René's URL Explorer Experiment


Title: 白话机器学习概念 · Issue #19 · aialgorithm/Blog · GitHub

Open Graph Title: 白话机器学习概念 · Issue #19 · aialgorithm/Blog

X Title: 白话机器学习概念 · Issue #19 · aialgorithm/Blog

Description: 前言: 应出版社约稿,计划出个机器学习及深度学习通俗序列文章,不足之处还请多提建议。 4.1 机器学习简介 机器学习看似高深的术语,其实就在生活中,古语有云:“一叶落而知天下秋”,意思是从一片树叶的凋落,就可以知道秋天将要到来。这其中蕴含了朴素的机器学习的思想,揭示了可以通过学习对“落叶”特征的经验,预判秋天的到来。 机器学习作为人工智能领域的核心组成,是非显式的计算机程序学习数据经验以优化自身算法,以学习处理任务的过程。一个经典的机器学习的定义是:A computer...

Open Graph Description: 前言: 应出版社约稿,计划出个机器学习及深度学习通俗序列文章,不足之处还请多提建议。 4.1 机器学习简介 机器学习看似高深的术语,其实就在生活中,古语有云:“一叶落而知天下秋”,意思是从一片树叶的凋落,就可以知道秋天将要到来。这其中蕴含了朴素的机器学习的思想,揭示了可以通过学习对“落叶”特征的经验,预判秋天的到来。 机器学习作为人工智能领域的核心组成,是非显式的计算机程序学习数据经验以优化...

X Description: 前言: 应出版社约稿,计划出个机器学习及深度学习通俗序列文章,不足之处还请多提建议。 4.1 机器学习简介 机器学习看似高深的术语,其实就在生活中,古语有云:“一叶落而知天下秋”,意思是从一片树叶的凋落,就可以知道秋天将要到来。这其中蕴含了朴素的机器学习的思想,揭示了可以通过学习对“落叶”特征的经验,预判秋天的到来。 机器学习作为人工智能领域的核心组成,是非显式的计算机程序学习数据经验以优化...

