René's URL Explorer Experiment


Title: GitHub - Programmer027/Machine-Learning-Tutorials: machine learning and deep learning tutorials, articles and other resources

Open Graph Title: GitHub - Programmer027/Machine-Learning-Tutorials: machine learning and deep learning tutorials, articles and other resources

X Title: GitHub - Programmer027/Machine-Learning-Tutorials: machine learning and deep learning tutorials, articles and other resources

Description: machine learning and deep learning tutorials, articles and other resources - GitHub - Programmer027/Machine-Learning-Tutorials: machine learning and deep learning tutorials, articles and other resources

Open Graph Description: machine learning and deep learning tutorials, articles and other resources - GitHub - Programmer027/Machine-Learning-Tutorials: machine learning and deep learning tutorials, articles and other res...

X Description: machine learning and deep learning tutorials, articles and other resources - GitHub - Programmer027/Machine-Learning-Tutorials: machine learning and deep learning tutorials, articles and other res...

Opengraph URL: https://github.com/Programmer027/Machine-Learning-Tutorials

X: @github

direct link

Domain: github.com

route-pattern/:user_id/:repository
route-controllerfiles
route-actiondisambiguate
fetch-noncev2:f54876f1-41af-7091-1db2-54b7ab687910
current-catalog-service-hashf3abb0cc802f3d7b95fc8762b94bdcb13bf39634c40c357301c4aa1d67a256fb
request-idA59C:2E3F95:15B2F75:1DFAAC9:696A9A32
html-safe-noncedb7da0909cf9206bd7ebc035680e2e9809b09787ac157c54bc37a7b5ad2416b6
visitor-payloadeyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJBNTlDOjJFM0Y5NToxNUIyRjc1OjFERkFBQzk6Njk2QTlBMzIiLCJ2aXNpdG9yX2lkIjoiNDY1OTU0NTE0MDE2MDQ5NzE0IiwicmVnaW9uX2VkZ2UiOiJpYWQiLCJyZWdpb25fcmVuZGVyIjoiaWFkIn0=
visitor-hmacd551f4ee32758ee9ca18c12a8786b26ea38d9a079d0df0f4d27bf088e6df2eb2
hovercard-subject-tagrepository:119043727
github-keyboard-shortcutsrepository,copilot
google-site-verificationApib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I
octolytics-urlhttps://collector.github.com/github/collect
analytics-location//
fb:app_id1401488693436528
apple-itunes-appapp-id=1477376905, app-argument=https://github.com/Programmer027/Machine-Learning-Tutorials
twitter:imagehttps://opengraph.githubassets.com/524085aa39bbbb3239f75d074e8afe82b7edc5ef916d0ecefebd6df6bdeffbe1/Programmer027/Machine-Learning-Tutorials
twitter:cardsummary_large_image
og:imagehttps://opengraph.githubassets.com/524085aa39bbbb3239f75d074e8afe82b7edc5ef916d0ecefebd6df6bdeffbe1/Programmer027/Machine-Learning-Tutorials
og:image:altmachine learning and deep learning tutorials, articles and other resources - GitHub - Programmer027/Machine-Learning-Tutorials: machine learning and deep learning tutorials, articles and other res...
og:image:width1200
og:image:height600
og:site_nameGitHub
og:typeobject
hostnamegithub.com
expected-hostnamegithub.com
Nonec0d8175e41e0e55b9e984c935b24b808cabab919dd3174aa45dac3ef503ed1af
turbo-cache-controlno-preview
go-importgithub.com/Programmer027/Machine-Learning-Tutorials git https://github.com/Programmer027/Machine-Learning-Tutorials.git
octolytics-dimension-user_id29298169
octolytics-dimension-user_loginProgrammer027
octolytics-dimension-repository_id119043727
octolytics-dimension-repository_nwoProgrammer027/Machine-Learning-Tutorials
octolytics-dimension-repository_publictrue
octolytics-dimension-repository_is_forktrue
octolytics-dimension-repository_parent_id42360601
octolytics-dimension-repository_parent_nwoujjwalkarn/Machine-Learning-Tutorials
octolytics-dimension-repository_network_root_id42360601
octolytics-dimension-repository_network_root_nwoujjwalkarn/Machine-Learning-Tutorials
turbo-body-classeslogged-out env-production page-responsive
disable-turbofalse
browser-stats-urlhttps://api.github.com/_private/browser/stats
browser-errors-urlhttps://api.github.com/_private/browser/errors
release99aab454e5ddc8df30805fb76c114c3008a15842
ui-targetfull
theme-color#1e2327
color-schemelight dark

Links:

Skip to contenthttps://github.com/Programmer027/Machine-Learning-Tutorials#start-of-content
https://github.com/
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2FProgrammer027%2FMachine-Learning-Tutorials
GitHub CopilotWrite better code with AIhttps://github.com/features/copilot
GitHub SparkBuild and deploy intelligent appshttps://github.com/features/spark
GitHub ModelsManage and compare promptshttps://github.com/features/models
MCP RegistryNewIntegrate external toolshttps://github.com/mcp
ActionsAutomate any workflowhttps://github.com/features/actions
CodespacesInstant dev environmentshttps://github.com/features/codespaces
IssuesPlan and track workhttps://github.com/features/issues
Code ReviewManage code changeshttps://github.com/features/code-review
GitHub Advanced SecurityFind and fix vulnerabilitieshttps://github.com/security/advanced-security
Code securitySecure your code as you buildhttps://github.com/security/advanced-security/code-security
Secret protectionStop leaks before they starthttps://github.com/security/advanced-security/secret-protection
Why GitHubhttps://github.com/why-github
Documentationhttps://docs.github.com
Bloghttps://github.blog
Changeloghttps://github.blog/changelog
Marketplacehttps://github.com/marketplace
View all featureshttps://github.com/features
Enterpriseshttps://github.com/enterprise
Small and medium teamshttps://github.com/team
Startupshttps://github.com/enterprise/startups
Nonprofitshttps://github.com/solutions/industry/nonprofits
App Modernizationhttps://github.com/solutions/use-case/app-modernization
DevSecOpshttps://github.com/solutions/use-case/devsecops
DevOpshttps://github.com/solutions/use-case/devops
CI/CDhttps://github.com/solutions/use-case/ci-cd
View all use caseshttps://github.com/solutions/use-case
Healthcarehttps://github.com/solutions/industry/healthcare
Financial serviceshttps://github.com/solutions/industry/financial-services
Manufacturinghttps://github.com/solutions/industry/manufacturing
Governmenthttps://github.com/solutions/industry/government
View all industrieshttps://github.com/solutions/industry
View all solutionshttps://github.com/solutions
AIhttps://github.com/resources/articles?topic=ai
Software Developmenthttps://github.com/resources/articles?topic=software-development
DevOpshttps://github.com/resources/articles?topic=devops
Securityhttps://github.com/resources/articles?topic=security
View all topicshttps://github.com/resources/articles
Customer storieshttps://github.com/customer-stories
Events & webinarshttps://github.com/resources/events
Ebooks & reportshttps://github.com/resources/whitepapers
Business insightshttps://github.com/solutions/executive-insights
GitHub Skillshttps://skills.github.com
Documentationhttps://docs.github.com
Customer supporthttps://support.github.com
Community forumhttps://github.com/orgs/community/discussions
Trust centerhttps://github.com/trust-center
Partnershttps://github.com/partners
GitHub SponsorsFund open source developershttps://github.com/sponsors
Security Labhttps://securitylab.github.com
Maintainer Communityhttps://maintainers.github.com
Acceleratorhttps://github.com/accelerator
Archive Programhttps://archiveprogram.github.com
Topicshttps://github.com/topics
Trendinghttps://github.com/trending
Collectionshttps://github.com/collections
Enterprise platformAI-powered developer platformhttps://github.com/enterprise
GitHub Advanced SecurityEnterprise-grade security featureshttps://github.com/security/advanced-security
Copilot for BusinessEnterprise-grade AI featureshttps://github.com/features/copilot/copilot-business
Premium SupportEnterprise-grade 24/7 supporthttps://github.com/premium-support
Pricinghttps://github.com/pricing
Search syntax tipshttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
documentationhttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2FProgrammer027%2FMachine-Learning-Tutorials
Sign up https://github.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=Programmer027%2FMachine-Learning-Tutorials
Reloadhttps://github.com/Programmer027/Machine-Learning-Tutorials
Reloadhttps://github.com/Programmer027/Machine-Learning-Tutorials
Reloadhttps://github.com/Programmer027/Machine-Learning-Tutorials
Programmer027 https://github.com/Programmer027
Machine-Learning-Tutorialshttps://github.com/Programmer027/Machine-Learning-Tutorials
ujjwalkarn/Machine-Learning-Tutorialshttps://github.com/ujjwalkarn/Machine-Learning-Tutorials
Notifications https://github.com/login?return_to=%2FProgrammer027%2FMachine-Learning-Tutorials
Fork 0 https://github.com/login?return_to=%2FProgrammer027%2FMachine-Learning-Tutorials
Star 0 https://github.com/login?return_to=%2FProgrammer027%2FMachine-Learning-Tutorials
ujjwalkarn.github.io/Machine-Learning-Tutorialshttp://ujjwalkarn.github.io/Machine-Learning-Tutorials
CC0-1.0 license https://github.com/Programmer027/Machine-Learning-Tutorials/blob/master/LICENSE
0 stars https://github.com/Programmer027/Machine-Learning-Tutorials/stargazers
4k forks https://github.com/Programmer027/Machine-Learning-Tutorials/forks
Branches https://github.com/Programmer027/Machine-Learning-Tutorials/branches
Tags https://github.com/Programmer027/Machine-Learning-Tutorials/tags
Activity https://github.com/Programmer027/Machine-Learning-Tutorials/activity
Star https://github.com/login?return_to=%2FProgrammer027%2FMachine-Learning-Tutorials
Notifications https://github.com/login?return_to=%2FProgrammer027%2FMachine-Learning-Tutorials
Code https://github.com/Programmer027/Machine-Learning-Tutorials
Pull requests 0 https://github.com/Programmer027/Machine-Learning-Tutorials/pulls
Actions https://github.com/Programmer027/Machine-Learning-Tutorials/actions
Projects 0 https://github.com/Programmer027/Machine-Learning-Tutorials/projects
Wiki https://github.com/Programmer027/Machine-Learning-Tutorials/wiki
Security Uh oh! There was an error while loading. Please reload this page. https://github.com/Programmer027/Machine-Learning-Tutorials/security
Please reload this pagehttps://github.com/Programmer027/Machine-Learning-Tutorials
Insights https://github.com/Programmer027/Machine-Learning-Tutorials/pulse
Code https://github.com/Programmer027/Machine-Learning-Tutorials
Pull requests https://github.com/Programmer027/Machine-Learning-Tutorials/pulls
Actions https://github.com/Programmer027/Machine-Learning-Tutorials/actions
Projects https://github.com/Programmer027/Machine-Learning-Tutorials/projects
Wiki https://github.com/Programmer027/Machine-Learning-Tutorials/wiki
Security https://github.com/Programmer027/Machine-Learning-Tutorials/security
Insights https://github.com/Programmer027/Machine-Learning-Tutorials/pulse
Brancheshttps://github.com/Programmer027/Machine-Learning-Tutorials/branches
Tagshttps://github.com/Programmer027/Machine-Learning-Tutorials/tags
https://github.com/Programmer027/Machine-Learning-Tutorials/branches
https://github.com/Programmer027/Machine-Learning-Tutorials/tags
274 Commitshttps://github.com/Programmer027/Machine-Learning-Tutorials/commits/master/
https://github.com/Programmer027/Machine-Learning-Tutorials/commits/master/
LICENSEhttps://github.com/Programmer027/Machine-Learning-Tutorials/blob/master/LICENSE
LICENSEhttps://github.com/Programmer027/Machine-Learning-Tutorials/blob/master/LICENSE
README.mdhttps://github.com/Programmer027/Machine-Learning-Tutorials/blob/master/README.md
README.mdhttps://github.com/Programmer027/Machine-Learning-Tutorials/blob/master/README.md
contributing.mdhttps://github.com/Programmer027/Machine-Learning-Tutorials/blob/master/contributing.md
contributing.mdhttps://github.com/Programmer027/Machine-Learning-Tutorials/blob/master/contributing.md
READMEhttps://github.com/Programmer027/Machine-Learning-Tutorials
Contributinghttps://github.com/Programmer027/Machine-Learning-Tutorials
CC0-1.0 licensehttps://github.com/Programmer027/Machine-Learning-Tutorials
https://github.com/sindresorhus/awesome
https://github.com/Programmer027/Machine-Learning-Tutorials#machine-learning--deep-learning-tutorials-
listhttps://github.com/sindresorhus/awesome
Contributing Guidelineshttps://github.com/ujjwalkarn/Machine-Learning-Tutorials/blob/master/contributing.md
Curated list of R tutorials for Data Science, NLP and Machine Learninghttps://github.com/ujjwalkarn/DataScienceR
Curated list of Python tutorials for Data Science, NLP and Machine Learninghttps://github.com/ujjwalkarn/DataSciencePython
https://github.com/Programmer027/Machine-Learning-Tutorials#contents
Introductionhttps://github.com/Programmer027/Machine-Learning-Tutorials#general
Interview Resourceshttps://github.com/Programmer027/Machine-Learning-Tutorials#interview
Artificial Intelligencehttps://github.com/Programmer027/Machine-Learning-Tutorials#ai
Genetic Algorithmshttps://github.com/Programmer027/Machine-Learning-Tutorials#ga
Statisticshttps://github.com/Programmer027/Machine-Learning-Tutorials#stat
Useful Blogshttps://github.com/Programmer027/Machine-Learning-Tutorials#blogs
Resources on Quorahttps://github.com/Programmer027/Machine-Learning-Tutorials#quora
Resources on Kagglehttps://github.com/Programmer027/Machine-Learning-Tutorials#kaggle
Cheat Sheetshttps://github.com/Programmer027/Machine-Learning-Tutorials#cs
Classificationhttps://github.com/Programmer027/Machine-Learning-Tutorials#classification
Linear Regressionhttps://github.com/Programmer027/Machine-Learning-Tutorials#linear
Logistic Regressionhttps://github.com/Programmer027/Machine-Learning-Tutorials#logistic
