René's URL Explorer Experiment


Title: 树+神经网络算法强强联手(Python) · Issue #57 · aialgorithm/Blog · GitHub

Open Graph Title: 树+神经网络算法强强联手(Python) · Issue #57 · aialgorithm/Blog

X Title: 树+神经网络算法强强联手(Python) · Issue #57 · aialgorithm/Blog

Description: 结合论文《Revisiting Deep Learning Models for Tabular Data》的观点,集成树模型通常擅长于表格数据这种异构数据集,是实打实的表格数据王者。集成树模型中的LightGBM是增强版的GBDT,支持了分类变量,在工程层面大大提高了训练效率。关于树模型的介绍,可见之前文章:一文讲透树模型 DNN深度神经网络擅长于同构的高维数据,从高维稀疏的表示中学习到低维致密的分布式表示,所以在自然语言、图像识别等领域基本上是称霸武林(神经网络的介...

Open Graph Description: 结合论文《Revisiting Deep Learning Models for Tabular Data》的观点,集成树模型通常擅长于表格数据这种异构数据集,是实打实的表格数据王者。集成树模型中的LightGBM是增强版的GBDT,支持了分类变量,在工程层面大大提高了训练效率。关于树模型的介绍,可见之前文章:一文讲透树模型 DNN深度神经网络擅长于同构的高维数据,从高维稀疏的表示中学习到低...

X Description: 结合论文《Revisiting Deep Learning Models for Tabular Data》的观点,集成树模型通常擅长于表格数据这种异构数据集,是实打实的表格数据王者。集成树模型中的LightGBM是增强版的GBDT,支持了分类变量,在工程层面大大提高了训练效率。关于树模型的介绍,可见之前文章:一文讲透树模型 DNN深度神经网络擅长于同构的高维数据,从高维稀疏的表示中学习到低...