Opengraph URL: https://github.com/aialgorithm/Blog/issues/19

X: @github

direct link

Domain: github.com


Hey, it has json ld scripts:
{"@context":"https://schema.org","@type":"DiscussionForumPosting","headline":"白话机器学习概念","articleBody":"\r\n\u003e 前言:\r\n应出版社约稿,计划出个机器学习及深度学习通俗序列文章,不足之处还请多提建议。\r\n\r\n## **4.1 机器学习简介**\r\n\r\n机器学习看似高深的术语,其实就在生活中,古语有云:“一叶落而知天下秋”,意思是从一片树叶的凋落,就可以知道秋天将要到来。这其中蕴含了朴素的机器学习的思想,揭示了可以通过学习对“落叶”特征的经验,预判秋天的到来。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-aeeb09e0bc6039b7.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n机器学习作为人工智能领域的核心组成,是非显式的计算机程序学习数据经验以优化自身算法,以学习处理任务的过程。一个经典的机器学习的定义是:A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.(一个计算机程序在处理任务T上的指标表现P可以随着学习经验E积累而提高。)\r\n\r\n如图4.1 ,任务T即是机器学习系统如何正确处理数据样本。\r\n指标表现P即是衡量任务正确处理的情况。\r\n经验E可以体现在模型学习处理任务后的自身的参数值。模型参数意义即如何对各特征的有效表达以处理任务。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-4af39a38125dfabb.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n进一步的,机器学习的过程一般可以概括为:计算机程序基于给定的、有限的学习数据出发(常基于每条数据样本是独立同分布的假设),选择某个的模型方法(即假设要学习的模型属于某个函数的集合,也称为假设空间),通过算法更新模型的参数值(经验),以优化处理任务的指标表现,最终学习出较优的模型,并运用模型对数据进行分析与预测以完成任务。由此可见,机器学习方法有四个要素:\r\n- 数据\r\n- 模型\r\n- 学习目标\r\n- 优化算法\r\n\r\n我们通过将机器学习方法归纳为四个要素及其相应地介绍,便于更好地理解各种算法原理的共性所在,而不是独立去理解各式各样的机器学习方法。\r\n\r\n### 4.1.1 数据 \r\n数据是机器学习方法的基础的原料,它通常由一条条数据(每一行)样本组成,样本由描述其各个维度信息的特征及目标值标签(或无)组成。\r\n如图4.2所示癌细胞分类任务的数据集:\r\n![](https://upload-images.jianshu.io/upload_images/11682271-8b8ceb588f501997.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n### 4.1.2 模型\r\n学习到“好”的模型是机器学习的直接目的。机器学习模型简单来说,即是学习数据特征与标签的关系或者学习数据特征内部的规律的一个函数。\r\n\r\n机器学习模型可以看作是(如图4.3):首先选择某个的模型方法,再从数据样本(x,(y))中学习,优化模型参数w以调整各特征的有效表达,最终获得对应的决策函数f( x; w )。该函数将输入变量 x 在参数w作用下映射到输出预测Y,即Y= f(x; w)。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-337df2f8ef54e017.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n### **4.1.3 学习目标**\r\n\r\n学习到“好”的模型,“好”即是模型的学习目标。“好”对于模型也就是预测值与实际值之间的误差尽可能的低。具体衡量这种误差的函数称为代价函数 (Cost Function)或者损失函数(Loss Function),我们即通过以**极大化降低损失函数为目标**去学习模型。\r\n\r\n对于不同的任务目标,往往也需要用不同损失函数衡量,经典的损失函数如:回归任务的均方误差损失函数及分类任务的交叉熵损失函数等。\r\n\r\n- 均方误差损失函数\r\n\r\n衡量模型回归预测的误差情况,我们可以简单地用所有样本的预测值减去实际值求平方后的平均值,这也就是均方误差(Mean Squared Error)损失函数。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-053cdd8b482500d1.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n- 交叉熵损失函数\r\n衡量分类预测模型的误差情况,常用极大似然估计法推导出的交叉熵损失函数。通过极小化交叉熵损失,使得模型预测分布尽可能与实际数据经验分布一致。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-fe97b1e36330d50a.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n### 4.1.4 优化算法\r\n有了极大化降低损失函数为目标去学习“好”模型,而如何达到这目标?我们第一反应可能是直接求解损失函数最小值的解析解,获得最优的模型参数。遗憾的是,机器学习模型的损失函数通常较复杂,很难直接求最优解。幸运的是,我们可以通过优化算法(如梯度下降算法、牛顿法等)有限次迭代优化模型参数,以尽可能降低损失函数的值,得到较优的参数值(数值解)。\r\n![](https://upload-images.jianshu.io/upload_images/11682271-7b2a076e7250f92c.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n梯度下降算法如图4.4,可以直观理解成一个下山的过程,将损失函数J(w)比喻成一座山,我们的目标是到达这座山的山脚(即求解最优模型参数w使得损失函数为最小值)。\r\n\r\n要做的无非就是“往下坡的方向走,走一步算一步”,而下坡的方向也就是J(w)负梯度的方向,在每往下走到一个位置的时候,求解当前位置的梯度,向这一步所在位置沿着最陡峭最易下山的位置再走一步。这样一步步的走下去,一直走到觉得我们已经到了山脚。\r\n\r\n当然这样走下去,有可能我们不是走到山脚(全局最优),而是到了某一个的小山谷(局部最优),这也后面梯度下降算法的调优的地方。  \r\n\r\n对应到算法步骤:\r\n![](https://upload-images.jianshu.io/upload_images/11682271-6bd1c23350d140b2.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)\r\n\r\n### 小结\r\n本文我们首先介绍了机器学习的基本概念,并概括机器学习的一般过程:从数据出发,通过设定了任务的学习目标,使用算法优化模型参数去达到目标。由此,重点引出了机器学习的四个组成要素(数据、模型、学习目标及优化算法),接下来我们会进一步了解机器学习算法的类别。\r\n\r\n---\r\n文章首发于算法进阶,公众号阅读原文可访问[GitHub项目源码](https://github.com/aialgorithm/Blog)","author":{"url":"https://github.com/aialgorithm","@type":"Person","name":"aialgorithm"},"datePublished":"2021-08-03T07:30:02.000Z","interactionStatistic":{"@type":"InteractionCounter","interactionType":"https://schema.org/CommentAction","userInteractionCount":0},"url":"https://github.com/19/Blog/issues/19"}