Model Validation using Resamplinghttps://github.com/Programmer027/Machine-Learning-Tutorials#validation
Cross Validationhttps://github.com/Programmer027/Machine-Learning-Tutorials#cross
Bootstrapinghttps://github.com/Programmer027/Machine-Learning-Tutorials#boot
Deep Learninghttps://github.com/Programmer027/Machine-Learning-Tutorials#deep
Frameworkshttps://github.com/Programmer027/Machine-Learning-Tutorials#frame
Feed Forward Networkshttps://github.com/Programmer027/Machine-Learning-Tutorials#feed
Recurrent Neural Nets, LSTM, GRUhttps://github.com/Programmer027/Machine-Learning-Tutorials#rnn
Restricted Boltzmann Machine, DBNshttps://github.com/Programmer027/Machine-Learning-Tutorials#rbm
Autoencodershttps://github.com/Programmer027/Machine-Learning-Tutorials#auto
Convolutional Neural Netshttps://github.com/Programmer027/Machine-Learning-Tutorials#cnn
Natural Language Processinghttps://github.com/Programmer027/Machine-Learning-Tutorials#nlp
Topic Modeling, LDAhttps://github.com/Programmer027/Machine-Learning-Tutorials#topic
Word2Vechttps://github.com/Programmer027/Machine-Learning-Tutorials#word2vec
Computer Visionhttps://github.com/Programmer027/Machine-Learning-Tutorials#vision
Support Vector Machinehttps://github.com/Programmer027/Machine-Learning-Tutorials#svm
Reinforcement Learninghttps://github.com/Programmer027/Machine-Learning-Tutorials#rl
Decision Treeshttps://github.com/Programmer027/Machine-Learning-Tutorials#dt
Random Forest / Bagginghttps://github.com/Programmer027/Machine-Learning-Tutorials#rf
Boostinghttps://github.com/Programmer027/Machine-Learning-Tutorials#gbm
Ensembleshttps://github.com/Programmer027/Machine-Learning-Tutorials#ensem
Stacking Modelshttps://github.com/Programmer027/Machine-Learning-Tutorials#stack
VC Dimensionhttps://github.com/Programmer027/Machine-Learning-Tutorials#vc
Bayesian Machine Learninghttps://github.com/Programmer027/Machine-Learning-Tutorials#bayes
Semi Supervised Learninghttps://github.com/Programmer027/Machine-Learning-Tutorials#semi
Optimizationshttps://github.com/Programmer027/Machine-Learning-Tutorials#opt
Other Useful Tutorialshttps://github.com/Programmer027/Machine-Learning-Tutorials#other
https://github.com/Programmer027/Machine-Learning-Tutorials#introduction
Machine Learning Course by Andrew Ng (Stanford University)https://www.coursera.org/learn/machine-learning
In-depth introduction to machine learning in 15 hours of expert videoshttp://www.dataschool.io/15-hours-of-expert-machine-learning-videos/
An Introduction to Statistical Learninghttp://www-bcf.usc.edu/~gareth/ISL/
List of Machine Learning University Courseshttps://github.com/prakhar1989/awesome-courses#machine-learning
Machine Learning for Software Engineershttps://github.com/ZuzooVn/machine-learning-for-software-engineers
Dive into Machine Learninghttps://github.com/hangtwenty/dive-into-machine-learning
A curated list of awesome Machine Learning frameworks, libraries and softwarehttps://github.com/josephmisiti/awesome-machine-learning
A curated list of awesome data visualization libraries and resources.https://github.com/fasouto/awesome-dataviz
An awesome Data Science repository to learn and apply for real world problemshttps://github.com/okulbilisim/awesome-datascience
The Open Source Data Science Mastershttp://datasciencemasters.org/
Machine Learning FAQs on Cross Validatedhttp://stats.stackexchange.com/questions/tagged/machine-learning
Machine Learning algorithms that you should always have a strong understanding ofhttps://www.quora.com/What-are-some-Machine-Learning-algorithms-that-you-should-always-have-a-strong-understanding-of-and-why
Difference between Linearly Independent, Orthogonal, and Uncorrelated Variableshttp://terpconnect.umd.edu/~bmomen/BIOM621/LineardepCorrOrthogonal.pdf
List of Machine Learning Conceptshttps://en.wikipedia.org/wiki/List_of_machine_learning_concepts
Slides on Several Machine Learning Topicshttp://www.slideshare.net/pierluca.lanzi/presentations
MIT Machine Learning Lecture Slideshttp://www.ai.mit.edu/courses/6.867-f04/lectures.html
Comparison Supervised Learning Algorithmshttp://www.dataschool.io/comparing-supervised-learning-algorithms/
Learning Data Science Fundamentalshttp://www.dataschool.io/learning-data-science-fundamentals/
Machine Learning mistakes to avoidhttps://medium.com/@nomadic_mind/new-to-machine-learning-avoid-these-three-mistakes-73258b3848a4#.lih061l3l
Statistical Machine Learning Coursehttp://www.stat.cmu.edu/~larry/=sml/
TheAnalyticsEdge edX Notes and Codeshttps://github.com/pedrosan/TheAnalyticsEdge
Have Fun With Machine Learninghttps://github.com/humphd/have-fun-with-machine-learning
Twitter's Most Shared #machineLearning Content From The Past 7 Dayshttp://theherdlocker.com/tweet/popularity/machinelearning
https://github.com/Programmer027/Machine-Learning-Tutorials#interview-resources
41 Essential Machine Learning Interview Questions (with answers)https://www.springboard.com/blog/machine-learning-interview-questions/
How can a computer science graduate student prepare himself for data scientist interviews?https://www.quora.com/How-can-a-computer-science-graduate-student-prepare-himself-for-data-scientist-machine-learning-intern-interviews
How do I learn Machine Learning?https://www.quora.com/How-do-I-learn-machine-learning-1
FAQs about Data Science Interviewshttps://www.quora.com/topic/Data-Science-Interviews/faq
What are the key skills of a data scientist?https://www.quora.com/What-are-the-key-skills-of-a-data-scientist
https://github.com/Programmer027/Machine-Learning-Tutorials#artificial-intelligence
Awesome Artificial Intelligence (GitHub Repo)https://github.com/owainlewis/awesome-artificial-intelligence
UC Berkeley CS188 Intro to AIhttp://ai.berkeley.edu/home.html
Lecture Videoshttp://ai.berkeley.edu/lecture_videos.html
2https://www.youtube.com/watch?v=W1S-HSakPTM
MIT 6.034 Artificial Intelligence Lecture Videoshttps://www.youtube.com/playlist?list=PLUl4u3cNGP63gFHB6xb-kVBiQHYe_4hSi
Complete Coursehttps://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/
edX course | Klein & Abbeelhttps://courses.edx.org/courses/BerkeleyX/CS188x_1/1T2013/info
Udacity Course | Norvig & Thrunhttps://www.udacity.com/course/intro-to-artificial-intelligence--cs271
TED talks on AIhttp://www.ted.com/playlists/310/talks_on_artificial_intelligen
https://github.com/Programmer027/Machine-Learning-Tutorials#genetic-algorithms
Genetic Algorithms Wikipedia Pagehttps://en.wikipedia.org/wiki/Genetic_algorithm
Simple Implementation of Genetic Algorithms in Python (Part 1)http://outlace.com/miniga.html
Part 2http://outlace.com/miniga_addendum.html
Genetic Algorithms vs Artificial Neural Networkshttp://stackoverflow.com/questions/1402370/when-to-use-genetic-algorithms-vs-when-to-use-neural-networks
Genetic Algorithms Explained in Plain Englishhttp://www.ai-junkie.com/ga/intro/gat1.html
Genetic Programminghttps://en.wikipedia.org/wiki/Genetic_programming
Genetic Programming in Python (GitHub)https://github.com/trevorstephens/gplearn
Genetic Alogorithms vs Genetic Programming (Quora)https://www.quora.com/Whats-the-difference-between-Genetic-Algorithms-and-Genetic-Programming
StackOverflowhttp://stackoverflow.com/questions/3819977/what-are-the-differences-between-genetic-algorithms-and-genetic-programming
https://github.com/Programmer027/Machine-Learning-Tutorials#statistics
Stat Trek Websitehttp://stattrek.com/
Learn Statistics Using Pythonhttps://github.com/rouseguy/intro2stats
Statistics for Hackers | Slides | @jakevdphttps://speakerdeck.com/jakevdp/statistics-for-hackers
Online Statistics Bookhttp://onlinestatbook.com/2/index.html
What is a Sampling Distribution?http://stattrek.com/sampling/sampling-distribution.aspx
AP Statistics Tutorialhttp://stattrek.com/tutorials/ap-statistics-tutorial.aspx
Statistics and Probability Tutorialhttp://stattrek.com/tutorials/statistics-tutorial.aspx
Matrix Algebra Tutorialhttp://stattrek.com/tutorials/matrix-algebra-tutorial.aspx
What is an Unbiased Estimator?https://www.physicsforums.com/threads/what-is-an-unbiased-estimator.547728/
Goodness of Fit Explainedhttps://en.wikipedia.org/wiki/Goodness_of_fit
What are QQ Plots?http://onlinestatbook.com/2/advanced_graphs/q-q_plots.html
OpenIntro Statisticshttps://www.openintro.org/stat/textbook.php?stat_book=os
https://github.com/Programmer027/Machine-Learning-Tutorials#useful-blogs
Edwin Chen's Bloghttp://blog.echen.me/
The Data School Bloghttp://www.dataschool.io/
ML Wavehttp://mlwave.com/
Andrej Karpathyhttp://karpathy.github.io/
Colah's Bloghttp://colah.github.io/
Alex Minnaar's Bloghttp://alexminnaar.com/
Statistically Significanthttp://andland.github.io/
Simply Statisticshttp://simplystatistics.org/
Yanir Seroussi's Bloghttps://yanirseroussi.com/
fastMLhttp://fastml.com/
Trevor Stephens Bloghttp://trevorstephens.com/
no free hunch | kagglehttp://blog.kaggle.com/
A Quantitative Journey | outlacehttp://outlace.com/
r4statshttp://r4stats.com/
Variance Explainedhttp://varianceexplained.org/
AI Junkiehttp://www.ai-junkie.com/
Deep Learning Blog by Tim Dettmershttp://timdettmers.com/
J Alammar's Bloghttp://jalammar.github.io/
Adam Geitgeyhttps://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471#.f7vwrtfne
Ethen's Notebook Collectionhttps://github.com/ethen8181/machine-learning
https://github.com/Programmer027/Machine-Learning-Tutorials#resources-on-quora
Most Viewed Machine Learning writershttps://www.quora.com/topic/Machine-Learning/writers
