René's URL Explorer Experiment


Title: 一文浅谈深度学习泛化能力 · Issue #46 · aialgorithm/Blog · GitHub

Open Graph Title: 一文浅谈深度学习泛化能力 · Issue #46 · aialgorithm/Blog

X Title: 一文浅谈深度学习泛化能力 · Issue #46 · aialgorithm/Blog

Description: 谷歌最近出品的82页论文《ON THE GENERALIZATION MYSTERY IN DEEP LEARNING》,在此我简单归纳下论文的思想,有兴趣的看看原论文。 论文链接:github.com/aialgorithm/Blog 一、DNN泛化能力的问题 论文主要探讨的是, 为什么过参数的神经网络模型还能有不错的泛化性?即并不是简单记忆训练集,而是从训练集中总结出一个通用的规律,从而可以适配于测试集(泛化能力)。 以经典的决策树模型为例, 当树模型学习数据集的通...

Open Graph Description: 谷歌最近出品的82页论文《ON THE GENERALIZATION MYSTERY IN DEEP LEARNING》,在此我简单归纳下论文的思想,有兴趣的看看原论文。 论文链接:github.com/aialgorithm/Blog 一、DNN泛化能力的问题 论文主要探讨的是, 为什么过参数的神经网络模型还能有不错的泛化性?即并不是简单记忆训练集,而是从训练集中总结出一个通用的规律,从而...

X Description: 谷歌最近出品的82页论文《ON THE GENERALIZATION MYSTERY IN DEEP LEARNING》,在此我简单归纳下论文的思想,有兴趣的看看原论文。 论文链接:github.com/aialgorithm/Blog 一、DNN泛化能力的问题 论文主要探讨的是, 为什么过参数的神经网络模型还能有不错的泛化性?即并不是简单记忆训练集,而是从训练集中总结出一个通用的规律,从而...