Opengraph URL: https://github.com/aialgorithm/Blog/issues/57

X: @github

direct link

Domain: github.com


Hey, it has json ld scripts:
{"@context":"https://schema.org","@type":"DiscussionForumPosting","headline":"树+神经网络算法强强联手(Python)","articleBody":"结合论文《Revisiting Deep Learning Models for Tabular Data》的观点,集成树模型通常擅长于表格数据这种异构数据集,是实打实的表格数据王者。集成树模型中的LightGBM是增强版的GBDT,支持了分类变量,在工程层面大大提高了训练效率。关于树模型的介绍,可见之前文章:[一文讲透树模型](http://mp.weixin.qq.com/s?__biz=MzI4MDE1NjExMQ==\u0026amp;mid=2247488558\u0026amp;idx=1\u0026amp;sn=476991d1c8e16db31f71a18c41c98acd\u0026amp;chksm=ebbd968edcca1f988730379ed1553a846c9ef27cc26d2ce7f2a6034c3199358096dcc6b817d6\u0026token=38808633\u0026lang=zh_CN#rd)\r\n![](https://upload-images.jianshu.io/upload_images/11682271-d1b442205d2b64f2.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\nDNN深度神经网络擅长于同构的高维数据,从高维稀疏的表示中学习到低维致密的分布式表示,所以在自然语言、图像识别等领域基本上是称霸武林(神经网络的介绍及实践可见系列文章:[一文搞定深度学习建模全流程](http://mp.weixin.qq.com/s?__biz=MzI4MDE1NjExMQ==\u0026amp;mid=2247486048\u0026amp;idx=1\u0026amp;sn=bbbe904159a9f9a65940057992a2ce8b\u0026amp;chksm=ebbd88c0dcca01d6a5054651e0f28266e4ad5dd762bdd1f3b6f4eadc0590af50af2ef653b14b\u0026token=38808633\u0026lang=zh_CN#rd))。对于异构致密的表格数据,个人实践来看,DNN模型的非线性能力没树模型来得高效。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-e3eb70a2b488ecea.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n所以一个很朴素的想法是,结合这树模型+神经网络模型的优势。比如通过NN学习文本的嵌入特征后,输入树模型继续学习(如word2vec+LGB做文本分类,可见文章:[NLP建模全流程](http://mp.weixin.qq.com/s?__biz=MzI4MDE1NjExMQ==\u0026amp;mid=2247489096\u0026amp;idx=1\u0026amp;sn=700d19511c6fff982082148ff1d9496c\u0026amp;chksm=ebbd94e8dcca1dfe998bae685e7c37c9bd89717834060225193f092df3caf12d3480800ef04f\u0026token=38808633\u0026lang=zh_CN#rd))。 或者是,树模型学习表格数据后,输出样本的高维个叶子节点的特征表示,输入DNN模型。\r\n\r\n接下来,我们使用LightGBM+DNN模型强强联手,验证其在信贷违约的表格数据预测分类效果。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-b64c3f3cb53af92f.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n\r\n\r\n### 数据处理及树模型训练\r\n\r\nlightgbm树模型,自带缺失、类别变量的处理,还有很强的非线性拟合能力,特征工程上面不用做很多处理,建模非常方便。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-0a05830674310c8f.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n```\r\n##完整代码及数据请见 算法进阶github:https://github.com/aialgorithm/Blog\r\n\r\n# 划分数据集:训练集和测试集\r\ntrain_x, test_x, train_y, test_y = train_test_split(train_bank[num_feas + cate_feas], train_bank.isDefault,test_size=0.3, random_state=0)\r\n\r\n# 训练模型\r\nlgb=lightgbm.LGBMClassifier(n_estimators=5, num_leaves=5,class_weight= 'balanced',metric = 'AUC')\r\nlgb.fit(train_x, train_y)\r\nprint('train ',model_metrics(lgb,train_x, train_y))\r\nprint('test ',model_metrics(lgb,test_x,test_y))\r\n```\r\n![](https://upload-images.jianshu.io/upload_images/11682271-9be3187719c55c8a.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n简单处理建模后test的AUC可以达到0.8656\r\n\r\n### 树+神经网络\r\n接下来我们将提取树模型的叶子节点的路径作为特征,并简单做下特征选择处理\r\n```\r\nimport numpy as np\r\n\r\ny_pred = lgb.predict(train_bank[num_feas + cate_feas],pred_leaf=True) \r\n\r\n# 提取叶子节点\r\ntrain_matrix = np.zeros([len(y_pred), len(y_pred[0])*lgb.get_params()['num_leaves']],dtype=np.int64)\r\nprint(train_matrix.shape) \r\n\r\n\r\nfor i in range(len(y_pred)):\r\n    temp = np.arange(len(y_pred[0]))*lgb.get_params()['num_leaves'] + np.array(y_pred[i])\r\n    train_matrix[i][temp] += 1\r\n\r\n# drop zero-features\r\ndf2 = pd.DataFrame(train_matrix)\r\ndroplist2 = []\r\nfor k in df2.columns:\r\n    if not df2[k].any():\r\n        droplist2.append(k)\r\nprint(len(droplist2))\r\ndf2= df2.drop(droplist2,axis=1).add_suffix('_lgb')\r\n\r\n# 拼接原特征和树节点特征\r\ndf_final2 = pd.concat([train_bank[num_feas],df2],axis=1)\r\ndf_final2.head()\r\n```\r\n![](https://upload-images.jianshu.io/upload_images/11682271-d55fef64e90aa74c.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n将拼接好原特征及树节点路径特征输入神经网络模型,并使用网格搜索调优神经网络模型。