Types | http://nlp.csai.tsinghua.edu.cn/~xrb/publications/IJCAI-16_type.pdf |
| Modeling relation paths for representation learning of knowledge bases | https://arxiv.org/pdf/1506.00379 |
| Knowledge vault: A web-scale approach to probabilistic knowledge fusion | https://ai.google/research/pubs/pub45634.pdf |
| Reducing the rank in relational factorization models by including observable patterns | http://papers.nips.cc/paper/5448-reducing-the-rank-in-relational-factorization-models-by-including-observable-patterns.pdf |
| Reasoning with neural tensor networks for knowledge base completion | https://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf |
| Representation learning of knowledge graphs with entity descriptions | https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12216/12004 |
| SSP: semantic space projection for knowledge graph embedding with text descriptions | https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/viewPDFInterstitial/14306/14084 |
| Text-Enhanced Representation Learning for Knowledge Graph | http://qngw2014.bj.bcebos.com/upload/2016/04/%E7%8E%8B%E5%BF%97%E5%88%9A-Text-enhanced%20Representation%20Learning%20for%20Knowledge%20Graph.pdf |
| Knowledge graph and text jointly embedding | https://www.aclweb.org/anthology/D14-1167 |
| Knowledge base completion using embeddings and rules | https://www.aaai.org/ocs/index.php/IJCAI/IJCAI15/paper/download/10798/10921 |
| Jointly embedding knowledge graphs and logical rules | https://www.aclweb.org/anthology/D16-1019 |
| Knowledge graph embedding with iterative guidance from soft rules | https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/16369/16011 |
| Improving knowledge graph embedding using simple constraints | https://arxiv.org/pdf/1805.02408 |
| Factorizing yago: scalable machine learning for linked data | http://www.dbs.ifi.lmu.de/~tresp/papers/p271.pdf |
| Encoding temporal information for time-aware link prediction | https://www.aclweb.org/anthology/D16-1260 |
| GAKE: graph aware knowledge embedding | https://aclanthology.info/pdf/C/C16/C16-1062.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#知识推理知识挖掘 |
| A Three-Way Model for Collective Learning on Multi-Relational Data | http://www.cip.ifi.lmu.de/~nickel/data/slides-icml2011.pdf |
| Reasoning with neural tensor networks for knowledge base completion | https://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf |
| Relational retrieval using a combination of path-constrained random walks | https://link.springer.com/content/pdf/10.1007/s10994-010-5205-8.pdf |
| Modeling relation paths for representation learning of knowledge bases | http://www.emnlp2015.org/proceedings/EMNLP/pdf/EMNLP082.pdf |
| Incorporating vector space similarity in random walk inference over knowledge bases | http://www.aclweb.org/anthology/D14-1044 |
| DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning | http://www.aclweb.org/anthology/D17-1060 |
| Reasoning With Neural Tensor Networks for Knowledge Base Completion[C] | https://nlp.stanford.edu/pubs/SocherChenManningNg_NIPS2013.pdf |
| ProjE: Embedding Projection for Knowledge Graph Completion[J] | https://arxiv.org/pdf/1611.05425.pdf |
| Open-World Knowledge Graph Completion[J] | https://arxiv.org/pdf/1711.03438.pdf |
| Modeling Relational Data with Graph Convolutional Networks[J] | https://arxiv.org/pdf/1703.06103.pdf |
| Iterative Entity Alignment via Joint Knowledge Embeddings[C] | http://nlp.csai.tsinghua.edu.cn/~lzy/publications/ijcai2017_entity.pdf |
| Chains of Reasoning over Entities, Relations, and Text using Recurrent Neural Networks[J] | https://arxiv.org/pdf/1607.01426.pdf |
| Modeling Large-Scale Structured Relationships with Shared Memory for Knowledge Base Completion[J] | https://128.84.21.199/pdf/1611.04642v2.pdf |