route-pattern/_view_fragments/issues/show/:user_id/:repository/:id/issue_layout(.:format)
route-controllervoltron_issues_fragments
route-actionissue_layout
fetch-noncev2:e56eb7de-ac35-431c-ab6f-6123962530e2
current-catalog-service-hash81bb79d38c15960b92d99bca9288a9108c7a47b18f2423d0f6438c5b7bcd2114
request-id995E:358448:B11A69:F9E233:696A568B
html-safe-nonce0eb253b7401b1771f0c0a8831be38b908fc12eb4ddfc3049d8d890ddfffbcb89
visitor-payloadeyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiI5OTVFOjM1ODQ0ODpCMTFBNjk6RjlFMjMzOjY5NkE1NjhCIiwidmlzaXRvcl9pZCI6Ijg1MTczMjQ0MjY0MTgyMTQ1MzkiLCJyZWdpb25fZWRnZSI6ImlhZCIsInJlZ2lvbl9yZW5kZXIiOiJpYWQifQ==
visitor-hmac4446e159e7784408aacc0f7ce0ae212e250d3e690af3e484ebe96da33740325c
hovercard-subject-tagissue:958818312
github-keyboard-shortcutsrepository,issues,copilot
google-site-verificationApib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I
octolytics-urlhttps://collector.github.com/github/collect
analytics-location///voltron/issues_fragments/issue_layout
fb:app_id1401488693436528
apple-itunes-appapp-id=1477376905, app-argument=https://github.com/_view_fragments/issues/show/aialgorithm/Blog/19/issue_layout
twitter:imagehttps://opengraph.githubassets.com/bccb4616216c0a0fd09cda2f0a3df5cbb25fc2e74424820a038739173f1a4815/aialgorithm/Blog/issues/19
twitter:cardsummary_large_image
og:imagehttps://opengraph.githubassets.com/bccb4616216c0a0fd09cda2f0a3df5cbb25fc2e74424820a038739173f1a4815/aialgorithm/Blog/issues/19
og:image:alt前言: 应出版社约稿,计划出个机器学习及深度学习通俗序列文章,不足之处还请多提建议。 4.1 机器学习简介 机器学习看似高深的术语,其实就在生活中,古语有云:“一叶落而知天下秋”,意思是从一片树叶的凋落,就可以知道秋天将要到来。这其中蕴含了朴素的机器学习的思想,揭示了可以通过学习对“落叶”特征的经验,预判秋天的到来。 机器学习作为人工智能领域的核心组成,是非显式的计算机程序学习数据经验以优化...
og:image:width1200
og:image:height600
og:site_nameGitHub
og:typeobject
og:author:usernameaialgorithm
hostnamegithub.com
expected-hostnamegithub.com
None3f871c8e07f0ae1886fa8dac284166d28b09ad5bada6476fc10b674e489788ef
turbo-cache-controlno-preview
go-importgithub.com/aialgorithm/Blog git https://github.com/aialgorithm/Blog.git
octolytics-dimension-user_id33707637
octolytics-dimension-user_loginaialgorithm
octolytics-dimension-repository_id147093233
octolytics-dimension-repository_nwoaialgorithm/Blog
octolytics-dimension-repository_publictrue
octolytics-dimension-repository_is_forkfalse
octolytics-dimension-repository_network_root_id147093233
octolytics-dimension-repository_network_root_nwoaialgorithm/Blog
turbo-body-classeslogged-out env-production page-responsive
disable-turbofalse
browser-stats-urlhttps://api.github.com/_private/browser/stats
browser-errors-urlhttps://api.github.com/_private/browser/errors
release63c426b30d262aba269ef14c40e3c817b384cd61
ui-targetfull
theme-color#1e2327
color-schemelight dark

