René's URL Explorer Experiment


Title: GitHub - DDCarry/machinelearning: My blogs and code for machine learning. http://cnblogs.com/pinard

Open Graph Title: GitHub - DDCarry/machinelearning: My blogs and code for machine learning. http://cnblogs.com/pinard

X Title: GitHub - DDCarry/machinelearning: My blogs and code for machine learning. http://cnblogs.com/pinard

Description: My blogs and code for machine learning. http://cnblogs.com/pinard - DDCarry/machinelearning

Open Graph Description: My blogs and code for machine learning. http://cnblogs.com/pinard - DDCarry/machinelearning

X Description: My blogs and code for machine learning. http://cnblogs.com/pinard - DDCarry/machinelearning

Opengraph URL: https://github.com/DDCarry/machinelearning

X: @github

direct link

Domain: github.com

route-pattern/:user_id/:repository
route-controllerfiles
route-actiondisambiguate
fetch-noncev2:381d8e2f-6acb-69a4-ad18-dd73fdb61cb8
current-catalog-service-hashf3abb0cc802f3d7b95fc8762b94bdcb13bf39634c40c357301c4aa1d67a256fb
request-idD098:264976:86A44A:ADB7AD:696B1A14
html-safe-nonce91ebaf5e5d80a6eb4055fb026b32fdf9f47d44a3578cfef14f68024c166037fa
visitor-payloadeyJyZWZlcnJlciI6IiIsInJlcXVlc3RfaWQiOiJEMDk4OjI2NDk3Njo4NkE0NEE6QURCN0FEOjY5NkIxQTE0IiwidmlzaXRvcl9pZCI6IjUyMDgwNjU2NDExMTIzNDUxMDgiLCJyZWdpb25fZWRnZSI6ImlhZCIsInJlZ2lvbl9yZW5kZXIiOiJpYWQifQ==
visitor-hmace000dc2f928ead0effc885dd4655d2d7d5eaa5887bf342e6c1eca786925e7326
hovercard-subject-tagrepository:172619012
github-keyboard-shortcutsrepository,copilot
google-site-verificationApib7-x98H0j5cPqHWwSMm6dNU4GmODRoqxLiDzdx9I
octolytics-urlhttps://collector.github.com/github/collect
analytics-location//
fb:app_id1401488693436528
apple-itunes-appapp-id=1477376905, app-argument=https://github.com/DDCarry/machinelearning
twitter:imagehttps://opengraph.githubassets.com/f63c36b8f1a771c318e1a86fbd5d60e1bcc142a34d5df7f4e0b07ac545fa928d/DDCarry/machinelearning
twitter:cardsummary_large_image
og:imagehttps://opengraph.githubassets.com/f63c36b8f1a771c318e1a86fbd5d60e1bcc142a34d5df7f4e0b07ac545fa928d/DDCarry/machinelearning
og:image:altMy blogs and code for machine learning. http://cnblogs.com/pinard - DDCarry/machinelearning
og:image:width1200
og:image:height600
og:site_nameGitHub
og:typeobject
hostnamegithub.com
expected-hostnamegithub.com
None5f99f7c1d70f01da5b93e5ca90303359738944d8ab470e396496262c66e60b8d
turbo-cache-controlno-preview
go-importgithub.com/DDCarry/machinelearning git https://github.com/DDCarry/machinelearning.git
octolytics-dimension-user_id22782040
octolytics-dimension-user_loginDDCarry
octolytics-dimension-repository_id172619012
octolytics-dimension-repository_nwoDDCarry/machinelearning
octolytics-dimension-repository_publictrue
octolytics-dimension-repository_is_forktrue
octolytics-dimension-repository_parent_id58616850
octolytics-dimension-repository_parent_nwoljpzzz/machinelearning
octolytics-dimension-repository_network_root_id58616850
octolytics-dimension-repository_network_root_nwoljpzzz/machinelearning
turbo-body-classeslogged-out env-production page-responsive
disable-turbofalse
browser-stats-urlhttps://api.github.com/_private/browser/stats
browser-errors-urlhttps://api.github.com/_private/browser/errors
release82560a55c6b2054555076f46e683151ee28a19bc
ui-targetfull
theme-color#1e2327
color-schemelight dark

