René's URL Explorer Experiment


Title: TensorFlow决策森林构建GBDT(Python) · Issue #50 · aialgorithm/Blog · GitHub

Open Graph Title: TensorFlow决策森林构建GBDT(Python) · Issue #50 · aialgorithm/Blog

X Title: TensorFlow决策森林构建GBDT(Python) · Issue #50 · aialgorithm/Blog

Description: 一、Deep Learning is Not All You Need 尽管神经网络在图像识别、自然语言等很多领域大放异彩,但回到表格数据的数据挖掘任务中,树模型才是低调王者,如论文《Tabular Data: Deep Learning is Not All You Need》提及的:深度学习可能不是解决所有机器学习问题的灵丹妙药,通过树模型在处理表格数据时性能与神经网络相当(甚至优于神经网络),而且树模型易于训练使用,有较好的可解释性。 二、树模型的使用 对于决策树...

Open Graph Description: 一、Deep Learning is Not All You Need 尽管神经网络在图像识别、自然语言等很多领域大放异彩,但回到表格数据的数据挖掘任务中,树模型才是低调王者,如论文《Tabular Data: Deep Learning is Not All You Need》提及的:深度学习可能不是解决所有机器学习问题的灵丹妙药,通过树模型在处理表格数据时性能与神经网络相当(甚至优于神经...

X Description: 一、Deep Learning is Not All You Need 尽管神经网络在图像识别、自然语言等很多领域大放异彩,但回到表格数据的数据挖掘任务中,树模型才是低调王者,如论文《Tabular Data: Deep Learning is Not All You Need》提及的:深度学习可能不是解决所有机器学习问题的灵丹妙药,通过树模型在处理表格数据时性能与神经网络相当(甚至优于神经...