Opengraph URL: https://github.com/aialgorithm/Blog/issues/46

X: @github

direct link

Domain: github.com


Hey, it has json ld scripts:
{"@context":"https://schema.org","@type":"DiscussionForumPosting","headline":"一文浅谈深度学习泛化能力","articleBody":"谷歌最近出品的82页论文《ON THE GENERALIZATION MYSTERY IN DEEP LEARNING》,在此我简单归纳下论文的思想,有兴趣的看看原论文。\r\n\u003e[论文链接:](https://github.com/aialgorithm/Blog)github.com/aialgorithm/Blog\r\n\r\n\r\n## 一、DNN泛化能力的问题\r\n\r\n论文主要探讨的是, 为什么过参数的神经网络模型还能有不错的泛化性?即并不是简单记忆训练集,而是从训练集中总结出一个通用的规律,从而可以适配于测试集(泛化能力)。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-bebefaeb138630ae.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n以经典的决策树模型为例, 当树模型学习数据集的通用规律时:一种好的情况,假如树第一个分裂节点时,刚好就可以良好区分开不同标签的样本,深度很小,相应的各叶子上面的样本数是够的(即统计规律的数据量的依据也是比较多的),那这会得到的规律就更有可能泛化到其他数据。(即:拟合良好, 有泛化能力)。\r\n\r\n![](https://upload-images.jianshu.io/upload_images/11682271-f3133eaea6a5cace.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n另外一种较差的情况,如果树学习不好一些通用的规律,为了学习这个数据集,那树就会越来越深,可能每个叶子节点分别对应着少数样本(少数据带来统计信息可能只是噪音),最后,死记硬背地记住所有数据(即:过拟合 无泛化能力)。我们可以看到过深(depth)的树模型很容易过拟合。\r\n\r\n\r\n**那么过参数化的神经网络如何达到良好的泛化性呢?**\r\n\r\n## 二、 DNN泛化能力的原因\r\n\r\n本文是从一个简单通用的角度解释——在神经网络的梯度下降优化过程上,探索泛化能力的原因:\r\n\r\n我们总结了**梯度相干理论** :来自不同样本的梯度产生相干性,是神经网络能有良好的泛化能力原因。当不同样本的梯度在训练过程中对齐良好,即当它们相干时,梯度下降是稳定的,可以很快收敛,并且由此产生的模型可以有良好的泛化性。 否则,如果样本太少或训练时间过长,可能无法泛化。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-099848fcedb31213.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n\r\n**基于该理论,我们可以做出如下解释。**\r\n\r\n### 2.1 宽度神经网络的泛化性\r\n\r\n更宽的神经网络模型具有良好的泛化能力。这是因为,更宽的网络都有更多的子网络,对比小网络更有产生梯度相干的可能,从而有更好的泛化性。 换句话说,梯度下降是一个优先考虑泛化(相干性)梯度的特征选择器,更广泛的网络可能仅仅因为它们有更多的特征而具有更好的特征。\r\n\u003e原文:Generalization and width.  Neyshabur et al. [2018b] found that wider networks generalize better.  Can  we  now  explain  this?  Intuitively,  wider  networks  have  more  sub-networks  at any given level, and so the sub-network with maximum coherence in a wider network may be more coherent than its counterpart in a thinner network, and hence generalize better.  In other words,  since—as discussed in Section 10—gradient descent is a feature selector that prioritizes  well-generalizing  (coherent)  features,  wider  networks  are  likely  to  have  better features  simply  because  they  have  more  features.  In  this  connection,  see  also  the  Lottery Ticket Hypothesis [Frankle and Carbin, 2018]\r\n\r\n但是个人觉得,这还是要区分下网络输入层/隐藏层的宽度。特别对于数据挖掘任务的输入层,由于输入特征是通常是人工设计的,需要考虑下做下特征选择(即减少输入层宽度),不然直接输入特征噪音,对于梯度相干性影响不也是有干扰的。\r\n\r\n### 2.2 深度神经网络的泛化性\r\n越深的网络,梯度相干现象被放大,有更好的泛化能力。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-a3c979a9ac6a6fca.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n在深度模型中,由于层之间的反馈加强了有相干性的梯度,存在相干性梯度的特征(W6)和非相干梯度的特征(W1)之间的相对差异在训练过程中呈指数放大。