Links:

Skip to contenthttps://github.com/DDCarry/machinelearning#start-of-content
https://github.com/
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2FDDCarry%2Fmachinelearning
GitHub CopilotWrite better code with AIhttps://github.com/features/copilot
GitHub SparkBuild and deploy intelligent appshttps://github.com/features/spark
GitHub ModelsManage and compare promptshttps://github.com/features/models
MCP RegistryNewIntegrate external toolshttps://github.com/mcp
ActionsAutomate any workflowhttps://github.com/features/actions
CodespacesInstant dev environmentshttps://github.com/features/codespaces
IssuesPlan and track workhttps://github.com/features/issues
Code ReviewManage code changeshttps://github.com/features/code-review
GitHub Advanced SecurityFind and fix vulnerabilitieshttps://github.com/security/advanced-security
Code securitySecure your code as you buildhttps://github.com/security/advanced-security/code-security
Secret protectionStop leaks before they starthttps://github.com/security/advanced-security/secret-protection
Why GitHubhttps://github.com/why-github
Documentationhttps://docs.github.com
Bloghttps://github.blog
Changeloghttps://github.blog/changelog
Marketplacehttps://github.com/marketplace
View all featureshttps://github.com/features
Enterpriseshttps://github.com/enterprise
Small and medium teamshttps://github.com/team
Startupshttps://github.com/enterprise/startups
Nonprofitshttps://github.com/solutions/industry/nonprofits
App Modernizationhttps://github.com/solutions/use-case/app-modernization
DevSecOpshttps://github.com/solutions/use-case/devsecops
DevOpshttps://github.com/solutions/use-case/devops
CI/CDhttps://github.com/solutions/use-case/ci-cd
View all use caseshttps://github.com/solutions/use-case
Healthcarehttps://github.com/solutions/industry/healthcare
Financial serviceshttps://github.com/solutions/industry/financial-services
Manufacturinghttps://github.com/solutions/industry/manufacturing
Governmenthttps://github.com/solutions/industry/government
View all industrieshttps://github.com/solutions/industry
View all solutionshttps://github.com/solutions
AIhttps://github.com/resources/articles?topic=ai
Software Developmenthttps://github.com/resources/articles?topic=software-development
DevOpshttps://github.com/resources/articles?topic=devops
Securityhttps://github.com/resources/articles?topic=security
View all topicshttps://github.com/resources/articles
Customer storieshttps://github.com/customer-stories
Events & webinarshttps://github.com/resources/events
Ebooks & reportshttps://github.com/resources/whitepapers
Business insightshttps://github.com/solutions/executive-insights
GitHub Skillshttps://skills.github.com
Documentationhttps://docs.github.com
Customer supporthttps://support.github.com
Community forumhttps://github.com/orgs/community/discussions
Trust centerhttps://github.com/trust-center
Partnershttps://github.com/partners
GitHub SponsorsFund open source developershttps://github.com/sponsors
Security Labhttps://securitylab.github.com
Maintainer Communityhttps://maintainers.github.com
Acceleratorhttps://github.com/accelerator
Archive Programhttps://archiveprogram.github.com
Topicshttps://github.com/topics
Trendinghttps://github.com/trending
Collectionshttps://github.com/collections