Data Science Topic on Quorahttps://www.quora.com/Data-Science
William Chen's Answershttps://www.quora.com/William-Chen-6/answers
Michael Hochster's Answershttps://www.quora.com/Michael-Hochster/answers
Ricardo Vladimiro's Answershttps://www.quora.com/Ricardo-Vladimiro-1/answers
Storytelling with Statisticshttps://datastories.quora.com/
Data Science FAQs on Quorahttps://www.quora.com/topic/Data-Science/faq
Machine Learning FAQs on Quorahttps://www.quora.com/topic/Machine-Learning/faq
https://github.com/Programmer027/Machine-Learning-Tutorials#kaggle-competitions-writeup
How to almost win Kaggle Competitionshttps://yanirseroussi.com/2014/08/24/how-to-almost-win-kaggle-competitions/
Convolution Neural Networks for EEG detectionhttp://blog.kaggle.com/2015/10/05/grasp-and-lift-eeg-detection-winners-interview-3rd-place-team-hedj/
Facebook Recruiting III Explainedhttp://alexminnaar.com/tag/kaggle-competitions.html
Predicting CTR with Online MLhttp://mlwave.com/predicting-click-through-rates-with-online-machine-learning/
How to Rank 10% in Your First Kaggle Competitionhttps://dnc1994.com/2016/05/rank-10-percent-in-first-kaggle-competition-en/
https://github.com/Programmer027/Machine-Learning-Tutorials#cheat-sheets
Probability Cheat Sheethttp://static1.squarespace.com/static/54bf3241e4b0f0d81bf7ff36/t/55e9494fe4b011aed10e48e5/1441352015658/probability_cheatsheet.pdf
Sourcehttp://www.wzchen.com/probability-cheatsheet/
Machine Learning Cheat Sheethttps://github.com/soulmachine/machine-learning-cheat-sheet
https://github.com/Programmer027/Machine-Learning-Tutorials#classification
Does Balancing Classes Improve Classifier Performance?http://www.win-vector.com/blog/2015/02/does-balancing-classes-improve-classifier-performance/
What is Deviance?http://stats.stackexchange.com/questions/6581/what-is-deviance-specifically-in-cart-rpart
When to choose which machine learning classifier?http://stackoverflow.com/questions/2595176/when-to-choose-which-machine-learning-classifier
What are the advantages of different classification algorithms?https://www.quora.com/What-are-the-advantages-of-different-classification-algorithms
ROC and AUC Explainedhttp://www.dataschool.io/roc-curves-and-auc-explained/
related videohttps://youtu.be/OAl6eAyP-yo
An introduction to ROC analysishttps://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf
Simple guide to confusion matrix terminologyhttp://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
https://github.com/Programmer027/Machine-Learning-Tutorials#linear-regression
Generalhttps://github.com/Programmer027/Machine-Learning-Tutorials#general-
Assumptions of Linear Regressionhttp://pareonline.net/getvn.asp?n=2&v=8
Stack Exchangehttp://stats.stackexchange.com/questions/16381/what-is-a-complete-list-of-the-usual-assumptions-for-linear-regression
Linear Regression Comprehensive Resourcehttp://people.duke.edu/~rnau/regintro.htm
Applying and Interpreting Linear Regressionhttp://www.dataschool.io/applying-and-interpreting-linear-regression/
What does having constant variance in a linear regression model mean?http://stats.stackexchange.com/questions/52089/what-does-having-constant-variance-in-a-linear-regression-model-mean/52107?stw=2#52107
Difference between linear regression on y with x and x with yhttp://stats.stackexchange.com/questions/22718/what-is-the-difference-between-linear-regression-on-y-with-x-and-x-with-y?lq=1
Is linear regression valid when the dependant variable is not normally distributed?https://www.researchgate.net/post/Is_linear_regression_valid_when_the_outcome_dependant_variable_not_normally_distributed
Dummy Variable Trap | Multicollinearityhttps://en.wikipedia.org/wiki/Multicollinearity
Dealing with multicollinearity using VIFshttps://jonlefcheck.net/2012/12/28/dealing-with-multicollinearity-using-variance-inflation-factors/
Residual Analysishttps://github.com/Programmer027/Machine-Learning-Tutorials#residuals-
Interpreting plot.lm() in Rhttp://stats.stackexchange.com/questions/58141/interpreting-plot-lm
How to interpret a QQ plot?http://stats.stackexchange.com/questions/101274/how-to-interpret-a-qq-plot?lq=1
Interpreting Residuals vs Fitted Plothttp://stats.stackexchange.com/questions/76226/interpreting-the-residuals-vs-fitted-values-plot-for-verifying-the-assumptions
Outliershttps://github.com/Programmer027/Machine-Learning-Tutorials#outliers-
How should outliers be dealt with?http://stats.stackexchange.com/questions/175/how-should-outliers-be-dealt-with-in-linear-regression-analysis
Elastic Nethttps://en.wikipedia.org/wiki/Elastic_net_regularization
Regularization and Variable Selection via the Elastic Nethttps://web.stanford.edu/~hastie/Papers/elasticnet.pdf
https://github.com/Programmer027/Machine-Learning-Tutorials#logistic-regression
Logistic Regression Wikihttps://en.wikipedia.org/wiki/Logistic_regression
Geometric Intuition of Logistic Regressionhttp://florianhartl.com/logistic-regression-geometric-intuition.html
Obtaining predicted categories (choosing threshold)http://stats.stackexchange.com/questions/25389/obtaining-predicted-values-y-1-or-0-from-a-logistic-regression-model-fit
Residuals in logistic regressionhttp://stats.stackexchange.com/questions/1432/what-do-the-residuals-in-a-logistic-regression-mean
Difference between logit and probit modelshttp://stats.stackexchange.com/questions/20523/difference-between-logit-and-probit-models#30909
Logistic Regression Wikihttps://en.wikipedia.org/wiki/Logistic_regression
Probit Model Wikihttps://en.wikipedia.org/wiki/Probit_model
Pseudo R2 for Logistic Regressionhttp://stats.stackexchange.com/questions/3559/which-pseudo-r2-measure-is-the-one-to-report-for-logistic-regression-cox-s
How to calculatehttp://stats.stackexchange.com/questions/8511/how-to-calculate-pseudo-r2-from-rs-logistic-regression
Other Detailshttp://www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_RSquareds.htm
Guide to an in-depth understanding of logistic regressionhttp://www.dataschool.io/guide-to-logistic-regression/
https://github.com/Programmer027/Machine-Learning-Tutorials#model-validation-using-resampling
Resampling Explainedhttps://en.wikipedia.org/wiki/Resampling_(statistics)
Partioning data set in Rhttp://stackoverflow.com/questions/13536537/partitioning-data-set-in-r-based-on-multiple-classes-of-observations
Implementing hold-out Validaion in Rhttp://stackoverflow.com/questions/22972854/how-to-implement-a-hold-out-validation-in-r
2http://www.gettinggeneticsdone.com/2011/02/split-data-frame-into-testing-and.html
Cross Validationhttps://en.wikipedia.org/wiki/Cross-validation_(statistics)
How to use cross-validation in predictive modelinghttp://stuartlacy.co.uk/2016/02/04/how-to-correctly-use-cross-validation-in-predictive-modelling/
Training with Full dataset after CV?http://stats.stackexchange.com/questions/11602/training-with-the-full-dataset-after-cross-validation
Which CV method is best?http://stats.stackexchange.com/questions/103459/how-do-i-know-which-method-of-cross-validation-is-best
Variance Estimates in k-fold CVhttp://stats.stackexchange.com/questions/31190/variance-estimates-in-k-fold-cross-validation
Is CV a subsitute for Validation Set?http://stats.stackexchange.com/questions/18856/is-cross-validation-a-proper-substitute-for-validation-set
Choice of k in k-fold CVhttp://stats.stackexchange.com/questions/27730/choice-of-k-in-k-fold-cross-validation
CV for ensemble learninghttp://stats.stackexchange.com/questions/102631/k-fold-cross-validation-of-ensemble-learning
k-fold CV in Rhttp://stackoverflow.com/questions/22909197/creating-folds-for-k-fold-cv-in-r-using-caret
Good Resourceshttp://www.chioka.in/tag/cross-validation/
Preventing Overfitting the Cross Validation Data | Andrew Nghttp://ai.stanford.edu/~ang/papers/cv-final.pdf
Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluationhttp://www.jmlr.org/papers/volume11/cawley10a/cawley10a.pdf
CV for detecting and preventing Overfittinghttp://www.autonlab.org/tutorials/overfit10.pdf
How does CV overcome the Overfitting Problemhttp://stats.stackexchange.com/questions/9053/how-does-cross-validation-overcome-the-overfitting-problem
Bootstrappinghttps://en.wikipedia.org/wiki/Bootstrapping_(statistics)
Why Bootstrapping Works?http://stats.stackexchange.com/questions/26088/explaining-to-laypeople-why-bootstrapping-works
Good Animationhttps://www.stat.auckland.ac.nz/~wild/BootAnim/
Example of Bootstappinghttp://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm
Understanding Bootstapping for Validation and Model Selectionhttp://stats.stackexchange.com/questions/14516/understanding-bootstrapping-for-validation-and-model-selection?rq=1
Cross Validation vs Bootstrap to estimate prediction errorhttp://stats.stackexchange.com/questions/18348/differences-between-cross-validation-and-bootstrapping-to-estimate-the-predictio
Cross-validation vs .632 bootstrapping to evaluate classification performancehttp://stats.stackexchange.com/questions/71184/cross-validation-or-bootstrapping-to-evaluate-classification-performance
https://github.com/Programmer027/Machine-Learning-Tutorials#deep-learning
fast.ai - Practical Deep Learning For Codershttp://course.fast.ai/
fast.ai - Cutting Edge Deep Learning For Codershttp://course.fast.ai/part2.html
A curated list of awesome Deep Learning tutorials, projects and communitieshttps://github.com/ChristosChristofidis/awesome-deep-learning
Lots of Deep Learning Resourceshttp://deeplearning4j.org/documentation.html