Links:

Skip to contenthttps://github.com/aialgorithm/Blog/issues/19#start-of-content
https://github.com/
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Faialgorithm%2FBlog%2Fissues%2F19
GitHub CopilotWrite better code with AIhttps://github.com/features/copilot
GitHub SparkBuild and deploy intelligent appshttps://github.com/features/spark
GitHub ModelsManage and compare promptshttps://github.com/features/models
MCP RegistryNewIntegrate external toolshttps://github.com/mcp
ActionsAutomate any workflowhttps://github.com/features/actions
CodespacesInstant dev environmentshttps://github.com/features/codespaces
IssuesPlan and track workhttps://github.com/features/issues
Code ReviewManage code changeshttps://github.com/features/code-review
GitHub Advanced SecurityFind and fix vulnerabilitieshttps://github.com/security/advanced-security
Code securitySecure your code as you buildhttps://github.com/security/advanced-security/code-security
Secret protectionStop leaks before they starthttps://github.com/security/advanced-security/secret-protection
Why GitHubhttps://github.com/why-github
Documentationhttps://docs.github.com
Bloghttps://github.blog
Changeloghttps://github.blog/changelog
Marketplacehttps://github.com/marketplace
View all featureshttps://github.com/features
Enterpriseshttps://github.com/enterprise
Small and medium teamshttps://github.com/team
Startupshttps://github.com/enterprise/startups
Nonprofitshttps://github.com/solutions/industry/nonprofits
App Modernizationhttps://github.com/solutions/use-case/app-modernization
DevSecOpshttps://github.com/solutions/use-case/devsecops
DevOpshttps://github.com/solutions/use-case/devops
CI/CDhttps://github.com/solutions/use-case/ci-cd
View all use caseshttps://github.com/solutions/use-case
Healthcarehttps://github.com/solutions/industry/healthcare
Financial serviceshttps://github.com/solutions/industry/financial-services
Manufacturinghttps://github.com/solutions/industry/manufacturing
Governmenthttps://github.com/solutions/industry/government
View all industrieshttps://github.com/solutions/industry
View all solutionshttps://github.com/solutions
AIhttps://github.com/resources/articles?topic=ai
Software Developmenthttps://github.com/resources/articles?topic=software-development
DevOpshttps://github.com/resources/articles?topic=devops
Securityhttps://github.com/resources/articles?topic=security
View all topicshttps://github.com/resources/articles
Customer storieshttps://github.com/customer-stories
Events & webinarshttps://github.com/resources/events
Ebooks & reportshttps://github.com/resources/whitepapers
Business insightshttps://github.com/solutions/executive-insights
GitHub Skillshttps://skills.github.com
Documentationhttps://docs.github.com
Customer supporthttps://support.github.com
Community forumhttps://github.com/orgs/community/discussions
Trust centerhttps://github.com/trust-center
Partnershttps://github.com/partners
GitHub SponsorsFund open source developershttps://github.com/sponsors
Security Labhttps://securitylab.github.com
Maintainer Communityhttps://maintainers.github.com
Acceleratorhttps://github.com/accelerator
Archive Programhttps://archiveprogram.github.com
Topicshttps://github.com/topics
Trendinghttps://github.com/trending
Collectionshttps://github.com/collections
Enterprise platformAI-powered developer platformhttps://github.com/enterprise
GitHub Advanced SecurityEnterprise-grade security featureshttps://github.com/security/advanced-security
Copilot for BusinessEnterprise-grade AI featureshttps://github.com/features/copilot/copilot-business
Premium SupportEnterprise-grade 24/7 supporthttps://github.com/premium-support
Pricinghttps://github.com/pricing
Search syntax tipshttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
documentationhttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Faialgorithm%2FBlog%2Fissues%2F19
Sign up https://github.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E%2Fvoltron%2Fissues_fragments%2Fissue_layout&source=header-repo&source_repo=aialgorithm%2FBlog