Enterprise platformAI-powered developer platformhttps://github.com/enterprise
GitHub Advanced SecurityEnterprise-grade security featureshttps://github.com/security/advanced-security
Copilot for BusinessEnterprise-grade AI featureshttps://github.com/features/copilot/copilot-business
Premium SupportEnterprise-grade 24/7 supporthttps://github.com/premium-support
Pricinghttps://github.com/pricing
Search syntax tipshttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
documentationhttps://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax
Sign in https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2FDDCarry%2Fmachinelearning
Sign up https://github.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=DDCarry%2Fmachinelearning
Reloadhttps://github.com/DDCarry/machinelearning
Reloadhttps://github.com/DDCarry/machinelearning
Reloadhttps://github.com/DDCarry/machinelearning
DDCarry https://github.com/DDCarry
machinelearninghttps://github.com/DDCarry/machinelearning
ljpzzz/machinelearninghttps://github.com/ljpzzz/machinelearning
Notifications https://github.com/login?return_to=%2FDDCarry%2Fmachinelearning
Fork 0 https://github.com/login?return_to=%2FDDCarry%2Fmachinelearning
Star 0 https://github.com/login?return_to=%2FDDCarry%2Fmachinelearning
http://cnblogs.com/pinardhttp://cnblogs.com/pinard
MIT license https://github.com/DDCarry/machinelearning/blob/master/LICENSE
0 stars https://github.com/DDCarry/machinelearning/stargazers
3.7k forks https://github.com/DDCarry/machinelearning/forks
Branches https://github.com/DDCarry/machinelearning/branches
Tags https://github.com/DDCarry/machinelearning/tags
Activity https://github.com/DDCarry/machinelearning/activity
Star https://github.com/login?return_to=%2FDDCarry%2Fmachinelearning
Notifications https://github.com/login?return_to=%2FDDCarry%2Fmachinelearning
Code https://github.com/DDCarry/machinelearning
Pull requests 0 https://github.com/DDCarry/machinelearning/pulls
Actions https://github.com/DDCarry/machinelearning/actions
Projects 0 https://github.com/DDCarry/machinelearning/projects
Security Uh oh! There was an error while loading. Please reload this page. https://github.com/DDCarry/machinelearning/security
Please reload this pagehttps://github.com/DDCarry/machinelearning
Insights https://github.com/DDCarry/machinelearning/pulse
Code https://github.com/DDCarry/machinelearning
Pull requests https://github.com/DDCarry/machinelearning/pulls
Actions https://github.com/DDCarry/machinelearning/actions
Projects https://github.com/DDCarry/machinelearning/projects
Security https://github.com/DDCarry/machinelearning/security
Insights https://github.com/DDCarry/machinelearning/pulse
Brancheshttps://github.com/DDCarry/machinelearning/branches
Tagshttps://github.com/DDCarry/machinelearning/tags
https://github.com/DDCarry/machinelearning/branches
https://github.com/DDCarry/machinelearning/tags
75 Commitshttps://github.com/DDCarry/machinelearning/commits/master/
https://github.com/DDCarry/machinelearning/commits/master/
classic-machine-learninghttps://github.com/DDCarry/machinelearning/tree/master/classic-machine-learning
classic-machine-learninghttps://github.com/DDCarry/machinelearning/tree/master/classic-machine-learning
datahttps://github.com/DDCarry/machinelearning/tree/master/data
datahttps://github.com/DDCarry/machinelearning/tree/master/data