从而使得更深的网络更偏好相干梯度,从而更好泛化能力。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-ce9f74d179f1344e.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n### 2.3 早停(early-stopping)\r\n通过早停我们可以减少非相干梯度的过多影响,提高泛化性。\r\n\r\n在训练的时候,一些容易样本比其他样本(困难样本)更早地拟合。训练前期,这些容易样本的相干梯度做主导,并很容易拟合好。训练后期,以困难样本的非相干梯度主导了平均梯度g(wt),从而导致泛化能力变差。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-9c095a6fe1d8ad5d.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n(注:简单的样本,是那些在数据集里面有很多梯度共同点的样本,正由于这个原因,大多数梯度对它有益,收敛也比较快。)\r\n\r\n\r\n\r\n### 2.4  全梯度下降 VS  学习率\r\n\r\n我们发现全梯度下降也可以有很好的泛化能力。此外,仔细的实验表明随机梯度下降并不一定有更优的泛化,但这并不排除随机梯度更易跳出局部最小值、起着正则化等的可能性。\r\n\u003eBased on our theory, finite learning rate, and mini-batch stochasticity\r\nare not necessary for generalization\r\n\r\n我们认为较低的学习率可能无法降低泛化误差,因为较低的学习率意味着更多的迭代次数(与早停相反)。\r\n\u003eAssuming  a  small  enough  learning  rate,  as  training  progresses,  the  generalization  gap cannot  decrease.  This  follows  from  the  iterative  stability  analysis  of  training:  with 40 more  steps,  stability  can  only  degrade.  If  this  is  violated  in  a  practical  setting,  it  would point to an interesting limitation of the theory\r\n\r\n\r\n\r\n### 2.5 L2、L1正则化\r\n目标函数加入L2、L1正则化,相应的梯度计算, L1正则项需增加的梯度为sign(w) ,L2梯度为w。以L2正则为例,相应的梯度W(i+1)更新公式为:\r\n![](https://upload-images.jianshu.io/upload_images/11682271-d052cad2191c6e44.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n我们可以把“L2正则化(权重衰减)”看作是一种“背景力”,可将每个参数推近于数据无关的零值 ( L1容易得到稀疏解,L2容易得到趋近0的平滑解) ,来消除在弱梯度方向上影响。只有在相干梯度方向的情况下,参数才比较能脱离“背景力”,基于数据完成梯度更新。\r\n\r\n\r\n![](https://upload-images.jianshu.io/upload_images/11682271-314bf80a73c5b20c.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n### 2.6 梯度下降算法的进阶\r\n- Momentum 、Adam等梯度下降算法\r\n\r\nMomentum 、Adam等梯度下降算法,其参数W更新方向不仅由当前的梯度决定,也与此前累积的梯度方向有关(即,保留累积的相干梯度的作用)。这使得参数中那些梯度方向变化不大的维度可以加速更新,并减少梯度方向变化较大的维度上的更新幅度,由此产生了加速收敛和减小震荡的效果。\r\n\r\n\r\n- 抑制弱梯度方向的梯度下降\r\n\r\n我们可以通过优化批次梯度下降算法,来抑制弱梯度方向的梯度更新,进一步提高了泛化能力。比如,我们可以使用梯度截断(winsorized gradient descent),排除梯度异常值后的再取平均值。或者取梯度的中位数代替平均值,以减少梯度异常值的影响。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-af852e41d20d7213.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n\r\n### 小结\r\n文末说两句,对于深度学习的理论,有兴趣可以看下论文提及的相关研究。个人水平有限,不足之处还望指教,有什么见解,欢迎学习群相互讨论下。\r\n\r\n---\r\n文章首发公众号“算法进阶”,欢迎关注。公众号阅读原文可访问文章[相关代码及资料](https://github.com/aialgorithm/Blog)\r\n","author":{"url":"https://github.com/aialgorithm","@type":"Person","name":"aialgorithm"},"datePublished":"2022-03-25T16:20:16.000Z","interactionStatistic":{"@type":"InteractionCounter","interactionType":"https://schema.org/CommentAction","userInteractionCount":0},"url":"https://github.com/46/Blog/issues/46"}

