René's URL Explorer Experiment


Title: 神经元谈到深度神经网络 · Issue #23 · aialgorithm/Blog · GitHub

Open Graph Title: 神经元谈到深度神经网络 · Issue #23 · aialgorithm/Blog

X Title: 神经元谈到深度神经网络 · Issue #23 · aialgorithm/Blog

Description: 序列文章 上文[《一文速览机器学习的类别(Python代码)》](https://www.jianshu.com/p/fbe59dc46907) 提到逻辑回归并做了简单介绍。本文将从神经元到逻辑回归模型结构,并将其扩展到深度深度网络模型。 一、谈谈智慧 对于人类智慧奥秘的探索,不同时代、学科背景的人对于智慧的理解及其实现方法有着不同的思想主张。有的主张用显式逻辑体系搭建人工智能系统,即符号主义。有的主张用数学模型模拟大脑组成以实现智慧,即联结主义,这也就是我们本文讨论的...

Open Graph Description: 序列文章 上文[《一文速览机器学习的类别(Python代码)》](https://www.jianshu.com/p/fbe59dc46907) 提到逻辑回归并做了简单介绍。本文将从神经元到逻辑回归模型结构,并将其扩展到深度深度网络模型。 一、谈谈智慧 对于人类智慧奥秘的探索,不同时代、学科背景的人对于智慧的理解及其实现方法有着不同的思想主张。有的主张用显式逻辑体系搭建人工智能系统,即符号主...

X Description: 序列文章 上文[《一文速览机器学习的类别(Python代码)》](https://www.jianshu.com/p/fbe59dc46907) 提到逻辑回归并做了简单介绍。本文将从神经元到逻辑回归模型结构,并将其扩展到深度深度网络模型。 一、谈谈智慧 对于人类智慧奥秘的探索,不同时代、学科背景的人对于智慧的理解及其实现方法有着不同的思想主张。有的主张用显式逻辑体系搭建人工智能系统,即符号主...