ensemble-learninghttps://github.com/DDCarry/machinelearning/tree/master/ensemble-learning
ensemble-learninghttps://github.com/DDCarry/machinelearning/tree/master/ensemble-learning
mathematicshttps://github.com/DDCarry/machinelearning/tree/master/mathematics
mathematicshttps://github.com/DDCarry/machinelearning/tree/master/mathematics
model-in-producthttps://github.com/DDCarry/machinelearning/tree/master/model-in-product
model-in-producthttps://github.com/DDCarry/machinelearning/tree/master/model-in-product
natural-language-processinghttps://github.com/DDCarry/machinelearning/tree/master/natural-language-processing
natural-language-processinghttps://github.com/DDCarry/machinelearning/tree/master/natural-language-processing
reinforcement-learninghttps://github.com/DDCarry/machinelearning/tree/master/reinforcement-learning
reinforcement-learninghttps://github.com/DDCarry/machinelearning/tree/master/reinforcement-learning
.gitignorehttps://github.com/DDCarry/machinelearning/blob/master/.gitignore
.gitignorehttps://github.com/DDCarry/machinelearning/blob/master/.gitignore
LICENSEhttps://github.com/DDCarry/machinelearning/blob/master/LICENSE
LICENSEhttps://github.com/DDCarry/machinelearning/blob/master/LICENSE
readme.mdhttps://github.com/DDCarry/machinelearning/blob/master/readme.md
readme.mdhttps://github.com/DDCarry/machinelearning/blob/master/readme.md
READMEhttps://github.com/DDCarry/machinelearning
MIT licensehttps://github.com/DDCarry/machinelearning
https://github.com/DDCarry/machinelearning#刘建平pinard的博客配套代码
http://www.cnblogs.com/pinardhttp://www.cnblogs.com/pinard
https://github.com/DDCarry/machinelearning#目录
机器学习基础与回归算法https://github.com/DDCarry/machinelearning#2
机器学习分类算法https://github.com/DDCarry/machinelearning#3
机器学习聚类算法https://github.com/DDCarry/machinelearning#4
机器学习降维算法https://github.com/DDCarry/machinelearning#5
机器学习集成学习算法https://github.com/DDCarry/machinelearning#6
数学统计学https://github.com/DDCarry/machinelearning#7
机器学习关联算法https://github.com/DDCarry/machinelearning#8
机器学习推荐算法https://github.com/DDCarry/machinelearning#9
深度学习算法https://github.com/DDCarry/machinelearning#10
自然语言处理算法https://github.com/DDCarry/machinelearning#11
强化学习算法https://github.com/DDCarry/machinelearning#1
特征工程与算法落地https://github.com/DDCarry/machinelearning#12
https://github.com/DDCarry/machinelearning#注意
https://github.com/DDCarry/machinelearning#强化学习文章与代码
强化学习(一)模型基础https://www.cnblogs.com/pinard/p/9385570.html
代码https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/introduction.py
强化学习(二)马尔科夫决策过程(MDP)https://www.cnblogs.com/pinard/p/9426283.html
强化学习(三)用动态规划(DP)求解https://www.cnblogs.com/pinard/p/9463815.html
强化学习(四)用蒙特卡罗法(MC)求解https://www.cnblogs.com/pinard/p/9492980.html
强化学习(五)用时序差分法(TD)求解https://www.cnblogs.com/pinard/p/9529828.html
强化学习(六)时序差分在线控制算法SARSAhttps://www.cnblogs.com/pinard/p/9614290.html
代码https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/sarsa_windy_world.py
强化学习(七)时序差分离线控制算法Q-Learninghttps://www.cnblogs.com/pinard/p/9669263.html
代码https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/q_learning_windy_world.py
强化学习(八)价值函数的近似表示与Deep Q-Learninghttps://www.cnblogs.com/pinard/p/9714655.html
代码https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/dqn.py
强化学习(九)Deep Q-Learning进阶之Nature DQNhttps://www.cnblogs.com/pinard/p/9756075.html