| Hybrid computing using a neural network with dynamic external memory[J] | https://www.nature.com/articles/nature20101.pdf |
| Differentiable Learning of Logical Rules for Knowledge Base Reasoning[J] | https://arxiv.org/pdf/1702.08367.pdf |
| https://github.com/npubird/KnowledgeGraphCourse#实体链接 |
| Entity linking leveraging: automatically generated annotation[C] | https://www.aclweb.org/anthology/C10-1145 |
| Supervised learning for linking named entities to knowledge base entries[C] | https://tac.nist.gov//publications/2011/participant.papers/dmir_inescid.proceedings.pdf |
| Capturing semantic similarity for entity linking with convolutional neural networks[C] | https://arxiv.org/pdf/1604.00734.pdf |
| Modeling mention, context and entity with neural networks for entity disambiguation | https://www.ijcai.org/Proceedings/15/Papers/192.pdf |
| Collective entity linking in web text: a graph-based method[C] | http://www.nlpr.ia.ac.cn/2011papers/gjhy/gh133.pdf |
| Entity linking: Finding extracted entities in a knowledge base | http://www.cs.jhu.edu/~delip/entity_linking.pdf |
| Robust entity linking via random walks[C] | https://dl.acm.org/citation.cfm?id=2661887 |
| https://github.com/npubird/KnowledgeGraphCourse#知识存储知识查询 |
| Building an efficient RDF store over a relational database | https://www.researchgate.net/profile/Patrick_Dantressangle/publication/262162010_Building_an_efficient_RDF_store_over_a_relational_database/links/54f718680cf210398e9184bc/Building-an-efficient-RDF-store-over-a-relational-database.pdf |
| Scalable SPARQL querying of large RDF graphs | http://www.cs.umd.edu/~abadi/papers/sw-graph-scale.pdf |
| gStore: a graph-based SPARQL query engine | http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.386.7427&rep=rep1&type=pdf |
| Efficient RDF storage and retrieval in Jena2 | http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.3451&rep=rep1&type=pdf#page=137 |
| gStore: answering SPARQL queries via subgraph matching | http://www.vldb.org/pvldb/vol4/p482-zou.pdf |
| G-store: a scalable data store for transactional multi key access in the cloud | http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.209.1087&rep=rep1&type=pdf |
| gStore: a graph-based SPARQL query engine | http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.386.7427&rep=rep1&type=pdf |
| RStar: an RDF storage and query system for enterprise resource management | https://www.researchgate.net/profile/Zhong_Su/publication/221614612_RStar_An_RDF_storage_and_query_system_for_enterprise_resource_management/links/02e7e5181cc6d57b09000000/RStar-An-RDF-storage-and-query-system-for-enterprise-resource-management.pdf |
| A distributed graph engine for web scale RDF data | https://www.graphengine.io/downloads/papers/Trinity.RDF.pdf |
| Relational processing of RDF queries: a survey | https://sigmodrecord.org/publications/sigmodRecord/0912/p23.survey.sakr.pdf |
| SPARQL query processing with conventional relational database systems | https://eprints.soton.ac.uk/261126/1/harris-ssws05.pdf |
| A comparison of current graph database models | https://www.researchgate.net/profile/Renzo_Angles/publication/261076480_A_Comparison_of_Current_Graph_Database_Models/links/54f05b180cf25f74d72609c3.pdf |
| Graph database applications and concepts with Neo4j | https://pdfs.semanticscholar.org/322a/6e1f464330751dea2eb6beecac24466322ad.pdf |
| HyperGraphDB: a generalized graph database | https://www.researchgate.net/profile/Borislav_Iordanov/publication/225204980_HyperGraphDB_A_Generalized_Graph_Database/links/0fcfd509bfc6de5b9a000000/HyperGraphDB-A-Generalized-Graph-Database.pdf |
| Scalable rdf store based on hbase and mapreduce | https://ieeexplore.ieee.org/abstract/document/5578937/ |