\r\n```\r\n# 划分数据集:训练集和测试集\r\ntrain_x, test_x, train_y, test_y = train_test_split(df_final2, train_bank.isDefault,test_size=0.3, random_state=0)\r\n\r\n# 神经网络模型评估\r\ndef model_metrics2(nnmodel, x, y):\r\n    yprob = nnmodel.predict(x.replace([np.inf, -np.inf], np.nan).fillna(0))[:,0]\r\n    fpr,tpr,_ = roc_curve(y, yprob,pos_label=1)\r\n    return auc(fpr, tpr),max(tpr-fpr)\r\n\r\n\r\nimport keras\r\nfrom keras import regularizers\r\nfrom keras.layers import Dense,Dropout,BatchNormalization,GaussianNoise\r\nfrom keras.models import Sequential, Model\r\nfrom keras.callbacks import EarlyStopping\r\nfrom sklearn.metrics import  mean_squared_error\r\n\r\n\r\nnp.random.seed(1) # 固定随机种子,使每次运行结果固定\r\n\r\n\r\n\r\nbestval = 0\r\n# 创建神经模型并暴力搜索较优网络结构超参: 输入层;   n层k个神经元的relu隐藏层;  输出层\r\nfor layer_nums in range(2): #隐藏层的层数\r\n    for k in list(range(1,100,5)):  # 网格神经元数\r\n        for norm in [0.01,0.05,0.1,0.2,0.4,0.6,0.8]:#正则化惩罚系数\r\n            print(\"************隐藏层vs神经元数vs norm**************\",layer_nums,k,norm)\r\n            model = Sequential()\r\n            model.add(BatchNormalization())  # 输入层 批标准化  input_dim=train_x.shape\r\n            for _ in range(layer_nums):\r\n                model.add(Dense(k,  \r\n                                kernel_initializer='random_uniform',   # 均匀初始化\r\n                                activation='relu',                     # relu激活函数\r\n                                kernel_regularizer=regularizers.l1_l2(l1=norm, l2=norm),  # L1及L2 正则项\r\n                                use_bias=True))   # 隐藏层1\r\n                model.add(Dropout(norm)) # dropout正则\r\n            model.add(Dense(1,use_bias=True,activation='sigmoid'))  # 输出层\r\n\r\n\r\n            # 编译模型:优化目标为回归预测损失mse,优化算法为adam\r\n            model.compile(optimizer='adam', loss=keras.losses.binary_crossentropy) \r\n\r\n            # 训练模型\r\n            history = model.fit(train_x.replace([np.inf, -np.inf], np.nan).fillna(0), \r\n                                train_y, \r\n                                epochs=1000,              # 训练迭代次数\r\n                                batch_size=1000,           # 每epoch采样的batch大小\r\n                                validation_data=(test_x.replace([np.inf, -np.inf], np.nan).fillna(0),test_y),   # 从训练集再拆分验证集,作为早停的衡量指标\r\n                                callbacks=[EarlyStopping(monitor='val_loss', patience=10)],    #早停法\r\n                                verbose=False)  # 不输出过程  \r\n            print(\"验证集最优结果:\",min(history.history['loss']),min(history.history['val_loss']))\r\n            print('------------train------------\\n',model_metrics2(model, train_x,train_y))\r\n\r\n            print('------------test------------\\n',model_metrics2(model, test_x,test_y))\r\n            test_auc = model_metrics2(model, test_x,test_y)[0] \r\n            if test_auc \u003e bestval:\r\n                bestval = test_auc\r\n                bestparas = ['bestval, layer_nums, k, norm',bestval, layer_nums, k, norm]\r\n\r\n\r\n# 模型评估:拟合效果\r\nplt.plot(history.history['loss'],c='blue')    # 蓝色线训练集损失\r\nplt.plot(history.history['val_loss'],c='red') # 红色线验证集损失\r\nplt.show()\r\nmodel.summary()   #模型概述信息\r\nprint(bestparas)\r\n    \r\n```\r\n![](https://upload-images.jianshu.io/upload_images/11682271-d530f0132212e582.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n![](https://upload-images.jianshu.io/upload_images/11682271-2f7da1372d57763a.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n可见,在我们这个实验中,使用树模型+神经网络模型在test的auc得到一些不错的提升,树模型的AUC 0.8656,而树模型+神经网络的AUC 0.8776,提升了1.2%\r\n\r\n### 其他试验结果\r\n\r\n结合微软的试验,树+神经网络(DeepGBM),在不同的任务上也是可以带来一些的效果提升的。有兴趣可以阅读下文末参考文献。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-b4828242e5c9ce24.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n\r\n\r\nLGB+DNN(或者单层的LR)是一个很不错的想法,有提升模型的一些效果。但需要注意的是,这也会加重模型的落地及迭代的复杂度。总之,树+神经网络是一个好的故事,但是结局没有太惊艳。\r\n\r\n\u003e参考论文:https://www.microsoft.com/en-us/research/uploads/prod/2019/08/deepgbm_kdd2019__CR_.pdf\r\nhttps://github.com/motefly/DeepGBM","author":{"url":"https://github.com/aialgorithm","@type":"Person","name":"aialgorithm"},"datePublished":"2022-07-27T12:21:52.000Z","interactionStatistic":{"@type":"InteractionCounter","interactionType":"https://schema.org/CommentAction","userInteractionCount":0},"url":"https://github.com/57/Blog/issues/57"}