代码https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/nature_dqn.py
强化学习(十)Double DQN (DDQN)https://www.cnblogs.com/pinard/p/9778063.html
代码https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/ddqn.py
强化学习(十一) Prioritized Replay DQNhttps://www.cnblogs.com/pinard/p/9797695.html
代码https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/ddqn_prioritised_replay.py
强化学习(十二) Dueling DQNhttps://www.cnblogs.com/pinard/p/9923859.html
代码https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/duel_dqn.py
强化学习(十三) 策略梯度(Policy Gradient)https://www.cnblogs.com/pinard/p/10137696.html
代码https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/policy_gradient.py
强化学习(十四) Actor-Critichttps://www.cnblogs.com/pinard/p/10272023.html
代码https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/actor_critic.py
强化学习(十五) A3Chttps://www.cnblogs.com/pinard/p/10334127.html
代码https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/a3c.py
强化学习(十六) 深度确定性策略梯度(DDPG)https://www.cnblogs.com/pinard/p/10345762.html
代码https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/ddpg.py
强化学习(十七) 基于模型的强化学习与Dyna算法框架https://www.cnblogs.com/pinard/p/10384424.html
https://github.com/DDCarry/machinelearning#机器学习基础与回归算法文章与代码
梯度下降(Gradient Descent)小结https://www.cnblogs.com/pinard/p/5970503.html
最小二乘法小结https://www.cnblogs.com/pinard/p/5976811.html
交叉验证(Cross Validation)原理小结https://www.cnblogs.com/pinard/p/5992719.html
精确率与召回率,RoC曲线与PR曲线https://www.cnblogs.com/pinard/p/5993450.html
线性回归原理小结https://www.cnblogs.com/pinard/p/6004041.html
机器学习研究与开发平台的选择https://www.cnblogs.com/pinard/p/6007200.html
scikit-learn 和pandas 基于windows单机机器学习环境的搭建https://www.cnblogs.com/pinard/p/6013484.html
用scikit-learn和pandas学习线性回归https://www.cnblogs.com/pinard/p/6016029.html
代码https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/linear-regression.ipynb
Lasso回归算法: 坐标轴下降法与最小角回归法小结https://www.cnblogs.com/pinard/p/6018889.html
用scikit-learn和pandas学习Ridge回归https://www.cnblogs.com/pinard/p/6023000.html
代码1https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/ridge_regression_1.ipynb
代码2https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/ridge_regression.ipynb
scikit-learn 线性回归算法库小结https://www.cnblogs.com/pinard/p/6026343.html
异常点检测算法小结https://www.cnblogs.com/pinard/p/9314198.html
https://github.com/DDCarry/machinelearning#机器学习分类算法文章与代码
逻辑回归原理小结https://www.cnblogs.com/pinard/p/6029432.html
scikit-learn 逻辑回归类库使用小结https://www.cnblogs.com/pinard/p/6035872.html
感知机原理小结https://www.cnblogs.com/pinard/p/6042320.html
决策树算法原理(上)https://www.cnblogs.com/pinard/p/6050306.html
决策树算法原理(下)https://www.cnblogs.com/pinard/p/6053344.html
scikit-learn决策树算法类库使用小结https://www.cnblogs.com/pinard/p/6056319.html
代码1https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/decision_tree_classifier.ipynb
代码2https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/decision_tree_classifier_1.ipynb
K近邻法(KNN)原理小结https://www.cnblogs.com/pinard/p/6061661.html
scikit-learn K近邻法类库使用小结https://www.cnblogs.com/pinard/p/6065607.html
代码https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/knn_classifier.ipynb
朴素贝叶斯算法原理小结https://www.cnblogs.com/pinard/p/6069267.html
scikit-learn 朴素贝叶斯类库使用小结https://www.cnblogs.com/pinard/p/6074222.html
代码https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/native_bayes.ipynb