Opengraph URL: https://github.com/aialgorithm/Blog/issues/50

X: @github

direct link

Domain: github.com


Hey, it has json ld scripts:
{"@context":"https://schema.org","@type":"DiscussionForumPosting","headline":"TensorFlow决策森林构建GBDT(Python)","articleBody":"### 一、Deep Learning is Not All You Need\r\n尽管神经网络在图像识别、自然语言等很多领域大放异彩,但回到表格数据的数据挖掘任务中,树模型才是低调王者,如论文《Tabular Data: Deep Learning is Not All You Need》提及的:![](https://upload-images.jianshu.io/upload_images/11682271-311cea94d1df6c47.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)深度学习可能不是解决所有机器学习问题的灵丹妙药,通过树模型在处理表格数据时性能与神经网络相当(甚至优于神经网络),而且树模型易于训练使用,有较好的可解释性。\r\n\r\n![](https://upload-images.jianshu.io/upload_images/11682271-e48ef9106ed911e9.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n\r\n\r\n### 二、树模型的使用\r\n对于决策树等模型的使用,通常是要到scikit-learn、xgboost、lightgbm等机器学习库调用, 这和深度学习库是独立割裂的,不太方便树模型与神经网络的模型融合。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-7111dbdea00ca9c2.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n一个好消息是,Google 开源了 TensorFlow 决策森林(TF-DF),为基于树的模型和神经网络提供统一的接口,可以直接用TensorFlow调用树模型。决策森林(TF-DF)简单来说就是用TensorFlow封装了常用的随机森林(RF)、梯度提升(GBDT)等算法,其底层算法是基于C++的 [Yggdrasil 决策森林 (YDF)](https://github.com/google/yggdrasil-decision-forests#:~:text=Yggdrasil%20Decision%20Forests%20(YDF)%20is,interpretation%20of%20Decision%20Forest%20models.)实现的。\r\n\r\n### 三、TensorFlow构建GBDT实践\r\nTF-DF安装很简单`pip install -U tensorflow_decision_forests`,有个遗憾是目前只支持Linux环境,如果本地用不了将代码复制到 Google Colab 试试~\r\n\r\n- 本例的数据集用的癌细胞分类的数据集,首先加载下常用的模块及数据集:\r\n```\r\nimport numpy as np  \r\nimport pandas as pd\r\nimport matplotlib.pyplot as plt\r\nimport tensorflow as tf\r\ntf.random.set_seed(123)\r\n\r\nfrom sklearn import datasets\r\nfrom sklearn.model_selection import train_test_split\r\nfrom sklearn.metrics import precision_score, recall_score, f1_score,roc_curve\r\n\r\ndataset_cancer = datasets.load_breast_cancer()    # 加载癌细胞数据集\r\n\r\n#print(dataset_cancer['DESCR'])\r\n\r\ndf = pd.DataFrame(dataset_cancer.data, columns=dataset_cancer.feature_names)  \r\n\r\ndf['label'] = dataset_cancer.target\r\n\r\nprint(df.shape)\r\n\r\ndf.head()\r\n```\r\n![](https://upload-images.jianshu.io/upload_images/11682271-80e6b453d9e03693.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n- 划分数据集,并简单做下数据EDA分析:\r\n```\r\n# holdout验证法: 按3:7划分测试集 训练集\r\nx_train, x_test= train_test_split(df, test_size=0.3)\r\n\r\n# EDA分析:数据统计指标\r\nx_train.describe(include='all')\r\n```\r\n![](https://upload-images.jianshu.io/upload_images/11682271-8791bf33d58e056f.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n- 构建TensorFlow的GBDT模型:\r\nTD-DF 一个非常方便的地方是它不需要对数据进行任何预处理。它会自动处理数字和分类特征,以及缺失值,我们只需要将df转换为 TensorFlow 数据集,如下一些超参数设定:\r\n![](https://upload-images.jianshu.io/upload_images/11682271-5a20096fa2ee9486.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n模型方面的树的一些常规超参数,类似于scikit-learn的GBDT\r\n![](https://upload-images.jianshu.io/upload_images/11682271-dea055a2b67fab2e.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n\r\n此外,还有带有正则化(dropout、earlystop)、损失函数(focal-loss)、效率方面(goss基于梯度采样)等优化方法:\r\n\r\n![](https://upload-images.jianshu.io/upload_images/11682271-a0af8c8fbb389ae4.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n构建模型、编译及训练,一步到位:\r\n```\r\n# 模型参数\r\nmodel_tf = tfdf.keras.GradientBoostedTreesModel(loss=\"BINARY_FOCAL_LOSS\")\r\n\r\n# 模型训练\r\nmodel_tf.compile()\r\nmodel_tf.fit(x=train_ds,validation_freq=0.1)\r\n```\r\n\r\n- 评估模型效果\r\n```\r\n## 模型评估\r\n可以看到test的准确率已经都接近1,可以再那个困难的数据任务试试~\r\nevaluation = model_tf.evaluate(test_ds,return_dict=True)\r\nprobs = model_tf.predict(test_ds)\r\nfpr, tpr, _ = roc_curve(x_test.label, probs)\r\nplt.plot(fpr, tpr)\r\nplt.title('ROC curve')\r\nplt.xlabel('false positive rate')\r\nplt.ylabel('true positive rate')\r\nplt.xlim(0,)\r\nplt.ylim(0,)\r\nplt.show()\r\nprint(evaluation)\r\n```\r\n![](https://upload-images.jianshu.io/upload_images/11682271-868928e0eb6e0a6c.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n- 模型解释性\r\nGBDT等树模型还有另外一个很大的优势是解释性,这里TF-DF也有实现。\r\n模型情况及特征重要性可以通过`print(model_tf.summary())`打印出来,\r\n![](https://upload-images.jianshu.io/upload_images/11682271-95c542c6f460ced1.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n特征重要性支持了几种不同的方法评估:\r\n\r\nMEAN_MIN_DEPTH指标。 平均最小深度越小,较低的值意味着大量样本是基于此特征进行分类的,变量越重要。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-bb183494b5fe49d6.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\nNUM_NODES指标。它显示了给定特征被用作分割的次数,类似split。此外还有其他指标就不一一列举了。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-4662910a1ccdffb7.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n我们还可以打印出模型的具体决策的树结构,通过运行`tfdf.model_plotter.plot_model_in_colab(model_tf, tree_idx=0, max_depth=10)`,整个过程还是比较清晰的。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-22cdf7faa049a91c.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n#### 小结\r\n基于TensorFlow的TF-DF的树模型方法,我们可以方便训练树模型(特别对于熟练TensorFlow框架的同学),更进一步,也可以与TensorFlow的神经网络模型做效果对比、树模型与神经网络模型融合、利用异构模型先特征表示学习再输入模型(如GBDT+DNN、DNN embedding+GBDT),进一步了解可见如下参考文献。\r\n\r\n\u003e参考文献:\r\nhttps://www.tensorflow.org/decision_forests/\r\nhttps://keras.io/examples/structured_data/classification_with_tfdf/","author":{"url":"https://github.com/aialgorithm","@type":"Person","name":"aialgorithm"},"datePublished":"2022-05-05T10:26:46.000Z","interactionStatistic":{"@type":"InteractionCounter","interactionType":"https://schema.org/CommentAction","userInteractionCount":0},"url":"https://github.com/50/Blog/issues/50"}