Interesting Deep Learning and NLP Projects (Stanford)http://cs224d.stanford.edu/reports.html
Websitehttp://cs224d.stanford.edu/
Core Concepts of Deep Learninghttps://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/
Understanding Natural Language with Deep Neural Networks Using Torchhttps://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/
Stanford Deep Learning Tutorialhttp://ufldl.stanford.edu/tutorial/
Deep Learning FAQs on Quorahttps://www.quora.com/topic/Deep-Learning/faq
Google+ Deep Learning Pagehttps://plus.google.com/communities/112866381580457264725
Recent Reddit AMAs related to Deep Learninghttp://deeplearning.net/2014/11/22/recent-reddit-amas-about-deep-learning/
Another AMAhttps://www.reddit.com/r/IAmA/comments/3mdk9v/we_are_google_researchers_working_on_deep/
Where to Learn Deep Learning?http://www.kdnuggets.com/2014/05/learn-deep-learning-courses-tutorials-overviews.html
Deep Learning nvidia conceptshttp://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/
Introduction to Deep Learning Using Python (GitHub)https://github.com/rouseguy/intro2deeplearning
Good Introduction Slideshttps://speakerdeck.com/bargava/introduction-to-deep-learning
Video Lectures Oxford 2015https://www.youtube.com/playlist?list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu
Video Lectures Summer School Montrealhttp://videolectures.net/deeplearning2015_montreal/
Deep Learning Software Listhttp://deeplearning.net/software_links/
Hacker's guide to Neural Netshttp://karpathy.github.io/neuralnets/
Top arxiv Deep Learning Papers explainedhttp://www.kdnuggets.com/2015/10/top-arxiv-deep-learning-papers-explained.html
Geoff Hinton Youtube Vidoes on Deep Learninghttps://www.youtube.com/watch?v=IcOMKXAw5VA
Awesome Deep Learning Reading Listhttp://deeplearning.net/reading-list/
Deep Learning Comprehensive Websitehttp://deeplearning.net/
Softwarehttp://deeplearning.net/software_links/
deeplearning Tutorialshttp://deeplearning4j.org/
AWESOME! Deep Learning Tutorialhttps://www.toptal.com/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks
Deep Learning Basicshttp://alexminnaar.com/deep-learning-basics-neural-networks-backpropagation-and-stochastic-gradient-descent.html
Stanford Tutorialshttp://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/
Train, Validation & Test in Artificial Neural Networkshttp://stackoverflow.com/questions/2976452/whats-is-the-difference-between-train-validation-and-test-set-in-neural-networ
Artificial Neural Networks Tutorialshttp://stackoverflow.com/questions/478947/what-are-some-good-resources-for-learning-about-artificial-neural-networks
Neural Networks FAQs on Stack Overflowhttp://stackoverflow.com/questions/tagged/neural-network?sort=votes&pageSize=50
Deep Learning Tutorials on deeplearning.nethttp://deeplearning.net/tutorial/index.html
Neural Networks and Deep Learning Online Bookhttp://neuralnetworksanddeeplearning.com/
Introduction to Neural Machine Translation with GPUs (part 1)https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-with-gpus/
Part 2https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/
Part 3https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/
Deep Speech: Accurate Speech Recognition with GPU-Accelerated Deep Learninghttps://devblogs.nvidia.com/parallelforall/deep-speech-accurate-speech-recognition-gpu-accelerated-deep-learning/
Torch vs. Theanohttp://fastml.com/torch-vs-theano/
dl4j vs. torch7 vs. theanohttp://deeplearning4j.org/compare-dl4j-torch7-pylearn.html
Deep Learning Libraries by Languagehttp://www.teglor.com/b/deep-learning-libraries-language-cm569/
Theanohttps://en.wikipedia.org/wiki/Theano_(software)
Websitehttp://deeplearning.net/software/theano/
Theano Introductionhttp://www.wildml.com/2015/09/speeding-up-your-neural-network-with-theano-and-the-gpu/
Theano Tutorialhttp://outlace.com/Beginner-Tutorial-Theano/
Good Theano Tutorialhttp://deeplearning.net/software/theano/tutorial/
Logistic Regression using Theano for classifying digitshttp://deeplearning.net/tutorial/logreg.html#logreg
MLP using Theanohttp://deeplearning.net/tutorial/mlp.html#mlp
CNN using Theanohttp://deeplearning.net/tutorial/lenet.html#lenet
RNNs using Theanohttp://deeplearning.net/tutorial/rnnslu.html#rnnslu
LSTM for Sentiment Analysis in Theanohttp://deeplearning.net/tutorial/lstm.html#lstm
RBM using Theanohttp://deeplearning.net/tutorial/rbm.html#rbm
DBNs using Theanohttp://deeplearning.net/tutorial/DBN.html#dbn
All Codeshttps://github.com/lisa-lab/DeepLearningTutorials
Deep Learning Implementation Tutorials - Keras and Lasagnehttps://github.com/vict0rsch/deep_learning/
Torchhttp://torch.ch/
Torch ML Tutorialhttp://code.madbits.com/wiki/doku.php
Codehttps://github.com/torch/tutorials
Intro to Torchhttp://ml.informatik.uni-freiburg.de/_media/teaching/ws1415/presentation_dl_lect3.pdf
Learning Torch GitHub Repohttps://github.com/chetannaik/learning_torch
Awesome-Torch (Repository on GitHub)https://github.com/carpedm20/awesome-torch
Machine Learning using Torch Oxford Univhttps://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
Codehttps://github.com/oxford-cs-ml-2015
Torch Internals Overviewhttps://apaszke.github.io/torch-internals.html
Torch Cheatsheethttps://github.com/torch/torch7/wiki/Cheatsheet
Understanding Natural Language with Deep Neural Networks Using Torchhttp://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/
Deep Learning for Computer Vision with Caffe and cuDNNhttps://devblogs.nvidia.com/parallelforall/deep-learning-computer-vision-caffe-cudnn/
Websitehttp://tensorflow.org/
TensorFlow Examples for Beginnershttps://github.com/aymericdamien/TensorFlow-Examples
Stanford Tensorflow for Deep Learning Research Coursehttps://web.stanford.edu/class/cs20si/syllabus.html
GitHub Repohttps://github.com/chiphuyen/tf-stanford-tutorials
Simplified Scikit-learn Style Interface to TensorFlowhttps://github.com/tensorflow/skflow
Learning TensorFlow GitHub Repohttps://github.com/chetannaik/learning_tensorflow
Benchmark TensorFlow GitHubhttps://github.com/soumith/convnet-benchmarks/issues/66
Awesome TensorFlow Listhttps://github.com/jtoy/awesome-tensorflow
TensorFlow Bookhttps://github.com/BinRoot/TensorFlow-Book
Android TensorFlow Machine Learning Examplehttps://blog.mindorks.com/android-tensorflow-machine-learning-example-ff0e9b2654cc
GitHub Repohttps://github.com/MindorksOpenSource/AndroidTensorFlowMachineLearningExample
Creating Custom Model For Android Using TensorFlowhttps://blog.mindorks.com/creating-custom-model-for-android-using-tensorflow-3f963d270bfb
GitHub Repohttps://github.com/MindorksOpenSource/AndroidTensorFlowMNISTExample
A Quick Introduction to Neural Networkshttps://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/
Implementing a Neural Network from scratchhttp://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
Codehttps://github.com/dennybritz/nn-from-scratch
Speeding up your Neural Network with Theano and the gpuhttp://www.wildml.com/2015/09/speeding-up-your-neural-network-with-theano-and-the-gpu/
Codehttps://github.com/dennybritz/nn-theano
Basic ANN Theoryhttps://takinginitiative.wordpress.com/2008/04/03/basic-neural-network-tutorial-theory/
Role of Bias in Neural Networkshttp://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks
Choosing number of hidden layers and nodeshttp://stackoverflow.com/questions/3345079/estimating-the-number-of-neurons-and-number-of-layers-of-an-artificial-neural-ne
2http://stackoverflow.com/questions/10565868/multi-layer-perceptron-mlp-architecture-criteria-for-choosing-number-of-hidde?lq=1
3http://stackoverflow.com/questions/9436209/how-to-choose-number-of-hidden-layers-and-nodes-in-neural-network/2#
Backpropagation in Matrix Formhttp://sudeepraja.github.io/Neural/
ANN implemented in C++ | AI Junkiehttp://www.ai-junkie.com/ann/evolved/nnt6.html
Simple Implementationhttp://stackoverflow.com/questions/15395835/simple-multi-layer-neural-network-implementation
NN for Beginnershttp://www.codeproject.com/Articles/16419/AI-Neural-Network-for-beginners-Part-of
Regression and Classification with NNs (Slides)http://www.autonlab.org/tutorials/neural13.pdf
Another Introhttp://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
awesome-rnn: list of resources (GitHub Repo)https://github.com/kjw0612/awesome-rnn
Recurrent Neural Net Tutorial Part 1http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
Part 2http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/
Part 3http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/
Codehttps://github.com/dennybritz/rnn-tutorial-rnnlm/
NLP RNN Representationshttp://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
The Unreasonable effectiveness of RNNshttp://karpathy.github.io/2015/05/21/rnn-effectiveness/
Torch Codehttps://github.com/karpathy/char-rnn
Python Codehttps://gist.github.com/karpathy/d4dee566867f8291f086
Intro to RNNhttp://deeplearning4j.org/recurrentnetwork.html
LSTMhttp://deeplearning4j.org/lstm.html
An application of RNNhttp://hackaday.com/2015/10/15/73-computer-scientists-created-a-neural-net-and-you-wont-believe-what-happened-next/
Optimizing RNN Performancehttp://svail.github.io/
Simple RNNhttp://outlace.com/Simple-Recurrent-Neural-Network/
Auto-Generating Clickbait with RNNhttps://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/
Sequence Learning using RNN (Slides)http://www.slideshare.net/indicods/general-sequence-learning-with-recurrent-neural-networks-for-next-ml