最大熵模型原理小结https://www.cnblogs.com/pinard/p/6093948.html
支持向量机原理(一) 线性支持向量机https://www.cnblogs.com/pinard/p/6097604.html
支持向量机原理(二) 线性支持向量机的软间隔最大化模型https://www.cnblogs.com/pinard/p/6100722.html
支持向量机原理(三)线性不可分支持向量机与核函数https://www.cnblogs.com/pinard/p/6103615.html
支持向量机原理(四)SMO算法原理https://www.cnblogs.com/pinard/p/6111471.html
支持向量机原理(五)线性支持回归https://www.cnblogs.com/pinard/p/6113120.html
scikit-learn 支持向量机算法库使用小结https://www.cnblogs.com/pinard/p/6117515.html
支持向量机高斯核调参小结https://www.cnblogs.com/pinard/p/6126077.html
代码https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/svm_classifier.ipynb
https://github.com/DDCarry/machinelearning#数学统计学文章与代码
机器学习算法的随机数据生成https://www.cnblogs.com/pinard/p/6047802.html
代码https://github.com/ljpzzz/machinelearning/blob/master/mathematics/random_data_generation.ipynb
MCMC(一)蒙特卡罗方法https://www.cnblogs.com/pinard/p/6625739.html
MCMC(二)马尔科夫链https://www.cnblogs.com/pinard/p/6632399.html
代码https://github.com/ljpzzz/machinelearning/blob/master/mathematics/mcmc_2.ipynb
MCMC(三)MCMC采样和M-H采样https://www.cnblogs.com/pinard/p/6638955.html
代码https://github.com/ljpzzz/machinelearning/blob/master/mathematics/mcmc_3_4.ipynb
MCMC(四)Gibbs采样https://www.cnblogs.com/pinard/p/6645766.html
代码https://github.com/ljpzzz/machinelearning/blob/master/mathematics/mcmc_3_4.ipynb
https://github.com/DDCarry/machinelearning#机器学习集成学习文章与代码
集成学习原理小结https://www.cnblogs.com/pinard/p/6131423.html
集成学习之Adaboost算法原理小结https://www.cnblogs.com/pinard/p/6133937.html
scikit-learn Adaboost类库使用小结https://www.cnblogs.com/pinard/p/6136914.html
代码https://github.com/ljpzzz/machinelearning/blob/master/ensemble-learning/adaboost-classifier.ipynb
梯度提升树(GBDT)原理小结https://www.cnblogs.com/pinard/p/6140514.html
scikit-learn 梯度提升树(GBDT)调参小结https://www.cnblogs.com/pinard/p/6143927.html
代码https://github.com/ljpzzz/machinelearning/blob/master/ensemble-learning/gbdt_classifier.ipynb
Bagging与随机森林算法原理小结https://www.cnblogs.com/pinard/p/6156009.html
scikit-learn随机森林调参小结https://www.cnblogs.com/pinard/p/6160412.html
代码https://github.com/ljpzzz/machinelearning/blob/master/ensemble-learning/random_forest_classifier.ipynb
https://github.com/DDCarry/machinelearning#机器学习聚类算法文章与代码
K-Means聚类算法原理https://www.cnblogs.com/pinard/p/6164214.html
用scikit-learn学习K-Means聚类https://www.cnblogs.com/pinard/p/6169370.html
代码https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/kmeans_cluster.ipynb
BIRCH聚类算法原理https://www.cnblogs.com/pinard/p/6179132.html
用scikit-learn学习BIRCH聚类https://www.cnblogs.com/pinard/p/6200579.html
代码https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/birch_cluster.ipynb
DBSCAN密度聚类算法https://www.cnblogs.com/pinard/p/6208966.html
用scikit-learn学习DBSCAN聚类https://www.cnblogs.com/pinard/p/6217852.html
代码https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/dbscan_cluster.ipynb
谱聚类(spectral clustering)原理总结https://www.cnblogs.com/pinard/p/6221564.html
用scikit-learn学习谱聚类https://www.cnblogs.com/pinard/p/6235920.html
代码https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/spectral_cluster.ipynb
https://github.com/DDCarry/machinelearning#机器学习降维算法文章与代码
主成分分析(PCA)原理总结https://www.cnblogs.com/pinard/p/6239403.html
用scikit-learn学习主成分分析(PCA)https://www.cnblogs.com/pinard/p/6243025.html
代码https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/pca.ipynb
线性判别分析LDA原理总结https://www.cnblogs.com/pinard/p/6244265.html