route-pattern/_view_fragments/issues/show/:user_id/:repository/:id/issue_layout(.:format)
route-controllervoltron_issues_fragments
route-actionissue_layout
fetch-noncev2:b941c7db-bff0-d1e1-01d6-1e12fb985b52
current-catalog-service-hash81bb79d38c15960b92d99bca9288a9108c7a47b18f2423d0f6438c5b7bcd2114
request-idB1D8:84862:12D1AC5:1A5D37B:696A3C4A
html-safe-noncebc212f7238a28e21f6201beee5c59bb8cbd67f4f4eab1ea9fce5325475c30091
visitor-payloadeyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJCMUQ4Ojg0ODYyOjEyRDFBQzU6MUE1RDM3Qjo2OTZBM0M0QSIsInZpc2l0b3JfaWQiOiI2NjkwNTAzMjA4NTM2MjU5NjU4IiwicmVnaW9uX2VkZ2UiOiJpYWQiLCJyZWdpb25fcmVuZGVyIjoiaWFkIn0=
visitor-hmacc2eaf6dbeeaa8e1a8f114a0cb7c485b94f1824b135afe3bdbbd39d65bc529fce
hovercard-subject-tagissue:1319484020
github-keyboard-shortcutsrepository,issues,copilot
google-site-verificationApib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I
octolytics-urlhttps://collector.github.com/github/collect
analytics-location///voltron/issues_fragments/issue_layout
fb:app_id1401488693436528
apple-itunes-appapp-id=1477376905, app-argument=https://github.com/_view_fragments/issues/show/aialgorithm/Blog/57/issue_layout
twitter:imagehttps://opengraph.githubassets.com/73b4d922e6a411b67c0ead84d2f5605d0f11800269c13892431f424e3d10eef1/aialgorithm/Blog/issues/57
twitter:cardsummary_large_image
og:imagehttps://opengraph.githubassets.com/73b4d922e6a411b67c0ead84d2f5605d0f11800269c13892431f424e3d10eef1/aialgorithm/Blog/issues/57
og:image:alt结合论文《Revisiting Deep Learning Models for Tabular Data》的观点,集成树模型通常擅长于表格数据这种异构数据集,是实打实的表格数据王者。集成树模型中的LightGBM是增强版的GBDT,支持了分类变量,在工程层面大大提高了训练效率。关于树模型的介绍,可见之前文章:一文讲透树模型 DNN深度神经网络擅长于同构的高维数据,从高维稀疏的表示中学习到低...
og:image:width1200
og:image:height600
og:site_nameGitHub
og:typeobject
og:author:usernameaialgorithm
hostnamegithub.com
expected-hostnamegithub.com
None321736bfdb3f591415ae895a0459bec204b26a76caf47ba5c980634cfacc4538
turbo-cache-controlno-preview
go-importgithub.com/aialgorithm/Blog git https://github.com/aialgorithm/Blog.git
octolytics-dimension-user_id33707637
octolytics-dimension-user_loginaialgorithm
octolytics-dimension-repository_id147093233
octolytics-dimension-repository_nwoaialgorithm/Blog
octolytics-dimension-repository_publictrue
octolytics-dimension-repository_is_forkfalse
octolytics-dimension-repository_network_root_id147093233
octolytics-dimension-repository_network_root_nwoaialgorithm/Blog
turbo-body-classeslogged-out env-production page-responsive
disable-turbofalse
browser-stats-urlhttps://api.github.com/_private/browser/stats
browser-errors-urlhttps://api.github.com/_private/browser/errors
release13581a31d51edf4a3aca179e10890a4d4f9b6d76
ui-targetfull
theme-color#1e2327
color-schemelight dark