Reloadhttps://github.com/aialgorithm/Blog/issues/19
Reloadhttps://github.com/aialgorithm/Blog/issues/19
Reloadhttps://github.com/aialgorithm/Blog/issues/19
aialgorithm https://github.com/aialgorithm
Bloghttps://github.com/aialgorithm/Blog
Notifications https://github.com/login?return_to=%2Faialgorithm%2FBlog
Fork 259 https://github.com/login?return_to=%2Faialgorithm%2FBlog
Star 942 https://github.com/login?return_to=%2Faialgorithm%2FBlog
Code https://github.com/aialgorithm/Blog
Issues 66 https://github.com/aialgorithm/Blog/issues
Pull requests 0 https://github.com/aialgorithm/Blog/pulls
Actions https://github.com/aialgorithm/Blog/actions
Projects 0 https://github.com/aialgorithm/Blog/projects
Security Uh oh! There was an error while loading. Please reload this page. https://github.com/aialgorithm/Blog/security
Please reload this pagehttps://github.com/aialgorithm/Blog/issues/19
Insights https://github.com/aialgorithm/Blog/pulse
Code https://github.com/aialgorithm/Blog
Issues https://github.com/aialgorithm/Blog/issues
Pull requests https://github.com/aialgorithm/Blog/pulls
Actions https://github.com/aialgorithm/Blog/actions
Projects https://github.com/aialgorithm/Blog/projects
Security https://github.com/aialgorithm/Blog/security
Insights https://github.com/aialgorithm/Blog/pulse
New issuehttps://github.com/login?return_to=https://github.com/aialgorithm/Blog/issues/19
New issuehttps://github.com/login?return_to=https://github.com/aialgorithm/Blog/issues/19
白话机器学习概念https://github.com/aialgorithm/Blog/issues/19#top
https://github.com/aialgorithm
https://github.com/aialgorithm
aialgorithmhttps://github.com/aialgorithm
on Aug 3, 2021https://github.com/aialgorithm/Blog/issues/19#issue-958818312
https://camo.githubusercontent.com/00811ad5d6242c44c19d6beb96e93f0a3dcfba73dede59f3ce21b0a32f7aa7f8/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d616565623039653062633630333962372e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/335a863d9c98a91df230cbf4617eb3808a8af7f956893c686a3f70eaead66506/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d346166333961333831323564666162622e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/558ed443a350074314811288316e2faa84461ae1c904737ca769d5fcb8c3cfe0/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d386238636562353838663530313939372e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/feceb69d628b0fa0a4a32d3cdc20786a1669c4b8016c18c1850f69c440c29d10/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d333337646632663865663534653031372e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/d5395e66cd4961a0d6866fd9cc6c1fb397377739736d0796da212f3e9a78b1bb/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d303533636464386234383235303064312e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/14319d585423de6176762f2f758a792be94f6796bb2c05b5ee63da0b161b4f24/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d666539376231653336333330643530612e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/5cf49df828986a8d74c1f145e7328c4bce63e8aae2fc18d20c61c5773cbf5afc/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d376232613037366537323530663932632e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
https://camo.githubusercontent.com/b1558259ca46fd8969fc0f70f0cd27b215addfb0c5c55883c3b8333434d2bb52/68747470733a2f2f75706c6f61642d696d616765732e6a69616e7368752e696f2f75706c6f61645f696d616765732f31313638323237312d366264316332333335306431343062322e706e673f696d6167654d6f6772322f6175746f2d6f7269656e742f7374726970253743696d61676556696577322f322f772f31323430
GitHub项目源码https://github.com/aialgorithm/Blog
https://github.com
Termshttps://docs.github.com/site-policy/github-terms/github-terms-of-service
Privacyhttps://docs.github.com/site-policy/privacy-policies/github-privacy-statement
Securityhttps://github.com/security
Statushttps://www.githubstatus.com/
Communityhttps://github.community/
Docshttps://docs.github.com/
Contacthttps://support.github.com?tags=dotcom-footer

Viewport: width=device-width


URLs of crawlers that visited me.