用scikit-learn进行LDA降维https://www.cnblogs.com/pinard/p/6249328.html
代码https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/lda.ipynb
奇异值分解(SVD)原理与在降维中的应用https://www.cnblogs.com/pinard/p/6251584.html
局部线性嵌入(LLE)原理总结https://www.cnblogs.com/pinard/p/6266408.html
用scikit-learn研究局部线性嵌入(LLE)https://www.cnblogs.com/pinard/p/6273377.html
代码https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/lle.ipynb
https://github.com/DDCarry/machinelearning#机器学习关联算法文章与代码
典型关联分析(CCA)原理总结https://www.cnblogs.com/pinard/p/6288716.html
Apriori算法原理总结https://www.cnblogs.com/pinard/p/6293298.html
FP Tree算法原理总结https://www.cnblogs.com/pinard/p/6307064.html
PrefixSpan算法原理总结https://www.cnblogs.com/pinard/p/6323182.html
用Spark学习FP Tree算法和PrefixSpan算法https://www.cnblogs.com/pinard/p/6340162.html
代码https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/fp_tree_prefixspan.ipynb
日志和告警数据挖掘经验谈https://www.cnblogs.com/pinard/p/6039099.html
https://github.com/DDCarry/machinelearning#机器学习推荐算法文章与代码
协同过滤推荐算法总结https://www.cnblogs.com/pinard/p/6349233.html
矩阵分解在协同过滤推荐算法中的应用https://www.cnblogs.com/pinard/p/6351319.html
SimRank协同过滤推荐算法https://www.cnblogs.com/pinard/p/6362647.html
用Spark学习矩阵分解推荐算法https://www.cnblogs.com/pinard/p/6364932.html
代码https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/matrix_factorization.ipynb
分解机(Factorization Machines)推荐算法原理https://www.cnblogs.com/pinard/p/6370127.html
贝叶斯个性化排序(BPR)算法小结https://www.cnblogs.com/pinard/p/9128682.html
用tensorflow学习贝叶斯个性化排序(BPR)https://www.cnblogs.com/pinard/p/9163481.html
代码https://github.com/ljpzzz/machinelearning/blob/master/classic-machine-learning/bpr.ipynb
https://github.com/DDCarry/machinelearning#深度学习算法文章与代码
深度神经网络(DNN)模型与前向传播算法https://www.cnblogs.com/pinard/p/6418668.html
深度神经网络(DNN)反向传播算法(BP)https://www.cnblogs.com/pinard/p/6422831.html
深度神经网络(DNN)损失函数和激活函数的选择https://www.cnblogs.com/pinard/p/6437495.html
深度神经网络(DNN)的正则化https://www.cnblogs.com/pinard/p/6472666.html
卷积神经网络(CNN)模型结构https://www.cnblogs.com/pinard/p/6483207.html
卷积神经网络(CNN)前向传播算法https://www.cnblogs.com/pinard/p/6489633.html
卷积神经网络(CNN)反向传播算法https://www.cnblogs.com/pinard/p/6494810.html
循环神经网络(RNN)模型与前向反向传播算法https://www.cnblogs.com/pinard/p/6509630.html
LSTM模型与前向反向传播算法https://www.cnblogs.com/pinard/p/6519110.html
受限玻尔兹曼机(RBM)原理总结https://www.cnblogs.com/pinard/p/6530523.html
https://github.com/DDCarry/machinelearning#自然语言处理文章与代码
文本挖掘的分词原理https://www.cnblogs.com/pinard/p/6677078.html
文本挖掘预处理之向量化与Hash Trickhttps://www.cnblogs.com/pinard/p/6688348.html
代码https://github.com/ljpzzz/machinelearning/blob/master/natural-language-processing/hash_trick.ipynb
文本挖掘预处理之TF-IDFhttps://www.cnblogs.com/pinard/p/6693230.html
代码https://github.com/ljpzzz/machinelearning/blob/master/natural-language-processing/tf-idf.ipynb
中文文本挖掘预处理流程总结https://www.cnblogs.com/pinard/p/6744056.html
代码https://github.com/ljpzzz/machinelearning/blob/master/natural-language-processing/chinese_digging.ipynb
英文文本挖掘预处理流程总结https://www.cnblogs.com/pinard/p/6756534.html
代码https://github.com/ljpzzz/machinelearning/blob/master/natural-language-processing/english_digging.ipynb
文本主题模型之潜在语义索引(LSI)https://www.cnblogs.com/pinard/p/6805861.html
文本主题模型之非负矩阵分解(NMF)https://www.cnblogs.com/pinard/p/6812011.html
代码https://github.com/ljpzzz/machinelearning/blob/master/natural-language-processing/nmf.ipynb