Links:

Skip to contenthttps://github.com/aialgorithm/Blog/issues/57#start-of-content
https://github.com/
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Faialgorithm%2FBlog%2Fissues%2F57
GitHub CopilotWrite better code with AIhttps://github.com/features/copilot
GitHub SparkBuild and deploy intelligent appshttps://github.com/features/spark
GitHub ModelsManage and compare promptshttps://github.com/features/models
MCP RegistryNewIntegrate external toolshttps://github.com/mcp
ActionsAutomate any workflowhttps://github.com/features/actions
CodespacesInstant dev environmentshttps://github.com/features/codespaces
IssuesPlan and track workhttps://github.com/features/issues
Code ReviewManage code changeshttps://github.com/features/code-review
GitHub Advanced SecurityFind and fix vulnerabilitieshttps://github.com/security/advanced-security
Code securitySecure your code as you buildhttps://github.com/security/advanced-security/code-security
Secret protectionStop leaks before they starthttps://github.com/security/advanced-security/secret-protection
Why GitHubhttps://github.com/why-github
Documentationhttps://docs.github.com
Bloghttps://github.blog
Changeloghttps://github.blog/changelog
Marketplacehttps://github.com/marketplace
View all featureshttps://github.com/features
Enterpriseshttps://github.com/enterprise
Small and medium teamshttps://github.com/team
Startupshttps://github.com/enterprise/startups
Nonprofitshttps://github.com/solutions/industry/nonprofits
App Modernizationhttps://github.com/solutions/use-case/app-modernization
DevSecOpshttps://github.com/solutions/use-case/devsecops
DevOpshttps://github.com/solutions/use-case/devops
CI/CDhttps://github.com/solutions/use-case/ci-cd
View all use caseshttps://github.com/solutions/use-case
Healthcarehttps://github.com/solutions/industry/healthcare
Financial serviceshttps://github.com/solutions/industry/financial-services
Manufacturinghttps://github.com/solutions/industry/manufacturing
Governmenthttps://github.com/solutions/industry/government
View all industrieshttps://github.com/solutions/industry
View all solutionshttps://github.com/solutions
AIhttps://github.com/resources/articles?topic=ai
Software Developmenthttps://github.com/resources/articles?topic=software-development
DevOpshttps://github.com/resources/articles?topic=devops
Securityhttps://github.com/resources/articles?topic=security
View all topicshttps://github.com/resources/articles
Customer storieshttps://github.com/customer-stories
Events & webinarshttps://github.com/resources/events
Ebooks & reportshttps://github.com/resources/whitepapers
Business insightshttps://github.com/solutions/executive-insights
GitHub Skillshttps://skills.github.com
Documentationhttps://docs.github.com
Customer supporthttps://support.github.com
Community forumhttps://github.com/orgs/community/discussions
Trust centerhttps://github.com/trust-center
Partnershttps://github.com/partners
GitHub SponsorsFund open source developershttps://github.com/sponsors
Security Labhttps://securitylab.github.com
Maintainer Communityhttps://maintainers.github.com
Acceleratorhttps://github.com/accelerator
Archive Programhttps://archiveprogram.github.com
Topicshttps://github.com/topics
Trendinghttps://github.com/trending
Collectionshttps://github.com/collections
Enterprise platformAI-powered developer platformhttps://github.com/enterprise
GitHub Advanced SecurityEnterprise-grade security featureshttps://github.com/security/advanced-security
Copilot for BusinessEnterprise-grade AI featureshttps://github.com/features/copilot/copilot-business
Premium SupportEnterprise-grade 24/7 supporthttps://github.com/premium-support
Pricinghttps://github.com/pricing
Search syntax tipshttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
documentationhttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Faialgorithm%2FBlog%2Fissues%2F57
Sign up https://github.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E%2Fvoltron%2Fissues_fragments%2Fissue_layout&source=header-repo&source_repo=aialgorithm%2FBlog
Reloadhttps://github.com/aialgorithm/Blog/issues/57
Reloadhttps://github.com/aialgorithm/Blog/issues/57
Reloadhttps://github.com/aialgorithm/Blog/issues/57
aialgorithm https://github.com/aialgorithm
Bloghttps://github.com/aialgorithm/Blog
Notifications https://github.com/login?return_to=%2Faialgorithm%2FBlog
Fork 259 https://github.com/login?return_to=%2Faialgorithm%2FBlog
Star 942 https://github.com/login?return_to=%2Faialgorithm%2FBlog
Code https://github.com/aialgorithm/Blog
Issues 66 https://github.com/aialgorithm/Blog/issues