Opengraph URL: https://github.com/aialgorithm/Blog/issues/23

X: @github

direct link

Domain: github.com


Hey, it has json ld scripts:
{"@context":"https://schema.org","@type":"DiscussionForumPosting","headline":"神经元谈到深度神经网络","articleBody":"序列文章 上文[《[一文速览机器学习的类别(Python代码)](https://www.jianshu.com/p/fbe59dc46907)》](https://www.jianshu.com/p/fbe59dc46907)  提到逻辑回归并做了简单介绍。本文将从神经元到逻辑回归模型结构,并将其扩展到深度深度网络模型。\r\n\r\n## 一、谈谈智慧\r\n对于人类智慧奥秘的探索,不同时代、学科背景的人对于智慧的理解及其实现方法有着不同的思想主张。有的主张用显式逻辑体系搭建人工智能系统,即符号主义。有的主张用数学模型模拟大脑组成以实现智慧,即联结主义,这也就是我们本文讨论的方向。\r\n\r\n\r\n那大脑为什么能够思考?科学家发现,原因在于人体的神经网络,而神经网络的基本组成就是神经元:\r\n\r\n![](https://img-blog.csdnimg.cn/img_convert/f8b12e5a3b40464f058634886e959531.png)\r\n\r\n1、外部刺激通过神经元的神经末梢,转化为电信号,传导到神经元。\r\n\r\n2、神经元的树突接收电信号,由神经元处理是否达到激活阈值再输出兴奋或者抑制电信号,最后由轴突将信号传递给其它细胞。\r\n\r\n3、无数神经元构成神经中枢。神经中枢综合各种信号,做出判断。\r\n\r\n4、 人体根据神经中枢的指令,对外部刺激做出反应。\r\n\r\n\r\n\r\n## 二、神经元\r\n既然智慧的基础是神经元,而正因为神经元这些特点才使大脑具有强大的 “运算及决策的能力”,科学家以此为原理发明了人工神经元数学模型,并以神经元为基础而组合成人工神经网络模型。(注:下文谈到的神经元都特指人工神经元)\r\n\r\n![](https://img-blog.csdnimg.cn/img_convert/fb5acecffcc506dd049fc30ddd267579.png)\r\n\r\n如上图就是人工神经元的基本结构。它可以输入一定维数的输入(如:3维的输入,x1,x2, x3),每个输入都相要乘上相应的权重值(如:w0,w1,w2),乘上每一权重值的作用可以视为对每一输入的加权,也就是对每一输入的神经元对它的重视程度是不一样的。\r\n\r\n接下来神经元将乘上权重的每个输入做下求和(也就是加权求和),并加上截距项(截距项b可以视为对神经元阈值的直接调整),最后由激活函数(f)非线性转换为最终输出值。\r\n\r\n激活函数的种类很多,有sigmoid,tanh,sign,relu,softmax等等(下一专题会讨论下激活函数)。激活函数的作用是在神经元上实现一道非线性的运算,以通用万能近似定理——“如果一个前馈神经网络具有线性输出层和至少一层隐藏层,只要给予网络足够数量的神经元,便可以实现以足够高精度来逼近任意一个在 ℝn 的紧子集 (Compact subset) 上的连续函数”所表明,激活函数是深度神经网络学习拟合任意函数的前提。\r\n\r\n\r\n\r\n## 三、神经元到逻辑回归\r\n单个神经元且其激活函数为sigmoid时,既是我们熟知的逻辑回归的模型结构。\r\n![](https://img-blog.csdnimg.cn/img_convert/6b4ec8676c46fe83e6aadb878f8247f2.png)\r\n逻辑回归是一种广义线性的分类模型且其模型结构可以视为**单层的神经网络**,由一层输入层、一层仅带有一个sigmoid激活函数的神经元的输出层组成,而无隐藏层。(注:计算网络层数不计入输入层)\r\n\r\n在逻辑回归模型结构中,我们输入数据特征x,通过输出层神经元激活函数σ(sigmoid函数)将输入的特征经由sigmoid(wx + b)的计算后非线性转换为0~1区间的数值后输出。学习训练过程是通过梯度下降学到合适的参数w的模型 Y=sigmoid(wx + b),使得模型输出值Y与实际值y的误差最小。\r\n\r\n\r\n## 四、逻辑回归到深度神经网络\r\n基于前面的介绍可以知道,神经网络也就是神经元按层次连接而成的网络,逻辑回归是单层的神经网络,当我们给仅有输入层及输出层的单层神经网络中间接入至少一层的隐藏层,也就是深度神经网络了。\r\n![](https://img-blog.csdnimg.cn/img_convert/871fc8b3fa507aaa681eca1d5f6be890.png)\r\n深度神经网络包含了三种网络层:输入层、隐藏层及输出层。\r\n\r\n\r\n- 输入层:为数据特征输入层,输入数据特征个数就对应着网络的神经元数。\r\n- 隐藏层:即网络的中间层,隐藏层层数可以为0或者很多层,其作用接受前一层网络输出作为当前的输入值,并计算输出当前结果到下一层。隐藏层是神经网络性能的关键,通常由含激活函数的神经元组成,以进一步加工出高层次抽象的特征,以增强网络的非线性表达。隐藏网络层数直接影响模型的拟合效果。\r\n- 输出层:为最终结果输出的网络层。输出层的神经元个数代表了分类标签的个数(注:在做二分类时,如果输出层的激活函数采用sigmoid,输出层的神经元个数为1个;如果采用softmax分类器,输出层神经元个数为2个)\r\n\r\n\r\n数据特征(x)从输入层输入,每层的计算结果由前一层传递到下一层,最终到输出层输出计算结果。每个网络层由一定数量的神经元组成,神经元可以视为一个个的计算单元,对输入进行加权求和,故其计算结果由神经元包含的权重(即模型参数w)直接控制,神经元内还可以包含激活函数,可以对加权求和的结果进一步做非线性的计算,如sigmoid(wx + b)。\r\n\r\n","author":{"url":"https://github.com/aialgorithm","@type":"Person","name":"aialgorithm"},"datePublished":"2021-10-08T03:00:49.000Z","interactionStatistic":{"@type":"InteractionCounter","interactionType":"https://schema.org/CommentAction","userInteractionCount":1},"url":"https://github.com/23/Blog/issues/23"}