| Scalable SPARQL querying of large RDF graphs | http://www.cs.umd.edu/~abadi/papers/sw-graph-scale.pdf |
| Hexastore: sextuple indexing for semantic web data management | http://people.csail.mit.edu/tdanford/6830papers/weiss-hexastore.pdf |
| The RDF-3X engine for scalable management of RDF data | https://pure.mpg.de/rest/items/item_1324253/component/file_1324252/content |
| https://github.com/npubird/KnowledgeGraphCourse#人机交互 |
| Introduction to “this is watson” | https://ieeexplore.ieee.org/abstract/document/6177724/ |
| Question analysis: How Watson reads a clue | http://www.patwardhans.net/papers/LallyEtAl12.pdf |
| Commonsense Knowledge Aware Conversation Generation with Graph Attention | https://www.ijcai.org/proceedings/2018/0643.pdf |
| Building a large-scale multimodal knowledge base system for answering visual queries | https://pdfs.semanticscholar.org/9563/d6fafb6ba09c082a57e8d9b31494029a45ac.pdf |
| Joint language and translation modeling with recurrent neural networks | http://www.aclweb.org/anthology/D13-1106 |
| Neural machine translation by jointly learning to align and translate | https://arxiv.org/abs/1409.0473 |
| Learning phrase representations using RNN encoder-decoder for statistical machine translation | http://anthology.aclweb.org/D/D14/D14-1179.pdf |
| Empirical evaluation of gated recurrent neural networks on sequence modeling | https://arxiv.org/abs/1412.3555 |
| Generating sequences with recurrent neural networks | https://arxiv.org/abs/1308.0850 |
| https://github.com/npubird/KnowledgeGraphCourse#附录b最新进展论文选读近1年内 |
| Finding Descriptive Support Passages for Knowledge Graph Relationships | http://sumitbhatia.net/papers/iswc18.pdf |
| Representativeness of Knowledge Bases with the Generalized Benford’s Law | https://a3nm.net/work/seminar/slides/20181115-soulet.pdf |
| Towards Empty Answers in SPARQL: Approximating Querying with RDF Embedding | https://link.springer.com/chapter/10.1007/978-3-030-00671-6_30 |
| Canonicalisation of monotone SPARQL queries | https://link.springer.com/chapter/10.1007/978-3-030-00671-6_35 |
| Ontology Driven Extraction of Research Processes | https://pages.cs.aueb.gr/ipl/nlp/pubs/iswc2018.pdf |
| Using link features for entity clustering in knowledge graphs | https://dbs.uni-leipzig.de/file/eswc_0.pdf |
| Modeling relational data with graph convolutional networks | https://arxiv.org/pdf/1703.06103 |
| The Design and Implementation of XiaoIce, an Empathetic Social Chatbot | https://arxiv.org/pdf/1812.08989 |
| HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding | http://www.aclweb.org/anthology/D18-1225 |
| EARL: Joint entity and relation linking for question answering over knowledge graphs | https://arxiv.org/pdf/1801.03825 |
| Co-training embeddings of knowledge graphs and entity descriptions for cross-lingual entity alignment | http://yellowstone.cs.ucla.edu/~muhao/slides/kdcoe.pdf |
| Impact analysis of data placement strategies on query efforts in distributed rdf stores | http://mail.websemanticsjournal.org/preprints/index.php/ps/article/view/516/533 |
| FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation | https://arxiv.org/pdf/1810.10147 |
| Sequence-to-Sequence Data Augmentation for Dialogue Language Understanding | http://www.aclweb.org/anthology/C18-1105 |
| Adversarial Domain Adaptation for Variational Neural Language Generation in Dialogue Systems | http://www.aclweb.org/anthology/C18-1103 |
| Context-Sensitive Generation of Open-Domain Conversational Responses | http://www.aclweb.org/anthology/C18-1206 |
| Sentiment Adaptive End-to-End Dialog Systems | http://www.aclweb.org/anthology/P18-1140 |
| Personalizing Dialogue Agents: I have a dog, do you have pets too? | http://www.aclweb.org/anthology/P18-1205 |
| Task-oriented dialogue system for automatic diagnosis | http://www.aclweb.org/anthology/P18-2033 |