Machine Translation using RNN (Paper)http://emnlp2014.org/papers/pdf/EMNLP2014179.pdf
Music generation using RNNs (Keras)https://github.com/MattVitelli/GRUV
Using RNN to create on-the-fly dialogue (Keras)http://neuralniche.com/post/tutorial/
Understanding LSTM Networkshttp://colah.github.io/posts/2015-08-Understanding-LSTMs/
LSTM explainedhttps://apaszke.github.io/lstm-explained.html
Beginner’s Guide to LSTMhttp://deeplearning4j.org/lstm.html
Implementing LSTM from scratchhttp://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
Python/Theano codehttps://github.com/dennybritz/rnn-tutorial-gru-lstm
Torch Code for character-level language models using LSTMhttps://github.com/karpathy/char-rnn
LSTM for Kaggle EEG Detection competition (Torch Code)https://github.com/apaszke/kaggle-grasp-and-lift
LSTM for Sentiment Analysis in Theanohttp://deeplearning.net/tutorial/lstm.html#lstm
Deep Learning for Visual Q&A | LSTM | CNNhttp://avisingh599.github.io/deeplearning/visual-qa/
Codehttps://github.com/avisingh599/visual-qa
Computer Responds to email using LSTM | Googlehttp://googleresearch.blogspot.in/2015/11/computer-respond-to-this-email.html
LSTM dramatically improves Google Voice Searchhttp://googleresearch.blogspot.ch/2015/09/google-voice-search-faster-and-more.html
Another Articlehttp://deeplearning.net/2015/09/30/long-short-term-memory-dramatically-improves-google-voice-etc-now-available-to-a-billion-users/
Understanding Natural Language with LSTM Using Torchhttp://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/
Torch code for Visual Question Answering using a CNN+LSTM modelhttps://github.com/abhshkdz/neural-vqa
LSTM for Human Activity Recognitionhttps://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition/
LSTM vs GRUhttp://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/
Time series forecasting with Sequence-to-Sequence (seq2seq) rnn modelshttps://github.com/guillaume-chevalier/seq2seq-signal-prediction
Recursive Neural Network (not Recurrent)https://en.wikipedia.org/wiki/Recursive_neural_network
Recursive Neural Tensor Network (RNTN)http://deeplearning4j.org/recursiveneuraltensornetwork.html
word2vec, DBN, RNTN for Sentiment Analysis http://deeplearning4j.org/zh-sentiment_analysis_word2vec.html
Beginner's Guide about RBMshttp://deeplearning4j.org/restrictedboltzmannmachine.html
Another Good Tutorialhttp://deeplearning.net/tutorial/rbm.html
Introduction to RBMshttp://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/
Hinton's Guide to Training RBMshttps://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
RBMs in Rhttps://github.com/zachmayer/rbm
Deep Belief Networks Tutorialhttp://deeplearning4j.org/deepbeliefnetwork.html
word2vec, DBN, RNTN for Sentiment Analysis http://deeplearning4j.org/zh-sentiment_analysis_word2vec.html
Andrew Ng Sparse Autoencoders pdfhttps://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf
Deep Autoencoders Tutorialhttp://deeplearning4j.org/deepautoencoder.html
Denoising Autoencodershttp://deeplearning.net/tutorial/dA.html
Theano Codehttp://deeplearning.net/tutorial/code/dA.py
Stacked Denoising Autoencodershttp://deeplearning.net/tutorial/SdA.html#sda
An Intuitive Explanation of Convolutional Neural Networkshttps://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
Awesome Deep Vision: List of Resources (GitHub)https://github.com/kjw0612/awesome-deep-vision
Intro to CNNshttp://deeplearning4j.org/convolutionalnets.html
Understanding CNN for NLPhttp://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
Stanford Noteshttp://vision.stanford.edu/teaching/cs231n/
Codeshttp://cs231n.github.io/
GitHubhttps://github.com/cs231n/cs231n.github.io
JavaScript Library (Browser Based) for CNNshttp://cs.stanford.edu/people/karpathy/convnetjs/
Using CNNs to detect facial keypointshttp://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-facial-keypoints-tutorial/
Deep learning to classify business photos at Yelphttp://engineeringblog.yelp.com/2015/10/how-we-use-deep-learning-to-classify-business-photos-at-yelp.html
Interview with Yann LeCun | Kagglehttp://blog.kaggle.com/2014/12/22/convolutional-nets-and-cifar-10-an-interview-with-yan-lecun/
Visualising and Understanding CNNshttps://www.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf
https://github.com/Programmer027/Machine-Learning-Tutorials#natural-language-processing
A curated list of speech and natural language processing resourceshttps://github.com/edobashira/speech-language-processing
Understanding Natural Language with Deep Neural Networks Using Torchhttp://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/
tf-idf explainedhttp://michaelerasm.us/post/tf-idf-in-10-minutes/
Interesting Deep Learning NLP Projects Stanfordhttp://cs224d.stanford.edu/reports.html
Websitehttp://cs224d.stanford.edu/
NLP from Scratch | Google Paperhttps://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/35671.pdf
Graph Based Semi Supervised Learning for NLPhttp://graph-ssl.wdfiles.com/local--files/blog%3A_start/graph_ssl_acl12_tutorial_slides_final.pdf
Bag of Wordshttps://en.wikipedia.org/wiki/Bag-of-words_model
Classification text with Bag of Wordshttp://fastml.com/classifying-text-with-bag-of-words-a-tutorial/
Topic Modelinghttps://en.wikipedia.org/wiki/Topic_model
LDAhttps://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
LSAhttps://en.wikipedia.org/wiki/Latent_semantic_analysis
Probabilistic LSAhttps://en.wikipedia.org/wiki/Probabilistic_latent_semantic_analysis
What is a good explanation of Latent Dirichlet Allocation?https://www.quora.com/What-is-a-good-explanation-of-Latent-Dirichlet-Allocation
Awesome LDA Explanation!http://blog.echen.me/2011/08/22/introduction-to-latent-dirichlet-allocation/
Another good explanationhttp://confusedlanguagetech.blogspot.in/2012/07/jordan-boyd-graber-and-philip-resnik.html
The LDA Buffet- Intuitive Explanationhttp://www.matthewjockers.net/2011/09/29/the-lda-buffet-is-now-open-or-latent-dirichlet-allocation-for-english-majors/
Difference between LSI and LDAhttps://www.quora.com/Whats-the-difference-between-Latent-Semantic-Indexing-LSI-and-Latent-Dirichlet-Allocation-LDA
Original LDA Paperhttps://www.cs.princeton.edu/~blei/papers/BleiNgJordan2003.pdf
alpha and beta in LDAhttp://datascience.stackexchange.com/questions/199/what-does-the-alpha-and-beta-hyperparameters-contribute-to-in-latent-dirichlet-a
Intuitive explanation of the Dirichlet distributionhttps://www.quora.com/What-is-an-intuitive-explanation-of-the-Dirichlet-distribution
Topic modeling made just simple enoughhttps://tedunderwood.com/2012/04/07/topic-modeling-made-just-simple-enough/
Online LDAhttp://alexminnaar.com/online-latent-dirichlet-allocation-the-best-option-for-topic-modeling-with-large-data-sets.html
Online LDA with Sparkhttp://alexminnaar.com/distributed-online-latent-dirichlet-allocation-with-apache-spark.html
LDA in Scalahttp://alexminnaar.com/latent-dirichlet-allocation-in-scala-part-i-the-theory.html
Part 2http://alexminnaar.com/latent-dirichlet-allocation-in-scala-part-ii-the-code.html
Segmentation of Twitter Timelines via Topic Modelinghttp://alexperrier.github.io/jekyll/update/2015/09/16/segmentation_twitter_timelines_lda_vs_lsa.html
Topic Modeling of Twitter Followershttp://alexperrier.github.io/jekyll/update/2015/09/04/topic-modeling-of-twitter-followers.html
Google word2vechttps://code.google.com/archive/p/word2vec
Bag of Words Model Wikihttps://en.wikipedia.org/wiki/Bag-of-words_model
word2vec Tutorialhttps://rare-technologies.com/word2vec-tutorial/
A closer look at Skip Gram Modelinghttp://homepages.inf.ed.ac.uk/ballison/pdf/lrec_skipgrams.pdf
Skip Gram Model Tutorialhttp://alexminnaar.com/word2vec-tutorial-part-i-the-skip-gram-model.html
CBoW Modelhttp://alexminnaar.com/word2vec-tutorial-part-ii-the-continuous-bag-of-words-model.html
Word Vectors Kaggle Tutorial Pythonhttps://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-2-word-vectors
Part 2https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-3-more-fun-with-word-vectors
Making sense of word2vechttp://rare-technologies.com/making-sense-of-word2vec/
word2vec explained on deeplearning4jhttp://deeplearning4j.org/word2vec.html
Quora word2vechttps://www.quora.com/How-does-word2vec-work
Other Quora Resourceshttps://www.quora.com/What-are-the-continuous-bag-of-words-and-skip-gram-architectures-in-laymans-terms
2https://www.quora.com/What-is-the-difference-between-the-Bag-of-Words-model-and-the-Continuous-Bag-of-Words-model
3https://www.quora.com/Is-skip-gram-negative-sampling-better-than-CBOW-NS-for-word2vec-If-so-why
word2vec, DBN, RNTN for Sentiment Analysis http://deeplearning4j.org/zh-sentiment_analysis_word2vec.html
How string clustering workshttp://stackoverflow.com/questions/8196371/how-clustering-works-especially-string-clustering
Levenshtein distance for measuring the difference between two sequenceshttps://en.wikipedia.org/wiki/Levenshtein_distance
Text clustering with Levenshtein distanceshttp://stackoverflow.com/questions/21511801/text-clustering-with-levenshtein-distances
Classification Text with Bag of Wordshttp://fastml.com/classifying-text-with-bag-of-words-a-tutorial/
Language learning with NLP and reinforcement learninghttp://blog.dennybritz.com/2015/09/11/reimagining-language-learning-with-nlp-and-reinforcement-learning/
Kaggle Tutorial Bag of Words and Word vectorshttps://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-1-for-beginners-bag-of-words