route-pattern/_view_fragments/issues/show/:user_id/:repository/:id/issue_layout(.:format)
route-controllervoltron_issues_fragments
route-actionissue_layout
fetch-noncev2:dc085c4a-f906-33cb-cf4c-ae49192ac4af
current-catalog-service-hash81bb79d38c15960b92d99bca9288a9108c7a47b18f2423d0f6438c5b7bcd2114
request-idABAC:BB9B6:BFDED9:1037603:6969E941
html-safe-nonce0bb876b9deb2e1db2177aafed2ea49767e7e182bfd2fed54c1c199650f2aa9fa
visitor-payloadeyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJBQkFDOkJCOUI2OkJGREVEOToxMDM3NjAzOjY5NjlFOTQxIiwidmlzaXRvcl9pZCI6IjQ4NjI3ODk1MzA4MDk5MTk4MDkiLCJyZWdpb25fZWRnZSI6ImlhZCIsInJlZ2lvbl9yZW5kZXIiOiJpYWQifQ==
visitor-hmace7b0c4c2327fdf9192a6dc7f0656535e6d5cbdec0318d6a74e9bd95d1a66ef53
hovercard-subject-tagissue:1226488227
github-keyboard-shortcutsrepository,issues,copilot
google-site-verificationApib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I
octolytics-urlhttps://collector.github.com/github/collect
analytics-location///voltron/issues_fragments/issue_layout
fb:app_id1401488693436528
apple-itunes-appapp-id=1477376905, app-argument=https://github.com/_view_fragments/issues/show/aialgorithm/Blog/50/issue_layout
twitter:imagehttps://opengraph.githubassets.com/2ec452edfc67a94ececf346cae26d2e74574a305a73b118474d583794049745a/aialgorithm/Blog/issues/50
twitter:cardsummary_large_image
og:imagehttps://opengraph.githubassets.com/2ec452edfc67a94ececf346cae26d2e74574a305a73b118474d583794049745a/aialgorithm/Blog/issues/50
og:image:alt一、Deep Learning is Not All You Need 尽管神经网络在图像识别、自然语言等很多领域大放异彩,但回到表格数据的数据挖掘任务中,树模型才是低调王者,如论文《Tabular Data: Deep Learning is Not All You Need》提及的:深度学习可能不是解决所有机器学习问题的灵丹妙药,通过树模型在处理表格数据时性能与神经网络相当(甚至优于神经...
og:image:width1200
og:image:height600
og:site_nameGitHub
og:typeobject
og:author:usernameaialgorithm
hostnamegithub.com
expected-hostnamegithub.com
None7b32f1c7c4549428ee399213e8345494fc55b5637195d3fc5f493657579235e8
turbo-cache-controlno-preview
go-importgithub.com/aialgorithm/Blog git https://github.com/aialgorithm/Blog.git
octolytics-dimension-user_id33707637
octolytics-dimension-user_loginaialgorithm
octolytics-dimension-repository_id147093233
octolytics-dimension-repository_nwoaialgorithm/Blog
octolytics-dimension-repository_publictrue
octolytics-dimension-repository_is_forkfalse
octolytics-dimension-repository_network_root_id147093233
octolytics-dimension-repository_network_root_nwoaialgorithm/Blog
turbo-body-classeslogged-out env-production page-responsive
disable-turbofalse
browser-stats-urlhttps://api.github.com/_private/browser/stats
browser-errors-urlhttps://api.github.com/_private/browser/errors
releasebdde15ad1b403e23b08bbd89b53fbe6bdf688cad
ui-targetfull
theme-color#1e2327
color-schemelight dark

Links:

Skip to contenthttps://github.com/aialgorithm/Blog/issues/50#start-of-content
https://github.com/
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Faialgorithm%2FBlog%2Fissues%2F50
GitHub CopilotWrite better code with AIhttps://github.com/features/copilot
GitHub SparkBuild and deploy intelligent appshttps://github.com/features/spark
GitHub ModelsManage and compare promptshttps://github.com/features/models
MCP RegistryNewIntegrate external toolshttps://github.com/mcp
ActionsAutomate any workflowhttps://github.com/features/actions
CodespacesInstant dev environmentshttps://github.com/features/codespaces
IssuesPlan and track workhttps://github.com/features/issues
Code ReviewManage code changeshttps://github.com/features/code-review
GitHub Advanced SecurityFind and fix vulnerabilitieshttps://github.com/security/advanced-security
Code securitySecure your code as you buildhttps://github.com/security/advanced-security/code-security
Secret protectionStop leaks before they starthttps://github.com/security/advanced-security/secret-protection
Why GitHubhttps://github.com/why-github
Documentationhttps://docs.github.com
Bloghttps://github.blog
Changeloghttps://github.blog/changelog
Marketplacehttps://github.com/marketplace
View all featureshttps://github.com/features
Enterpriseshttps://github.com/enterprise
Small and medium teamshttps://github.com/team
Startupshttps://github.com/enterprise/startups
Nonprofitshttps://github.com/solutions/industry/nonprofits
App Modernizationhttps://github.com/solutions/use-case/app-modernization
DevSecOpshttps://github.com/solutions/use-case/devsecops
DevOpshttps://github.com/solutions/use-case/devops
CI/CDhttps://github.com/solutions/use-case/ci-cd
View all use caseshttps://github.com/solutions/use-case
Healthcarehttps://github.com/solutions/industry/healthcare
Financial serviceshttps://github.com/solutions/industry/financial-services
Manufacturinghttps://github.com/solutions/industry/manufacturing
Governmenthttps://github.com/solutions/industry/government
View all industrieshttps://github.com/solutions/industry
View all solutionshttps://github.com/solutions
AIhttps://github.com/resources/articles?topic=ai
Software Developmenthttps://github.com/resources/articles?topic=software-development
DevOpshttps://github.com/resources/articles?topic=devops
Securityhttps://github.com/resources/articles?topic=security
View all topicshttps://github.com/resources/articles
Customer storieshttps://github.com/customer-stories
Events & webinarshttps://github.com/resources/events
Ebooks & reportshttps://github.com/resources/whitepapers
Business insightshttps://github.com/solutions/executive-insights
GitHub Skillshttps://skills.github.com
Documentationhttps://docs.github.com
Customer supporthttps://support.github.com
Community forumhttps://github.com/orgs/community/discussions
Trust centerhttps://github.com/trust-center
Partnershttps://github.com/partners
GitHub SponsorsFund open source developershttps://github.com/sponsors
Security Labhttps://securitylab.github.com
Maintainer Communityhttps://maintainers.github.com
Acceleratorhttps://github.com/accelerator
Archive Programhttps://archiveprogram.github.com
Topicshttps://github.com/topics
Trendinghttps://github.com/trending
Collectionshttps://github.com/collections
Enterprise platformAI-powered developer platformhttps://github.com/enterprise
GitHub Advanced SecurityEnterprise-grade security featureshttps://github.com/security/advanced-security
Copilot for BusinessEnterprise-grade AI featureshttps://github.com/features/copilot/copilot-business
Premium SupportEnterprise-grade 24/7 supporthttps://github.com/premium-support
Pricinghttps://github.com/pricing
Search syntax tipshttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
documentationhttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Faialgorithm%2FBlog%2Fissues%2F50
Sign up https://github.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E%2Fvoltron%2Fissues_fragments%2Fissue_layout&source=header-repo&source_repo=aialgorithm%2FBlog
Reloadhttps://github.com/aialgorithm/Blog/issues/50
Reloadhttps://github.com/aialgorithm/Blog/issues/50
Reloadhttps://github.com/aialgorithm/Blog/issues/50
aialgorithm https://github.com/aialgorithm
Bloghttps://github.com/aialgorithm/Blog
Notifications https://github.com/login?return_to=%2Faialgorithm%2FBlog
Fork 259 https://github.com/login?return_to=%2Faialgorithm%2FBlog
Star 942 https://github.com/login?return_to=%2Faialgorithm%2FBlog
Code https://github.com/aialgorithm/Blog
Issues 66 https://github.com/aialgorithm/Blog/issues
Pull requests 0 https://github.com/aialgorithm/Blog/pulls
Actions https://github.com/aialgorithm/Blog/actions