| Conversation Model Fine-Tuning for Classifying Client Utterances in Counseling Dialogues | https://github.com/npubird/KnowledgeGraphCourse/blob/master |
| Neural Transfer Learning for Natural Language Processing | http://ruder.io/thesis/neural_transfer_learning_for_nlp.pdf |
| Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences. | https://arxiv.org/pdf/1902.06236 |
| code | https://github.com/TaoMiner/joint-kg-recommender |
| https://arxiv.org/pdf/1904.07391 | https://arxiv.org/pdf/1904.07391 |
| Building language models for text with named entities | https://arxiv.org/pdf/1805.04836.pdf |
| A multi-lingual multi-task architecture for low-resource sequence labeling | http://www.aclweb.org/anthology/P18-1074 |
| Double embeddings and cnn-based sequence labeling for aspect extraction | https://arxiv.org/pdf/1805.04601.pdf |
| Hybrid semi-markov crf for neural sequence labeling | https://arxiv.org/pdf/1805.03838.pdf |
| Ncrf++: An open-source neural sequence labeling toolkit | https://arxiv.org/pdf/1806.05626.pdf |
| A neural layered model for nested named entity recognition | http://www.aclweb.org/anthology/N18-1131 |
| Label-aware double transfer learning for cross-specialty medical named entity recognition | https://arxiv.org/pdf/1804.09021.pdf |
| Multimodal named entity recognition for short social ../media posts | https://arxiv.org/pdf/1802.07862.pdf |
| Nested named entity recognition revisited | http://www.aclweb.org/anthology/N18-1079 |
| Adversarial Transfer Learning for Chinese Named Entity Recognition with Self-Attention Mechanism | http://www.aclweb.org/anthology/D18-1017 |
| Neural cross-lingual named entity recognition with minimal resources | https://arxiv.org/pdf/1808.09861.pdf |
| Neural adaptation layers for cross-domain named entity recognition | https://arxiv.org/pdf/1810.06368.pdf |
| Learning Named Entity Tagger using Domain-Specific Dictionary | https://arxiv.org/pdf/1809.03599.pdf |
| Marginal Likelihood Training of BiLSTM-CRF for Biomedical Named Entity Recognition from Disjoint Label Sets | http://www.aclweb.org/anthology/D18-1306 |
| Deep Exhaustive Model for Nested Named Entity Recognition | http://www.aclweb.org/anthology/D18-1309 |
| On the Strength of Character Language Models for Multilingual Named Entity Recognition | https://arxiv.org/pdf/1809.05157.pdf |
| An empirical study on fine-grained named entity recognition | http://www.aclweb.org/anthology/C18-1060 |
| An Exploration of Three Lightly-supervised Representation Learning Approaches for Named Entity Classification | http://www.aclweb.org/anthology/C18-1196 |
| Exploiting Structure in Representation of Named Entities using Active Learning | http://www.aclweb.org/anthology/C18-1058 |
| A survey on recent advances in named entity recognition from deep learning models | http://www.aclweb.org/anthology/C18-1182 |
| Improving Named Entity Recognition by Jointly Learning to Disambiguate Morphological Tags | https://arxiv.org/pdf/1807.06683.pdf |
| Learning to Progressively Recognize New Named Entities with Sequence to Sequence Models | http://www.aclweb.org/anthology/C18-1185 |
| Robust lexical features for improved neural network named-entity recognition | https://arxiv.org/pdf/1806.03489.pdf |
| Improving Event Coreference Resolution by Modeling Correlations between Event Coreference Chains and Document Topic Structures | http://www.aclweb.org/anthology/P18-1045 |
| Nugget Proposal Networks for Chinese Event Detection | https://arxiv.org/pdf/1805.00249.pdf |
| Zero-shot transfer learning for event extraction | https://arxiv.org/pdf/1707.01066.pdf |
| Self-regulation: Employing a Generative Adversarial Network to Improve Event Detection | http://www.aclweb.org/anthology/P18-1048 |