route-pattern/_view_fragments/issues/show/:user_id/:repository/:id/issue_layout(.:format)
route-controllervoltron_issues_fragments
route-actionissue_layout
fetch-noncev2:fe2e6405-989d-af32-1602-4149b8ffc684
current-catalog-service-hash81bb79d38c15960b92d99bca9288a9108c7a47b18f2423d0f6438c5b7bcd2114
request-idB636:DD0BF:B334:F7BB:696A162E
html-safe-nonce090d2b5e2f795d086adf2e55269fd39549b1a835cc965947ebfd3f3a37ad1463
visitor-payloadeyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJCNjM2OkREMEJGOkIzMzQ6RjdCQjo2OTZBMTYyRSIsInZpc2l0b3JfaWQiOiI1NzAwNTE1ODEwOTAzNzI1NjE0IiwicmVnaW9uX2VkZ2UiOiJpYWQiLCJyZWdpb25fcmVuZGVyIjoiaWFkIn0=
visitor-hmac785cfbf373f0d773efe46eab5a4c73fa97d5593b148341c57fbc2602ae4012d4
hovercard-subject-tagissue:1020629860
github-keyboard-shortcutsrepository,issues,copilot
google-site-verificationApib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I
octolytics-urlhttps://collector.github.com/github/collect
analytics-location///voltron/issues_fragments/issue_layout
fb:app_id1401488693436528
apple-itunes-appapp-id=1477376905, app-argument=https://github.com/_view_fragments/issues/show/aialgorithm/Blog/23/issue_layout
twitter:imagehttps://opengraph.githubassets.com/d7720140fd9fe33c88a8708221b549d96b46dc15bee5b487c695962dc3eb229e/aialgorithm/Blog/issues/23
twitter:cardsummary_large_image
og:imagehttps://opengraph.githubassets.com/d7720140fd9fe33c88a8708221b549d96b46dc15bee5b487c695962dc3eb229e/aialgorithm/Blog/issues/23
og:image:alt序列文章 上文[《一文速览机器学习的类别(Python代码)》](https://www.jianshu.com/p/fbe59dc46907) 提到逻辑回归并做了简单介绍。本文将从神经元到逻辑回归模型结构,并将其扩展到深度深度网络模型。 一、谈谈智慧 对于人类智慧奥秘的探索,不同时代、学科背景的人对于智慧的理解及其实现方法有着不同的思想主张。有的主张用显式逻辑体系搭建人工智能系统,即符号主...
og:image:width1200
og:image:height600
og:site_nameGitHub
og:typeobject
og:author:usernameaialgorithm
hostnamegithub.com
expected-hostnamegithub.com
None34a52bd10bd674f68e5c1b6b74413b79bf2ca20c551055ace3f7cdd112803923
turbo-cache-controlno-preview
go-importgithub.com/aialgorithm/Blog git https://github.com/aialgorithm/Blog.git
octolytics-dimension-user_id33707637
octolytics-dimension-user_loginaialgorithm
octolytics-dimension-repository_id147093233
octolytics-dimension-repository_nwoaialgorithm/Blog
octolytics-dimension-repository_publictrue
octolytics-dimension-repository_is_forkfalse
octolytics-dimension-repository_network_root_id147093233
octolytics-dimension-repository_network_root_nwoaialgorithm/Blog
turbo-body-classeslogged-out env-production page-responsive
disable-turbofalse
browser-stats-urlhttps://api.github.com/_private/browser/stats
browser-errors-urlhttps://api.github.com/_private/browser/errors
releasee8bd37502700f365b18a4d39acf7cb7947e11b1a
ui-targetfull
theme-color#1e2327
color-schemelight dark