route-pattern/_view_fragments/issues/show/:user_id/:repository/:id/issue_layout(.:format)
route-controllervoltron_issues_fragments
route-actionissue_layout
fetch-noncev2:6739c4f7-1ecd-b357-e5ee-e409669953e6
current-catalog-service-hash81bb79d38c15960b92d99bca9288a9108c7a47b18f2423d0f6438c5b7bcd2114
request-idBA18:F5661:11C23CB:18727E2:696A9A29
html-safe-nonceac67a0af3a672a1689cee2a1b1816d59ec1f40f9b2ed5cac98e7f1a9a3376271
visitor-payloadeyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJCQTE4OkY1NjYxOjExQzIzQ0I6MTg3MjdFMjo2OTZBOUEyOSIsInZpc2l0b3JfaWQiOiI2OTIxODMyNDYyMDg2MjE2MjMzIiwicmVnaW9uX2VkZ2UiOiJpYWQiLCJyZWdpb25fcmVuZGVyIjoiaWFkIn0=
visitor-hmac16e349539ec13f99ccc6188a1f6cd260ceb3e3fe2d8e39efc78091cef057b9db
hovercard-subject-tagissue:1180989121
github-keyboard-shortcutsrepository,issues,copilot
google-site-verificationApib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I
octolytics-urlhttps://collector.github.com/github/collect
analytics-location///voltron/issues_fragments/issue_layout
fb:app_id1401488693436528
apple-itunes-appapp-id=1477376905, app-argument=https://github.com/_view_fragments/issues/show/aialgorithm/Blog/46/issue_layout
twitter:imagehttps://opengraph.githubassets.com/9950e571486ffa5e0bc0c9f588bbecad4b8b4450a144f9d2f77b663bd03ad994/aialgorithm/Blog/issues/46
twitter:cardsummary_large_image
og:imagehttps://opengraph.githubassets.com/9950e571486ffa5e0bc0c9f588bbecad4b8b4450a144f9d2f77b663bd03ad994/aialgorithm/Blog/issues/46
og:image:alt谷歌最近出品的82页论文《ON THE GENERALIZATION MYSTERY IN DEEP LEARNING》,在此我简单归纳下论文的思想,有兴趣的看看原论文。 论文链接:github.com/aialgorithm/Blog 一、DNN泛化能力的问题 论文主要探讨的是, 为什么过参数的神经网络模型还能有不错的泛化性?即并不是简单记忆训练集,而是从训练集中总结出一个通用的规律,从而...
og:image:width1200
og:image:height600
og:site_nameGitHub
og:typeobject
og:author:usernameaialgorithm
hostnamegithub.com
expected-hostnamegithub.com
Nonec0d8175e41e0e55b9e984c935b24b808cabab919dd3174aa45dac3ef503ed1af
turbo-cache-controlno-preview
go-importgithub.com/aialgorithm/Blog git https://github.com/aialgorithm/Blog.git
octolytics-dimension-user_id33707637
octolytics-dimension-user_loginaialgorithm
octolytics-dimension-repository_id147093233
octolytics-dimension-repository_nwoaialgorithm/Blog
octolytics-dimension-repository_publictrue
octolytics-dimension-repository_is_forkfalse
octolytics-dimension-repository_network_root_id147093233
octolytics-dimension-repository_network_root_nwoaialgorithm/Blog
turbo-body-classeslogged-out env-production page-responsive
disable-turbofalse
browser-stats-urlhttps://api.github.com/_private/browser/stats
browser-errors-urlhttps://api.github.com/_private/browser/errors
release99aab454e5ddc8df30805fb76c114c3008a15842
ui-targetfull
theme-color#1e2327
color-schemelight dark