| Document embedding enhanced event detection with hierarchical and supervised attention | http://www.aclweb.org/anthology/P18-2066 |
| DCFEE: A Document-level Chinese Financial Event Extraction System based on Automatically Labeled Training Data | http://www.aclweb.org/anthology/P18-4009 |
| Semi-Supervised Event Extraction with Paraphrase Clusters | https://arxiv.org/pdf/1808.08622.pdf |
| Event Detection with Neural Networks: A Rigorous Empirical Evaluation | https://arxiv.org/pdf/1808.08504.pdf |
| Exploiting Contextual Information via Dynamic Memory Network for Event Detection | https://arxiv.org/pdf/1810.03449.pdf |
| Jointly multiple events extraction via attention-based graph information aggregation | https://arxiv.org/pdf/1809.09078.pdf |
| Collective Event Detection via a Hierarchical and Bias Tagging Networks with Gated Multi-level Attention Mechanisms | http://www.aclweb.org/anthology/D18-1158 |
| Similar but not the Same: Word Sense Disambiguation Improves Event Detection via Neural Representation Matching | http://www.aclweb.org/anthology/D18-1517 |
| Open-Domain Event Detection using Distant Supervision | http://www.aclweb.org/anthology/C18-1075 |
| Low-resource Cross-lingual Event Type Detection via Distant Supervision with Minimal Effort | http://www.aclweb.org/anthology/C18-1007 |
| Automatically Extracting Qualia Relations for the Rich Event Ontology | http://www.aclweb.org/anthology/C18-1224 |
| Graph-Based Decoding for Event Sequencing and Coreference Resolution | https://arxiv.org/pdf/1806.05099.pdf |
| Global relation embedding for relation extraction | https://www.aclweb.org/anthology/N18-1075 |
| Large scaled relation extraction with reinforcement learning | https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/16257/16125 |
| Neural relation extraction via inner-sentence noise reduction and transfer learning | https://aclweb.org/anthology/D18-1243 |
| Joint Extraction of Entities and Relations Based on a Novel Graph Scheme | http://ir.hit.edu.cn/~car/papers/ijcai18slwang.pdf |
| Reinforcement learning for relation classification from noisy data | https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17151/16140 |
| SEE: Syntax-aware entity embedding for neural relation extraction | https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16362/16142 |
| RESIDE: Improving Distantly-Supervised Neural Relation Extraction using Side Information | https://www.aclweb.org/anthology/D18-1157 |
| Jointly Extracting Multiple Triplets with Multilayer Translation Constraints | https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17151/16140 |
| A Hierarchical Framework for Relation Extraction with Reinforcement Learning | https://arxiv.org/pdf/1811.03925.pdf |
| A survey on NoSQL stores | https://dl.acm.org/citation.cfm?id=3158661 |
| RDF data storage and query processing schemes: A survey | https://exascale.info/assets/pdf/wylot2018survey.pdf |
| Redesign of the gStore system | https://link.springer.com/article/10.1007/s11704-018-7212-z |
| A Scalable Sparse Matrix-Based Join for SPARQL Query Processing | https://link.springer.com/chapter/10.1007/978-3-030-18590-9_77 |
| TriAL: A navigational algebra for RDF triplestores | http://www.research.ed.ac.uk/portal/files/44424184/tripalg_2.pdf |
| Managing big RDF data in clouds: Challenges, opportunities, and solutions | https://www.researchgate.net/profile/Ibrar_Yaqoob/publication/323377454_Managing_Big_RDF_Data_in_Clouds_Challenges_Opportunities_and_Solutions/links/5af126810f7e9ba366452ec6/Managing-Big-RDF-Data-in-Clouds-Challenges-Opportunities-and-Solutions.pdf |
| Multi-hop knowledge graph reasoning with reward shaping. | https://arxiv.org/pdf/1808.10568.pdf |