Links:

Skip to contenthttps://github.com/aialgorithm/Blog/issues/23#start-of-content
https://github.com/
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Faialgorithm%2FBlog%2Fissues%2F23
GitHub CopilotWrite better code with AIhttps://github.com/features/copilot
GitHub SparkBuild and deploy intelligent appshttps://github.com/features/spark
GitHub ModelsManage and compare promptshttps://github.com/features/models
MCP RegistryNewIntegrate external toolshttps://github.com/mcp
ActionsAutomate any workflowhttps://github.com/features/actions
CodespacesInstant dev environmentshttps://github.com/features/codespaces
IssuesPlan and track workhttps://github.com/features/issues
Code ReviewManage code changeshttps://github.com/features/code-review
GitHub Advanced SecurityFind and fix vulnerabilitieshttps://github.com/security/advanced-security
Code securitySecure your code as you buildhttps://github.com/security/advanced-security/code-security
Secret protectionStop leaks before they starthttps://github.com/security/advanced-security/secret-protection
Why GitHubhttps://github.com/why-github
Documentationhttps://docs.github.com
Bloghttps://github.blog
Changeloghttps://github.blog/changelog
Marketplacehttps://github.com/marketplace
View all featureshttps://github.com/features
Enterpriseshttps://github.com/enterprise
Small and medium teamshttps://github.com/team
Startupshttps://github.com/enterprise/startups
Nonprofitshttps://github.com/solutions/industry/nonprofits
App Modernizationhttps://github.com/solutions/use-case/app-modernization
DevSecOpshttps://github.com/solutions/use-case/devsecops
DevOpshttps://github.com/solutions/use-case/devops
CI/CDhttps://github.com/solutions/use-case/ci-cd
View all use caseshttps://github.com/solutions/use-case
Healthcarehttps://github.com/solutions/industry/healthcare
Financial serviceshttps://github.com/solutions/industry/financial-services
Manufacturinghttps://github.com/solutions/industry/manufacturing
Governmenthttps://github.com/solutions/industry/government
View all industrieshttps://github.com/solutions/industry
View all solutionshttps://github.com/solutions
AIhttps://github.com/resources/articles?topic=ai
Software Developmenthttps://github.com/resources/articles?topic=software-development
DevOpshttps://github.com/resources/articles?topic=devops
Securityhttps://github.com/resources/articles?topic=security
View all topicshttps://github.com/resources/articles
Customer storieshttps://github.com/customer-stories
Events & webinarshttps://github.com/resources/events
Ebooks & reportshttps://github.com/resources/whitepapers
Business insightshttps://github.com/solutions/executive-insights
GitHub Skillshttps://skills.github.com
Documentationhttps://docs.github.com
Customer supporthttps://support.github.com
Community forumhttps://github.com/orgs/community/discussions
Trust centerhttps://github.com/trust-center
Partnershttps://github.com/partners
GitHub SponsorsFund open source developershttps://github.com/sponsors
Security Labhttps://securitylab.github.com
Maintainer Communityhttps://maintainers.github.com
Acceleratorhttps://github.com/accelerator
Archive Programhttps://archiveprogram.github.com
Topicshttps://github.com/topics
Trendinghttps://github.com/trending
Collectionshttps://github.com/collections
Enterprise platformAI-powered developer platformhttps://github.com/enterprise
GitHub Advanced SecurityEnterprise-grade security featureshttps://github.com/security/advanced-security
Copilot for BusinessEnterprise-grade AI featureshttps://github.com/features/copilot/copilot-business
Premium SupportEnterprise-grade 24/7 supporthttps://github.com/premium-support
Pricinghttps://github.com/pricing