Pull requests 0 https://github.com/aialgorithm/Blog/pulls
Actions https://github.com/aialgorithm/Blog/actions
Projects 0 https://github.com/aialgorithm/Blog/projects
Security Uh oh! There was an error while loading. Please reload this page. https://github.com/aialgorithm/Blog/security
Please reload this pagehttps://github.com/aialgorithm/Blog/issues/57
Insights https://github.com/aialgorithm/Blog/pulse
Code https://github.com/aialgorithm/Blog
Issues https://github.com/aialgorithm/Blog/issues
Pull requests https://github.com/aialgorithm/Blog/pulls
Actions https://github.com/aialgorithm/Blog/actions
Projects https://github.com/aialgorithm/Blog/projects
Security https://github.com/aialgorithm/Blog/security
Insights https://github.com/aialgorithm/Blog/pulse
New issuehttps://github.com/login?return_to=https://github.com/aialgorithm/Blog/issues/57
New issuehttps://github.com/login?return_to=https://github.com/aialgorithm/Blog/issues/57
树+神经网络算法强强联手(Python)https://github.com/aialgorithm/Blog/issues/57#top
https://github.com/aialgorithm
https://github.com/aialgorithm
aialgorithmhttps://github.com/aialgorithm
on Jul 27, 2022https://github.com/aialgorithm/Blog/issues/57#issue-1319484020
一文讲透树模型http://mp.weixin.qq.com/s?__biz=MzI4MDE1NjExMQ==&mid=2247488558&idx=1&sn=476991d1c8e16db31f71a18c41c98acd&chksm=ebbd968edcca1f988730379ed1553a846c9ef27cc26d2ce7f2a6034c3199358096dcc6b817d6&token=38808633&lang=zh_CN#rd
https://camo.githubusercontent.com/0230b3bf605e7080f9842cfda321be5762afbd70b7812cdcf2e11d6304d5b10b/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d643162343432323035643262363466322e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
一文搞定深度学习建模全流程http://mp.weixin.qq.com/s?__biz=MzI4MDE1NjExMQ==&mid=2247486048&idx=1&sn=bbbe904159a9f9a65940057992a2ce8b&chksm=ebbd88c0dcca01d6a5054651e0f28266e4ad5dd762bdd1f3b6f4eadc0590af50af2ef653b14b&token=38808633&lang=zh_CN#rd
https://camo.githubusercontent.com/f81996cae7f7ee09a7720472a3f21adc8a55f49dd59f1220da2fbc43889482e5/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d653365623730613262343838656365612e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
NLP建模全流程http://mp.weixin.qq.com/s?__biz=MzI4MDE1NjExMQ==&mid=2247489096&idx=1&sn=700d19511c6fff982082148ff1d9496c&chksm=ebbd94e8dcca1dfe998bae685e7c37c9bd89717834060225193f092df3caf12d3480800ef04f&token=38808633&lang=zh_CN#rd
https://camo.githubusercontent.com/02281e707fd86bd39eb4bec5c118c7fee0d29b1a9491e109c1a7d4043778acfa/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d623634633366336362353361663932662e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/7b2946deb9a511a424917ec04a66ae3d71fa27b2563e846558469d2d4c269f3a/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d306130353833303637343331306338662e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/a2460730889f2b5c87c9ae3d4e820360142bf7bf81ead0e3b409d3b04f516823/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d396265333138373731396335356338612e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/111b2cb1b863dc437d2e0dc6eef422453955d9f274f70ef1e3c3f3cd0f4f4001/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d643535666566363465393061613734632e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/f6998b0a07731ab0150f09b1ea4d37b1a420eb90cc5acd3e64bab94e4a1deaf0/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d643533306630313332323132653538322e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/ab772a3af1ec4974873ec26ed1a026882007bbfcadba2bd64a12de5cc411828e/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d326637646131333732643537373633612e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/b82815deb5e3711a890e1de27235f37ac47e0fd2155ca21ad79e4569dfd5dfe3/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d623438323832343265356339636532342e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://www.microsoft.com/en-us/research/uploads/prod/2019/08/deepgbm_kdd2019__CR_.pdfhttps://www.microsoft.com/en-us/research/uploads/prod/2019/08/deepgbm_kdd2019__CR_.pdf
https://github.com/motefly/DeepGBMhttps://github.com/motefly/DeepGBM
https://github.com
Termshttps://docs.github.com/site-policy/github-terms/github-terms-of-service
Privacyhttps://docs.github.com/site-policy/privacy-policies/github-privacy-statement
Securityhttps://github.com/security
Statushttps://www.githubstatus.com/
Communityhttps://github.community/
Docshttps://docs.github.com/
Contacthttps://support.github.com?tags=dotcom-footer

Viewport: width=device-width


URLs of crawlers that visited me.