Part 2https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-2-word-vectors
Part 3https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-3-more-fun-with-word-vectors
What would Shakespeare say (NLP Tutorial)https://gigadom.wordpress.com/2015/10/02/natural-language-processing-what-would-shakespeare-say/
A closer look at Skip Gram Modelinghttp://homepages.inf.ed.ac.uk/ballison/pdf/lrec_skipgrams.pdf
https://github.com/Programmer027/Machine-Learning-Tutorials#computer-vision
Awesome computer vision (github)https://github.com/jbhuang0604/awesome-computer-vision
Awesome deep vision (github)https://github.com/kjw0612/awesome-deep-vision
https://github.com/Programmer027/Machine-Learning-Tutorials#support-vector-machine
Highest Voted Questions about SVMs on Cross Validatedhttp://stats.stackexchange.com/questions/tagged/svm
Help me Understand SVMs!http://stats.stackexchange.com/questions/3947/help-me-understand-support-vector-machines
SVM in Layman's termshttps://www.quora.com/What-does-support-vector-machine-SVM-mean-in-laymans-terms
How does SVM Work | Comparisonshttp://stats.stackexchange.com/questions/23391/how-does-a-support-vector-machine-svm-work
A tutorial on SVMshttp://alex.smola.org/papers/2003/SmoSch03b.pdf
Practical Guide to SVChttp://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
Slideshttp://www.csie.ntu.edu.tw/~cjlin/talks/freiburg.pdf
Introductory Overview of SVMshttp://www.statsoft.com/Textbook/Support-Vector-Machines
SVMs > ANNshttp://stackoverflow.com/questions/6699222/support-vector-machines-better-than-artificial-neural-networks-in-which-learn?rq=1
ANNs > SVMshttp://stackoverflow.com/questions/11632516/what-are-advantages-of-artificial-neural-networks-over-support-vector-machines
Another Comparisonhttp://www.svms.org/anns.html
Trees > SVMshttp://stats.stackexchange.com/questions/57438/why-is-svm-not-so-good-as-decision-tree-on-the-same-data
Kernel Logistic Regression vs SVMhttp://stats.stackexchange.com/questions/43996/kernel-logistic-regression-vs-svm
Logistic Regression vs SVMhttp://stats.stackexchange.com/questions/58684/regularized-logistic-regression-and-support-vector-machine
2http://stats.stackexchange.com/questions/95340/svm-v-s-logistic-regression
3https://www.quora.com/Support-Vector-Machines/What-is-the-difference-between-Linear-SVMs-and-Logistic-Regression
Optimization Algorithms in Support Vector Machineshttp://pages.cs.wisc.edu/~swright/talks/sjw-complearning.pdf
Variable Importance from SVMhttp://stats.stackexchange.com/questions/2179/variable-importance-from-svm
LIBSVMhttps://www.csie.ntu.edu.tw/~cjlin/libsvm/
Intro to SVM in Rhttp://cbio.ensmp.fr/~jvert/svn/tutorials/practical/svmbasic/svmbasic_notes.pdf
What are Kernels in ML and SVM?https://www.quora.com/What-are-Kernels-in-Machine-Learning-and-SVM
Intuition Behind Gaussian Kernel in SVMs?https://www.quora.com/Support-Vector-Machines/What-is-the-intuition-behind-Gaussian-kernel-in-SVM
Platt's Probabilistic Outputs for SVMhttp://www.csie.ntu.edu.tw/~htlin/paper/doc/plattprob.pdf
Platt Calibration Wikihttps://en.wikipedia.org/wiki/Platt_scaling
Why use Platts Scalinghttp://stats.stackexchange.com/questions/5196/why-use-platts-scaling
Classifier Classification with Platt's Scalinghttp://fastml.com/classifier-calibration-with-platts-scaling-and-isotonic-regression/
https://github.com/Programmer027/Machine-Learning-Tutorials#reinforcement-learning
Awesome Reinforcement Learning (GitHub)https://github.com/aikorea/awesome-rl
RL Tutorial Part 1http://outlace.com/Reinforcement-Learning-Part-1/
Part 2http://outlace.com/Reinforcement-Learning-Part-2/
https://github.com/Programmer027/Machine-Learning-Tutorials#decision-trees
Wikipedia Page - Lots of Good Infohttps://en.wikipedia.org/wiki/Decision_tree_learning
FAQs about Decision Treeshttp://stats.stackexchange.com/questions/tagged/cart
Brief Tour of Trees and Forestshttp://statistical-research.com/a-brief-tour-of-the-trees-and-forests/
Tree Based Models in Rhttp://www.statmethods.net/advstats/cart.html
How Decision Trees work?http://www.aihorizon.com/essays/generalai/decision_trees.htm
Weak side of Decision Treeshttp://stats.stackexchange.com/questions/1292/what-is-the-weak-side-of-decision-trees
Thorough Explanation and different algorithmshttp://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf
What is entropy and information gain in the context of building decision trees?http://stackoverflow.com/questions/1859554/what-is-entropy-and-information-gain
Slides Related to Decision Treeshttp://www.slideshare.net/pierluca.lanzi/machine-learning-and-data-mining-11-decision-trees
How do decision tree learning algorithms deal with missing values?http://stats.stackexchange.com/questions/96025/how-do-decision-tree-learning-algorithms-deal-with-missing-values-under-the-hoo
Using Surrogates to Improve Datasets with Missing Valueshttps://www.salford-systems.com/videos/tutorials/tips-and-tricks/using-surrogates-to-improve-datasets-with-missing-values
Good Articlehttps://www.mindtools.com/dectree.html
Are decision trees almost always binary trees?http://stats.stackexchange.com/questions/12187/are-decision-trees-almost-always-binary-trees
Pruning Decision Treeshttps://en.wikipedia.org/wiki/Pruning_(decision_trees)
Grafting of Decision Treeshttps://en.wikipedia.org/wiki/Grafting_(decision_trees)
What is Deviance in context of Decision Trees?http://stats.stackexchange.com/questions/6581/what-is-deviance-specifically-in-cart-rpart
Discover structure behind data with decision treeshttp://vooban.com/en/tips-articles-geek-stuff/discover-structure-behind-data-with-decision-trees/
CART vs CTREEhttp://stats.stackexchange.com/questions/12140/conditional-inference-trees-vs-traditional-decision-trees
Comparison of complexity or performancehttps://stackoverflow.com/questions/9979461/different-decision-tree-algorithms-with-comparison-of-complexity-or-performance
CHAID vs CARThttp://stats.stackexchange.com/questions/61230/chaid-vs-crt-or-cart
CART vs CHAIDhttp://www.bzst.com/2006/10/classification-trees-cart-vs-chaid.html
Good Article on comparisonhttp://www.ftpress.com/articles/article.aspx?p=2248639&seqNum=11
Recursive Partitioning Wikipediahttps://en.wikipedia.org/wiki/Recursive_partitioning
CART Explainedhttp://documents.software.dell.com/Statistics/Textbook/Classification-and-Regression-Trees
How to measure/rank “variable importance” when using CART?http://stats.stackexchange.com/questions/6478/how-to-measure-rank-variable-importance-when-using-cart-specifically-using
Pruning a Tree in Rhttp://stackoverflow.com/questions/15318409/how-to-prune-a-tree-in-r
Does rpart use multivariate splits by default?http://stats.stackexchange.com/questions/4356/does-rpart-use-multivariate-splits-by-default
FAQs about Recursive Partitioninghttp://stats.stackexchange.com/questions/tagged/rpart
party package in Rhttps://cran.r-project.org/web/packages/party/party.pdf
Show volumne in each node using ctree in Rhttp://stackoverflow.com/questions/13772715/show-volume-in-each-node-using-ctree-plot-in-r
How to extract tree structure from ctree function?http://stackoverflow.com/questions/8675664/how-to-extract-tree-structure-from-ctree-function
Wikipedia Artice on CHAIDhttps://en.wikipedia.org/wiki/CHAID
Basic Introduction to CHAIDhttps://smartdrill.com/Introduction-to-CHAID.html
Good Tutorial on CHAIDhttp://www.statsoft.com/Textbook/CHAID-Analysis
Wikipedia Article on MARShttps://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines
Bayesian Learning in Probabilistic Decision Treeshttp://www.stats.org.uk/bayesian/Jordan.pdf
Probabilistic Trees Research Paperhttp://people.stern.nyu.edu/adamodar/pdfiles/papers/probabilistic.pdf
https://github.com/Programmer027/Machine-Learning-Tutorials#random-forest--bagging
Awesome Random Forest (GitHub)**https://github.com/kjw0612/awesome-random-forest
How to tune RF parameters in practice?https://www.kaggle.com/forums/f/15/kaggle-forum/t/4092/how-to-tune-rf-parameters-in-practice
Measures of variable importance in random forestshttp://stats.stackexchange.com/questions/12605/measures-of-variable-importance-in-random-forests
Compare R-squared from two different Random Forest modelshttp://stats.stackexchange.com/questions/13869/compare-r-squared-from-two-different-random-forest-models
OOB Estimate Explained | RF vs LDAhttps://stat.ethz.ch/education/semesters/ss2012/ams/slides/v10.2.pdf
Evaluating Random Forests for Survival Analysis Using Prediction Error Curvehttps://www.jstatsoft.org/index.php/jss/article/view/v050i11
Why doesn't Random Forest handle missing values in predictors?http://stats.stackexchange.com/questions/98953/why-doesnt-random-forest-handle-missing-values-in-predictors
How to build random forests in R with missing (NA) values?http://stackoverflow.com/questions/8370455/how-to-build-random-forests-in-r-with-missing-na-values
FAQs about Random Foresthttp://stats.stackexchange.com/questions/tagged/random-forest
More FAQshttp://stackoverflow.com/questions/tagged/random-forest
Obtaining knowledge from a random foresthttp://stats.stackexchange.com/questions/21152/obtaining-knowledge-from-a-random-forest
Some Questions for R implementationhttp://stackoverflow.com/questions/20537186/getting-predictions-after-rfimpute
2http://stats.stackexchange.com/questions/81609/whether-preprocessing-is-needed-before-prediction-using-finalmodel-of-randomfore
3http://stackoverflow.com/questions/17059432/random-forest-package-in-r-shows-error-during-prediction-if-there-are-new-fact