Search syntax tipshttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
documentationhttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Faialgorithm%2FBlog%2Fissues%2F23
Sign up https://github.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E%2Fvoltron%2Fissues_fragments%2Fissue_layout&source=header-repo&source_repo=aialgorithm%2FBlog
Reloadhttps://github.com/aialgorithm/Blog/issues/23
Reloadhttps://github.com/aialgorithm/Blog/issues/23
Reloadhttps://github.com/aialgorithm/Blog/issues/23
aialgorithm https://github.com/aialgorithm
Bloghttps://github.com/aialgorithm/Blog
Notifications https://github.com/login?return_to=%2Faialgorithm%2FBlog
Fork 259 https://github.com/login?return_to=%2Faialgorithm%2FBlog
Star 942 https://github.com/login?return_to=%2Faialgorithm%2FBlog
Code https://github.com/aialgorithm/Blog
Issues 66 https://github.com/aialgorithm/Blog/issues
Pull requests 0 https://github.com/aialgorithm/Blog/pulls
Actions https://github.com/aialgorithm/Blog/actions
Projects 0 https://github.com/aialgorithm/Blog/projects
Security Uh oh! There was an error while loading. Please reload this page. https://github.com/aialgorithm/Blog/security
Please reload this pagehttps://github.com/aialgorithm/Blog/issues/23
Insights https://github.com/aialgorithm/Blog/pulse
Code https://github.com/aialgorithm/Blog
Issues https://github.com/aialgorithm/Blog/issues
Pull requests https://github.com/aialgorithm/Blog/pulls
Actions https://github.com/aialgorithm/Blog/actions
Projects https://github.com/aialgorithm/Blog/projects
Security https://github.com/aialgorithm/Blog/security
Insights https://github.com/aialgorithm/Blog/pulse
New issuehttps://github.com/login?return_to=https://github.com/aialgorithm/Blog/issues/23
New issuehttps://github.com/login?return_to=https://github.com/aialgorithm/Blog/issues/23
神经元谈到深度神经网络https://github.com/aialgorithm/Blog/issues/23#top
https://github.com/aialgorithm
https://github.com/aialgorithm
aialgorithmhttps://github.com/aialgorithm
on Oct 8, 2021https://github.com/aialgorithm/Blog/issues/23#issue-1020629860
一文速览机器学习的类别(Python代码)https://www.jianshu.com/p/fbe59dc46907
https://www.jianshu.com/p/fbe59dc46907https://www.jianshu.com/p/fbe59dc46907
https://camo.githubusercontent.com/d99d59c379a1f365a53ff1f5ddd5cc5f72e35d74ee0bb414a19539ae3aa02a45/68747470733a2f2f696d672d626c6f672e6373646e696d672e636e2f696d675f636f6e766572742f66386231326535613362343034363466303538363334383836653935393533312e706e67
https://camo.githubusercontent.com/41374182639b233944fbee869abec6a52a210f3f4dff25f0891c21e708b12eb9/68747470733a2f2f696d672d626c6f672e6373646e696d672e636e2f696d675f636f6e766572742f66623561636563666663633530366464303439666333306464643236373537392e706e67
https://camo.githubusercontent.com/74540313baf56a9f5b7fcdefca1681b96cd83abbd8fd386993df14b751bca305/68747470733a2f2f696d672d626c6f672e6373646e696d672e636e2f696d675f636f6e766572742f36623465633836373663343666653833653661616462383738663832343766322e706e67
https://camo.githubusercontent.com/168454e4871cf6e5c2d3e9dffd872198c275957e91cd59bbdb2fae7ea59252a1/68747470733a2f2f696d672d626c6f672e6373646e696d672e636e2f696d675f636f6e766572742f38373166633862336661353037616161363831656361316435663662653839302e706e67
https://github.com
Termshttps://docs.github.com/site-policy/github-terms/github-terms-of-service
Privacyhttps://docs.github.com/site-policy/privacy-policies/github-privacy-statement
Securityhttps://github.com/security
Statushttps://www.githubstatus.com/
Communityhttps://github.community/
Docshttps://docs.github.com/
Contacthttps://support.github.com?tags=dotcom-footer

Viewport: width=device-width


URLs of crawlers that visited me.