Projects 0 https://github.com/aialgorithm/Blog/projects
Security Uh oh! There was an error while loading. Please reload this page. https://github.com/aialgorithm/Blog/security
Please reload this pagehttps://github.com/aialgorithm/Blog/issues/50
Insights https://github.com/aialgorithm/Blog/pulse
Code https://github.com/aialgorithm/Blog
Issues https://github.com/aialgorithm/Blog/issues
Pull requests https://github.com/aialgorithm/Blog/pulls
Actions https://github.com/aialgorithm/Blog/actions
Projects https://github.com/aialgorithm/Blog/projects
Security https://github.com/aialgorithm/Blog/security
Insights https://github.com/aialgorithm/Blog/pulse
New issuehttps://github.com/login?return_to=https://github.com/aialgorithm/Blog/issues/50
New issuehttps://github.com/login?return_to=https://github.com/aialgorithm/Blog/issues/50
TensorFlow决策森林构建GBDT(Python)https://github.com/aialgorithm/Blog/issues/50#top
https://github.com/aialgorithm
https://github.com/aialgorithm
aialgorithmhttps://github.com/aialgorithm
on May 5, 2022https://github.com/aialgorithm/Blog/issues/50#issue-1226488227
https://camo.githubusercontent.com/23df9468d868377f8a9de8c32178fd1a6e571f748b427d9dcc67155bd3b529cf/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d333131636561393464316466366334372e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/6f4b8e9dd0eb88ff10aa4fe943ce42217d18de2c9cd0476acb10197cc8944d05/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d653438656639313036656439313165392e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/f8094bf1f68c3f1d908692c13753652a0e610e4753bb3d4dae58bbe4c8bd924b/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d373131316462646561303063613963322e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
Yggdrasil 决策森林 (YDF)https://github.com/google/yggdrasil-decision-forests#:~:text=Yggdrasil%20Decision%20Forests%20(YDF)%20is,interpretation%20of%20Decision%20Forest%20models.
https://camo.githubusercontent.com/e9219dc7045f7911234894fd63032c47ccc1c3af7803bea57d0754379a395004/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d383065366234353364396530333639332e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/6a9056bda7ffa3874c371db5d1ed7eeec9bdf6c7c0eae1394dbe665f644adccd/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d383739316266333364353865303536662e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/b130c70b4b279c4abf6e8cd0ab977229cf7b638b011e88b87e73878239de7d7f/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d356132303039366661326565393438362e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/3dd3aff5494572d70805b5f6e521c4602d1e4daf872c96b6669bde498741a302/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d646561303535613262363766616232652e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/e802ba8ec8b496d6913ccdbbbf6929b4ca150f5bd7aad00456710397bf78469a/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d613061663863386662623338396165342e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/de93d596dcb21d941c9fcb7734376860c3ea3e69ff685a2e7adf1dadc0ec0e1a/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d383638393238653065623665306136632e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/a825b824219673c5df7109662ef798b0bd33af1b1d19c4b8b715fcc39f4ad000/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d393563353432633666343630636564312e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/afb0ac6c685432e5ca4f01a2c50beba0a28830b9e46c45f282e1e757b9f34553/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d626231383334393462356665343964362e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/ecdac85907c9b8e0cf92762577f2ea74b59ca164f7d5ce34fdc166103bd5552f/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d343636323931306131636364666662372e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/c0ae1e5c0da034a7da2f11ea25e259d940defd5640de2655c034065fe07d9dd2/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d323263646637666161303439613931632e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://www.tensorflow.org/decision_forests/https://www.tensorflow.org/decision_forests/
https://keras.io/examples/structured_data/classification_with_tfdf/https://keras.io/examples/structured_data/classification_with_tfdf/
https://github.com
Termshttps://docs.github.com/site-policy/github-terms/github-terms-of-service
Privacyhttps://docs.github.com/site-policy/privacy-policies/github-privacy-statement
Securityhttps://github.com/security
Statushttps://www.githubstatus.com/
Communityhttps://github.community/
Docshttps://docs.github.com/
Contacthttps://support.github.com?tags=dotcom-footer

Viewport: width=device-width


URLs of crawlers that visited me.