| Research on the model for tobacco disease prevention and control based on case-based reasoning and knowledge graph. | http://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/download/6806/2760 |
| Variational reasoning for question answering with knowledge graph. | https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/16983/16176 |
| Know-evolve: Deep temporal reasoning for dynamic knowledge graphs. | https://arxiv.org/pdf/1705.05742 |
| Embedding logical queries on knowledge graphs. | https://papers.nips.cc/paper/7473-embedding-logical-queries-on-knowledge-graphs.pdf |
| Neural cross-lingual entity linking. | https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPDFInterstitial/16501/16101 |
| Bilinear joint learning of word and entity embeddings for Entity Linking. | https://www.sciencedirect.com/science/article/pii/S0925231217318234 |
| DeepType: multilingual entity linking by neural type system evolution. | https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPDFInterstitial/17148/16094 |
| Neural cross-lingual coreference resolution and its application to entity linking. | https://arxiv.org/pdf/1806.10201 |
| Idel: In-database entity linking with neural embeddings. | https://arxiv.org/pdf/1803.04884 |
| Neural collective entity linking. | https://arxiv.org/pdf/1811.08603 |
| Cross-lingual knowledge graph alignment via graph convolutional networks. | https://www.aclweb.org/anthology/D18-1032 |
| MIDAS: Finding the right web sources to fill knowledge gaps | https://people.cs.umass.edu/~xlwang/midas-paper.pdf |
| Query-driven on-the-fly knowledge base construction | http://orbilu.uni.lu/bitstream/10993/34035/1/p66-nguyen.pdf |
| Efficient knowledge graph accuracy evaluation | https://arxiv.org/pdf/1907.09657 |
| A Brief History of Knowledge Graph's Main Ideas: A tutorial | http://knowledgegraph.today/paper.html |
| Industry-scale knowledge graphs: Lessons and challenges | https://dl.acm.org/doi/pdf/10.1145/3331166 |
| https://github.com/npubird/KnowledgeGraphCourse#附录b其它资源 |
| Top-level Conference Publications on Knowledge Graph (2018-2020) | https://github.com/wds-seu/Knowledge-Graph-Publications |
| Stanford Spring 2021 《Knowledge Graphs》 | https://www.youtube.com/playlist?list=PLDhh0lALedc5paY4N3NRZ3j_ui9foL7Qc |
| Stanford Spring 2020 《Knowledge Graphs》 | https://www.youtube.com/playlist?list=PLDhh0lALedc7LC_5wpi5gDnPRnu1GSyRG |
|
Readme
| https://github.com/npubird/KnowledgeGraphCourse#readme-ov-file |
| Please reload this page | https://github.com/npubird/KnowledgeGraphCourse |
|
Activity | https://github.com/npubird/KnowledgeGraphCourse/activity |
|
4.3k
stars | https://github.com/npubird/KnowledgeGraphCourse/stargazers |
|
99
watching | https://github.com/npubird/KnowledgeGraphCourse/watchers |
|
1.1k
forks | https://github.com/npubird/KnowledgeGraphCourse/forks |
|
Report repository
| https://github.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2Fnpubird%2FKnowledgeGraphCourse&report=npubird+%28user%29 |
| Releases | https://github.com/npubird/KnowledgeGraphCourse/releases |
| Packages
0 | https://github.com/users/npubird/packages?repo_name=KnowledgeGraphCourse |
| Please reload this page | https://github.com/npubird/KnowledgeGraphCourse |
| Contributors
4 | https://github.com/npubird/KnowledgeGraphCourse/graphs/contributors |
| Please reload this page | https://github.com/npubird/KnowledgeGraphCourse |
|
| https://github.com |
| Terms | https://docs.github.com/site-policy/github-terms/github-terms-of-service |
| Privacy | https://docs.github.com/site-policy/privacy-policies/github-privacy-statement |
| Security | https://github.com/security |
| Status | https://www.githubstatus.com/ |
| Community | https://github.community/ |
| Docs | https://docs.github.com/ |
| Contact | https://support.github.com?tags=dotcom-footer |