文本主题模型之LDA(一) LDA基础https://www.cnblogs.com/pinard/p/6831308.html
文本主题模型之LDA(二) LDA求解之Gibbs采样算法https://www.cnblogs.com/pinard/p/6867828.html
文本主题模型之LDA(三) LDA求解之变分推断EM算法https://www.cnblogs.com/pinard/p/6873703.html
用scikit-learn学习LDA主题模型https://www.cnblogs.com/pinard/p/6908150.html
代码https://github.com/ljpzzz/machinelearning/blob/master/natural-language-processing/lda.ipynb
EM算法原理总结https://www.cnblogs.com/pinard/p/6912636.html
隐马尔科夫模型HMM(一)HMM模型https://www.cnblogs.com/pinard/p/6945257.html
隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率https://www.cnblogs.com/pinard/p/6955871.html
隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数https://www.cnblogs.com/pinard/p/6972299.html
隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列https://www.cnblogs.com/pinard/p/6991852.html
用hmmlearn学习隐马尔科夫模型HMMhttps://www.cnblogs.com/pinard/p/7001397.html
代码https://github.com/ljpzzz/machinelearning/blob/master/natural-language-processing/hmm.ipynb
条件随机场CRF(一)从随机场到线性链条件随机场https://www.cnblogs.com/pinard/p/7048333.html
条件随机场CRF(二) 前向后向算法评估标记序列概率https://www.cnblogs.com/pinard/p/7055072.html
条件随机场CRF(三) 模型学习与维特比算法解码https://www.cnblogs.com/pinard/p/7068574.html
word2vec原理(一) CBOW与Skip-Gram模型基础https://www.cnblogs.com/pinard/p/7160330.html
word2vec原理(二) 基于Hierarchical Softmax的模型https://www.cnblogs.com/pinard/p/7243513.html
word2vec原理(三) 基于Negative Sampling的模型https://www.cnblogs.com/pinard/p/7249903.html
用gensim学习word2vechttps://www.cnblogs.com/pinard/p/7278324.html
代码https://github.com/ljpzzz/machinelearning/blob/master/natural-language-processing/word2vec.ipynb
https://github.com/DDCarry/machinelearning#特征工程与算法落地文章与代码
特征工程之特征选择https://www.cnblogs.com/pinard/p/9032759.html
特征工程之特征表达https://www.cnblogs.com/pinard/p/9061549.html
特征工程之特征预处理https://www.cnblogs.com/pinard/p/9093890.html
用PMML实现机器学习模型的跨平台上线https://www.cnblogs.com/pinard/p/9220199.html
代码https://github.com/ljpzzz/machinelearning/blob/master/model-in-product/sklearn-jpmml
tensorflow机器学习模型的跨平台上线https://www.cnblogs.com/pinard/p/9251296.html
代码https://github.com/ljpzzz/machinelearning/blob/master/model-in-product/tensorflow-java
http://cnblogs.com/pinardhttp://cnblogs.com/pinard
Readme https://github.com/DDCarry/machinelearning#readme-ov-file
MIT license https://github.com/DDCarry/machinelearning#MIT-1-ov-file
Please reload this pagehttps://github.com/DDCarry/machinelearning
Activityhttps://github.com/DDCarry/machinelearning/activity
0 starshttps://github.com/DDCarry/machinelearning/stargazers
0 watchinghttps://github.com/DDCarry/machinelearning/watchers
0 forkshttps://github.com/DDCarry/machinelearning/forks
Report repository https://github.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2FDDCarry%2Fmachinelearning&report=DDCarry+%28user%29
Releaseshttps://github.com/DDCarry/machinelearning/releases
Packages 0https://github.com/users/DDCarry/packages?repo_name=machinelearning
https://github.com
Termshttps://docs.github.com/site-policy/github-terms/github-terms-of-service
Privacyhttps://docs.github.com/site-policy/privacy-policies/github-privacy-statement
Securityhttps://github.com/security
Statushttps://www.githubstatus.com/
Communityhttps://github.community/
Docshttps://docs.github.com/
Contacthttps://support.github.com?tags=dotcom-footer

Viewport: width=device-width


URLs of crawlers that visited me.