https://github.com/Programmer027/Machine-Learning-Tutorials#boosting
Boosting for Better Predictionshttp://www.datasciencecentral.com/profiles/blogs/boosting-algorithms-for-better-predictions
Boosting Wikipedia Pagehttps://en.wikipedia.org/wiki/Boosting_(machine_learning)
Introduction to Boosted Trees | Tianqi Chenhttps://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
Gradiet Boosting Wikihttps://en.wikipedia.org/wiki/Gradient_boosting
Guidelines for GBM parameters in Rhttp://stats.stackexchange.com/questions/25748/what-are-some-useful-guidelines-for-gbm-parameters
Strategy to set parametershttp://stats.stackexchange.com/questions/35984/strategy-to-set-the-gbm-parameters
Meaning of Interaction Depthhttp://stats.stackexchange.com/questions/16501/what-does-interaction-depth-mean-in-gbm
2http://stats.stackexchange.com/questions/16501/what-does-interaction-depth-mean-in-gbm
Role of n.minobsinnode parameter of GBM in Rhttp://stats.stackexchange.com/questions/30645/role-of-n-minobsinnode-parameter-of-gbm-in-r
GBM in Rhttp://www.slideshare.net/mark_landry/gbm-package-in-r
FAQs about GBMhttp://stats.stackexchange.com/tags/gbm/hot
GBM vs xgboosthttps://www.kaggle.com/c/higgs-boson/forums/t/9497/r-s-gbm-vs-python-s-xgboost
xgboost tuning kagglehttps://www.kaggle.com/khozzy/rossmann-store-sales/xgboost-parameter-tuning-template/log
xgboost vs gbmhttps://www.kaggle.com/c/otto-group-product-classification-challenge/forums/t/13012/question-to-experienced-kagglers-and-anyone-who-wants-to-take-a-shot/68296#post68296
xgboost surveyhttps://www.kaggle.com/c/higgs-boson/forums/t/10335/xgboost-post-competition-survey
Practical XGBoost in Python online course (free)http://education.parrotprediction.teachable.com/courses/practical-xgboost-in-python
AdaBoost Wikihttps://en.wikipedia.org/wiki/AdaBoost
Python Codehttps://gist.github.com/tristanwietsma/5486024
AdaBoost Sparse Input Supporthttp://hamzehal.blogspot.com/2014/06/adaboost-sparse-input-support.html
adaBag R packagehttps://cran.r-project.org/web/packages/adabag/adabag.pdf
Tutorialhttp://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Eric-Boosting304FinalRpdf.pdf
https://github.com/Programmer027/Machine-Learning-Tutorials#ensembles
Wikipedia Article on Ensemble Learninghttps://en.wikipedia.org/wiki/Ensemble_learning
Kaggle Ensembling Guidehttp://mlwave.com/kaggle-ensembling-guide/
The Power of Simple Ensembleshttp://www.overkillanalytics.net/more-is-always-better-the-power-of-simple-ensembles/
Ensemble Learning Introhttp://machine-learning.martinsewell.com/ensembles/
Ensemble Learning Paperhttp://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/springerEBR09.pdf
Ensembling models with Rhttp://amunategui.github.io/blending-models/
Ensembling Regression Models in Rhttp://stats.stackexchange.com/questions/26790/ensembling-regression-models
Intro to Ensembles in Rhttp://www.vikparuchuri.com/blog/intro-to-ensemble-learning-in-r/
Ensembling Models with carethttp://stats.stackexchange.com/questions/27361/stacking-ensembling-models-with-caret
Bagging vs Boosting vs Stackinghttp://stats.stackexchange.com/questions/18891/bagging-boosting-and-stacking-in-machine-learning
Good Resources | Kaggle Africa Soil Property Predictionhttps://www.kaggle.com/c/afsis-soil-properties/forums/t/10391/best-ensemble-references
Boosting vs Bagginghttp://www.chioka.in/which-is-better-boosting-or-bagging/
Resources for learning how to implement ensemble methodshttp://stats.stackexchange.com/questions/32703/resources-for-learning-how-to-implement-ensemble-methods
How are classifications merged in an ensemble classifier?http://stats.stackexchange.com/questions/21502/how-are-classifications-merged-in-an-ensemble-classifier
https://github.com/Programmer027/Machine-Learning-Tutorials#stacking-models
Stacking, Blending and Stacked Generalizationhttp://www.chioka.in/stacking-blending-and-stacked-generalization/
Stacked Generalization (Stacking)http://machine-learning.martinsewell.com/ensembles/stacking/
Stacked Generalization: when does it work?http://www.ijcai.org/Proceedings/97-2/011.pdf
Stacked Generalization Paperhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.1533&rep=rep1&type=pdf
https://github.com/Programmer027/Machine-Learning-Tutorials#vapnikchervonenkis-dimension
Wikipedia article on VC Dimensionhttps://en.wikipedia.org/wiki/VC_dimension
Intuitive Explanantion of VC Dimensionhttps://www.quora.com/Explain-VC-dimension-and-shattering-in-lucid-Way
Video explaining VC Dimensionhttps://www.youtube.com/watch?v=puDzy2XmR5c
Introduction to VC Dimensionhttp://www.svms.org/vc-dimension/
FAQs about VC Dimensionhttp://stats.stackexchange.com/questions/tagged/vc-dimension
Do ensemble techniques increase VC-dimension?http://stats.stackexchange.com/questions/78076/do-ensemble-techniques-increase-vc-dimension
https://github.com/Programmer027/Machine-Learning-Tutorials#bayesian-machine-learning
Bayesian Methods for Hackers (using pyMC)https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
Should all Machine Learning be Bayesian?http://videolectures.net/bark08_ghahramani_samlbb/
Tutorial on Bayesian Optimisation for Machine Learninghttp://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf
Bayesian Reasoning and Deep Learninghttp://blog.shakirm.com/2015/10/bayesian-reasoning-and-deep-learning/
Slideshttp://blog.shakirm.com/wp-content/uploads/2015/10/Bayes_Deep.pdf
Bayesian Statistics Made Simplehttp://greenteapress.com/wp/think-bayes/
Kalman & Bayesian Filters in Pythonhttps://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
Markov Chain Wikipedia Pagehttps://en.wikipedia.org/wiki/Markov_chain
https://github.com/Programmer027/Machine-Learning-Tutorials#semi-supervised-learning
Wikipedia article on Semi Supervised Learninghttps://en.wikipedia.org/wiki/Semi-supervised_learning
Tutorial on Semi Supervised Learninghttp://pages.cs.wisc.edu/~jerryzhu/pub/sslicml07.pdf
Graph Based Semi Supervised Learning for NLPhttp://graph-ssl.wdfiles.com/local--files/blog%3A_start/graph_ssl_acl12_tutorial_slides_final.pdf
Taxonomyhttp://is.tuebingen.mpg.de/fileadmin/user_upload/files/publications/taxo_%5B0%5D.pdf
Video Tutorial Wekahttps://www.youtube.com/watch?v=sWxcIjZFGNM
Unsupervised, Supervised and Semi Supervised learninghttp://stats.stackexchange.com/questions/517/unsupervised-supervised-and-semi-supervised-learning
Research Papers 1http://mlg.eng.cam.ac.uk/zoubin/papers/zglactive.pdf
2http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf
3http://icml.cc/2012/papers/616.pdf
https://github.com/Programmer027/Machine-Learning-Tutorials#optimization
Mean Variance Portfolio Optimization with R and Quadratic Programminghttp://www.wdiam.com/2012/06/10/mean-variance-portfolio-optimization-with-r-and-quadratic-programming/?utm_content=buffer04c12&utm_medium=social&utm_source=linkedin.com&utm_campaign=buffer
Algorithms for Sparse Optimization and Machine Learninghttp://www.ima.umn.edu/2011-2012/W3.26-30.12/activities/Wright-Steve/sjw-ima12
Optimization Algorithms in Machine Learninghttp://pages.cs.wisc.edu/~swright/nips2010/sjw-nips10.pdf
Video Lecturehttp://videolectures.net/nips2010_wright_oaml/
Optimization Algorithms for Data Analysishttp://www.birs.ca/workshops/2011/11w2035/files/Wright.pdf
Video Lectures on Optimizationhttp://videolectures.net/stephen_j_wright/
Optimization Algorithms in Support Vector Machineshttp://pages.cs.wisc.edu/~swright/talks/sjw-complearning.pdf
The Interplay of Optimization and Machine Learning Researchhttp://jmlr.org/papers/volume7/MLOPT-intro06a/MLOPT-intro06a.pdf
Hyperopt tutorial for Optimizing Neural Networks’ Hyperparametershttp://vooban.com/en/tips-articles-geek-stuff/hyperopt-tutorial-for-optimizing-neural-networks-hyperparameters/
https://github.com/Programmer027/Machine-Learning-Tutorials#other-tutorials
this listhttps://github.com/ujjwalkarn/DataScienceR
this listhttps://github.com/ujjwalkarn/DataSciencePython
ujjwalkarn.github.io/Machine-Learning-Tutorialshttp://ujjwalkarn.github.io/Machine-Learning-Tutorials
Readme https://github.com/Programmer027/Machine-Learning-Tutorials#readme-ov-file
CC0-1.0 license https://github.com/Programmer027/Machine-Learning-Tutorials#CC0-1.0-1-ov-file
Contributing https://github.com/Programmer027/Machine-Learning-Tutorials#contributing-ov-file
Please reload this pagehttps://github.com/Programmer027/Machine-Learning-Tutorials
Activityhttps://github.com/Programmer027/Machine-Learning-Tutorials/activity
0 starshttps://github.com/Programmer027/Machine-Learning-Tutorials/stargazers
0 watchinghttps://github.com/Programmer027/Machine-Learning-Tutorials/watchers
0 forkshttps://github.com/Programmer027/Machine-Learning-Tutorials/forks
Report repository https://github.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2FProgrammer027%2FMachine-Learning-Tutorials&report=Programmer027+%28user%29
Releaseshttps://github.com/Programmer027/Machine-Learning-Tutorials/releases
Packages 0https://github.com/users/Programmer027/packages?repo_name=Machine-Learning-Tutorials
https://github.com
Termshttps://docs.github.com/site-policy/github-terms/github-terms-of-service
Privacyhttps://docs.github.com/site-policy/privacy-policies/github-privacy-statement
Securityhttps://github.com/security
Statushttps://www.githubstatus.com/
Communityhttps://github.community/
Docshttps://docs.github.com/
Contacthttps://support.github.com?tags=dotcom-footer

Viewport: width=device-width


URLs of crawlers that visited me.