Links:

Skip to contenthttps://github.com/aialgorithm/Blog/issues/46#start-of-content
https://github.com/
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Faialgorithm%2FBlog%2Fissues%2F46
GitHub CopilotWrite better code with AIhttps://github.com/features/copilot
GitHub SparkBuild and deploy intelligent appshttps://github.com/features/spark
GitHub ModelsManage and compare promptshttps://github.com/features/models
MCP RegistryNewIntegrate external toolshttps://github.com/mcp
ActionsAutomate any workflowhttps://github.com/features/actions
CodespacesInstant dev environmentshttps://github.com/features/codespaces
IssuesPlan and track workhttps://github.com/features/issues
Code ReviewManage code changeshttps://github.com/features/code-review
GitHub Advanced SecurityFind and fix vulnerabilitieshttps://github.com/security/advanced-security
Code securitySecure your code as you buildhttps://github.com/security/advanced-security/code-security
Secret protectionStop leaks before they starthttps://github.com/security/advanced-security/secret-protection
Why GitHubhttps://github.com/why-github
Documentationhttps://docs.github.com
Bloghttps://github.blog
Changeloghttps://github.blog/changelog
Marketplacehttps://github.com/marketplace
View all featureshttps://github.com/features
Enterpriseshttps://github.com/enterprise
Small and medium teamshttps://github.com/team
Startupshttps://github.com/enterprise/startups
Nonprofitshttps://github.com/solutions/industry/nonprofits
App Modernizationhttps://github.com/solutions/use-case/app-modernization
DevSecOpshttps://github.com/solutions/use-case/devsecops
DevOpshttps://github.com/solutions/use-case/devops
CI/CDhttps://github.com/solutions/use-case/ci-cd
View all use caseshttps://github.com/solutions/use-case
Healthcarehttps://github.com/solutions/industry/healthcare
Financial serviceshttps://github.com/solutions/industry/financial-services
Manufacturinghttps://github.com/solutions/industry/manufacturing
Governmenthttps://github.com/solutions/industry/government
View all industrieshttps://github.com/solutions/industry
View all solutionshttps://github.com/solutions
AIhttps://github.com/resources/articles?topic=ai
Software Developmenthttps://github.com/resources/articles?topic=software-development
DevOpshttps://github.com/resources/articles?topic=devops
Securityhttps://github.com/resources/articles?topic=security
View all topicshttps://github.com/resources/articles
Customer storieshttps://github.com/customer-stories
Events & webinarshttps://github.com/resources/events
Ebooks & reportshttps://github.com/resources/whitepapers
Business insightshttps://github.com/solutions/executive-insights
GitHub Skillshttps://skills.github.com
Documentationhttps://docs.github.com
Customer supporthttps://support.github.com
Community forumhttps://github.com/orgs/community/discussions
Trust centerhttps://github.com/trust-center
Partnershttps://github.com/partners
GitHub SponsorsFund open source developershttps://github.com/sponsors
Security Labhttps://securitylab.github.com
Maintainer Communityhttps://maintainers.github.com
Acceleratorhttps://github.com/accelerator
Archive Programhttps://archiveprogram.github.com
Topicshttps://github.com/topics
Trendinghttps://github.com/trending
Collectionshttps://github.com/collections
Enterprise platformAI-powered developer platformhttps://github.com/enterprise
GitHub Advanced SecurityEnterprise-grade security featureshttps://github.com/security/advanced-security
Copilot for BusinessEnterprise-grade AI featureshttps://github.com/features/copilot/copilot-business
Premium SupportEnterprise-grade 24/7 supporthttps://github.com/premium-support
Pricinghttps://github.com/pricing
Search syntax tipshttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
documentationhttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Faialgorithm%2FBlog%2Fissues%2F46
Sign up https://github.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E%2Fvoltron%2Fissues_fragments%2Fissue_layout&source=header-repo&source_repo=aialgorithm%2FBlog
Reloadhttps://github.com/aialgorithm/Blog/issues/46
Reloadhttps://github.com/aialgorithm/Blog/issues/46
Reloadhttps://github.com/aialgorithm/Blog/issues/46
aialgorithm https://github.com/aialgorithm
Bloghttps://github.com/aialgorithm/Blog
Notifications https://github.com/login?return_to=%2Faialgorithm%2FBlog
Fork 259 https://github.com/login?return_to=%2Faialgorithm%2FBlog
Star 942 https://github.com/login?return_to=%2Faialgorithm%2FBlog
Code https://github.com/aialgorithm/Blog
Issues 66 https://github.com/aialgorithm/Blog/issues
Pull requests 0 https://github.com/aialgorithm/Blog/pulls
Actions https://github.com/aialgorithm/Blog/actions
Projects 0 https://github.com/aialgorithm/Blog/projects
Security Uh oh! There was an error while loading. Please reload this page. https://github.com/aialgorithm/Blog/security
Please reload this pagehttps://github.com/aialgorithm/Blog/issues/46
Insights https://github.com/aialgorithm/Blog/pulse
Code https://github.com/aialgorithm/Blog
Issues https://github.com/aialgorithm/Blog/issues
Pull requests https://github.com/aialgorithm/Blog/pulls
Actions https://github.com/aialgorithm/Blog/actions
Projects https://github.com/aialgorithm/Blog/projects
Security https://github.com/aialgorithm/Blog/security
Insights https://github.com/aialgorithm/Blog/pulse
New issuehttps://github.com/login?return_to=https://github.com/aialgorithm/Blog/issues/46
New issuehttps://github.com/login?return_to=https://github.com/aialgorithm/Blog/issues/46
一文浅谈深度学习泛化能力https://github.com/aialgorithm/Blog/issues/46#top
https://github.com/aialgorithm
https://github.com/aialgorithm
aialgorithmhttps://github.com/aialgorithm
on Mar 25, 2022https://github.com/aialgorithm/Blog/issues/46#issue-1180989121
论文链接:https://github.com/aialgorithm/Blog
https://camo.githubusercontent.com/c0f49d3993808959c82057a013ef78d0418fa81d6d2ec014f37ef674ba53d9b6/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d626562656661656231333836333061652e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/d79a0cda4100ae32244e6abc0a45eb0dad59fe93cb7853cc7883805347ab6aca/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d663331333365616561366135636163652e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/a74c9bba4672c26f461747238c794bdc5e83b711db41540bc4d8eea5dea05e02/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d303939383438666365646233313231332e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/cfc9a58ac0e0cded57ac72988a3b68615beb739ab73814bd0dca3438d0160d0b/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d613363393739613961633661366663612e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/3d3dc3a7127c4e8959d33514611ccadf52172a90f0682606198d2c929247afd8/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d636539663734643137396631333434652e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/7e33ad3cb7634f281c58bd1e9504eff0e6059f1809dd770ac955ed2d4f8d434e/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d396330393561366665316438616435642e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/247a280615879c2fa107d2e2f342ad22486b8ae9507927d95ee7ae800ca73e75/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d643035326361643231393163366534342e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/5bb5b6f253979af74eb12b3ce216b16ccfa3c9e3a5404c8ed9fc0e597d19f7be/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d333134626638306137336335623230632e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/b9fced27ea9f28fb79e4d216ccb385fca51bf42ac1f87dacd9e3f41fbed30a37/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d616638353265343164323064373231332e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
相关代码及资料https://github.com/aialgorithm/Blog
https://github.com
Termshttps://docs.github.com/site-policy/github-terms/github-terms-of-service
Privacyhttps://docs.github.com/site-policy/privacy-policies/github-privacy-statement
Securityhttps://github.com/security
Statushttps://www.githubstatus.com/
Communityhttps://github.community/
Docshttps://docs.github.com/
Contacthttps://support.github.com?tags=dotcom-footer

Viewport: width=device-width


URLs of crawlers that visited me.